

APPENDIX 5. WATER SUMMARY REPORT

Ref: CTR Quarry A_Review Rev2.docx

Newcastle Sands

Baseline Water Quality Summary Report

Williamtown Sand Syndicate Pty Ltd.

Project No. 20193820.001A

Report Date: 14 September 2020

Newcastle Sands

Baseline Water Quality Summary Report

298 Cabbage Tree Road, Williamtown, NSW

Document Number: NCA20R107317 Project Number: 20193820.001A

Kleinfelder File Name: 20193820_WSS Baseline Summary Report v3.0 20200912_Final

Prepared for:

WILLIAMTOWN SAND SYNDICATE PTY LTD.

PO Box 898 Newcastle NSW 2300

Only Williamtown Sand Syndicate Pty Ltd., its designated representatives or relevant statutory authorities may use this document and only for the specific project for which this report was prepared. It should not be otherwise referenced without permission.

Document Control:

Version	Description	Date	Author	Technical Reviewer	Quality Review
3.0	Final Copy (DPIE Comments Addressed)	14 September 2020	D. Kousbroek	B. Grant	B Grant
2.0	Issued for approval	27 March 2020	D. Kousbroek	B. Grant	T. Overton
1.0	Draft for Client Review	24 March 2020	D. Kousbroek	B. Grant	T. Overton

Kleinfelder Australia Pty Ltd Newcastle Office 95 Mitchell Road

Cardiff NSW 2282 Phone: (02) 4949 5200

ABN: 23 146 082 500

Contents

1.	INTR	ODUCTION	1
	1.1	BACKGROUND	
	1.2	PURPOSE OF THE BASELINE SUMMARY REPORT	1
	1.3	OBJECTIVES	2
	1.4	SCOPE OF WORK	2
2.	SITE	CHARACTERISTICS	3
	2.1	SITE IDENTIFICATION DETAILS	
	2.2	CURRENT LAND USE	3
	2.3	FORMER LAND USE	3
	2.4	SURROUNDING LAND USE	4
	2.5	GEOLOGY	<i>d</i>
	2.6	HYDROLOGY & HYDROGEOLOGY	5
		2.6.1 Surface Water	5
		2.6.2 Groundwater	6
	2.7	RCA GEOTECHNICAL AND GROUNDWATER INVESTIGATION	6
3.	BAC	KGROUND MONITORING PROGRAM	8
	3.1	SAMPLING PLAN	8
	3.2	FIELD OBSERVATIONS	9
		3.2.1 General	9
		3.2.2 Monitoring Location Observations	g
		3.2.3 Geochemical Parameters and Gauging Data	11
	3.3	GROUNDWATER AND SURFACE WATER ANALYSIS	12
		3.3.1 Industry Guidelines	12
		3.3.2 Summary of results	13
4.	BASI	ELINE WATER QUALITY ASSESSMENT	19
	4.1	METALS	19
	4.2	PHYSICAL AND CHEMICAL STRESSORS	19
	4.3	TPH, TRH AND BTEXN	20
	4.4	PFAS	20
	4.5	TREND ANALYSIS	21
		4.5.1 Rainfall	21
		4.5.2 Groundwater Elevation	21
		4.5.3 Mann Kendall Analysis	21

5 .	SITE	SPECIFIC ASSESSMENT CRITERIA	29
	5.1	SWMP & EMP REQUIREMENTS	29
	5.2	EPL REQUIREMENTS	29
	5.3	ANALYTICAL PARAMETERS	30
		5.3.1 Metals	30
		5.3.2 Nutrients	31
		5.3.3 Hydrocarbons	31
		5.3.4 PFAS	31
	5.4	LOCATIONS	31
	5.5	SCHEDULE	32
	5.6	SUMMARY OF PROPOSED SAMPLING	32
	5.7	SITE SPECIFIC TRIGGER VALUES	33
	5.8	TRIGGER RESPONSE ACTIONS	41
		5.8.1 Metals & Nutrients	41
		5.8.2 Hydrocarbons	41
		5.8.3 PFAS	42
		5.8.4 Water Trigger Investigation	42
6.	QUA	LITY ASSURANCE AND QUALITY CONTROL	43
	6.1	DATA VALIDATION	43
	6.2	QA/QC RESULTS	44
		6.2.1 Field Method Validation	44
		6.2.2 Laboratory QA/QC	45
	6.3	QUALITY STATEMENT	48
	6.4	EQUIPMENT CALIBRATION	48
7	SUM	MARY STATEMENT	49

Tables (In Text)

Table 2.1	Site details	3
Table 3.1	2019-2020 Monitoring Schedule	9
Table 3.2	Monitoring locations: General observations	10
Table 3.3	Geochemical parameters (maximum and minimum values) February 2019 – January 2020	11
Table 3.4	Gauging data (maximum and minimum values) February 2019 – January 2020	11
Table 3.5	Summary of groundwater and surface water concentration range	14
Table 4.1	Mann-Kendall analysis for metals	23
Table 4.2	Mann-Kendall analysis for anions, cations alkalinity and inorganics	25
Table 5.1	EPA Site water monitoring requirements (EPL21264)	29
Table 5.2	Proposed operational monitoring schedule	32
Table 5.3	Proposed testing schedule	33
Table 5.4	Site specific trigger values for Groundwater	34
Table 5.5	Site specific trigger values for Surface Water	37
Table 6.1	QA/QC data quality indicators	43
Table 6.2	Field QA/QC	45
Table 6.3	Laboratory QA/QC	45
Table 6.4	Container types, preservation and order of filling	47
Table 6.5	Summary of groundwater QC program	48
Table 7.1	Proposed operational monitoring schedule	50
Table 7.2	Proposed testing schedule	51

Figures (Attached)

- Figure 1 Site location
 Figure 2 Site layout including sample location
- Figure 3 Proposed extraction areas
- Figure 4 Groundwater elevation contours and flow direction (February 2019)
- Figure 5 Groundwater elevation contours and flow direction (July 2019)
- Figure 6 Groundwater elevation contours and flow direction (January 2020)

Tables (Attached)

- A Groundwater and surface water analytical data BTEXN
- B Groundwater and surface water analytical data Metals

C Groundwater and surface water analytical data - PFAS

D Groundwater and surface water analytical data - Inorganics

E Quality control sample analysis - BTEXN

F Quality control sample analysis - Metals

G Quality control sample analysis - PFAS

Charts (Attached)

Chart 1: Monthly rainfall totals 2019/20 (mm)

Chart 2: Groundwater elevation (mAHD)

Chart 3: Field EC (µS/cm)

Chart 4: Iron (Fe) mg/L

Chart 5: Nickel (Ni) mg/L

Chart 6: Zinc (Zi) mg/L

Chart 7: Chromium (Cr) mg/L

Chart 8: Copper (Cu) mg/L

Chart 9: Manganese (Mn) mg/L

Chart 10: Total hardness (CaCo₃) mg/L

Chart 11: Total dissolved solids (TDS) mg/L

Chart 12: Sodium (Na) mg/L

Chart 13: Calcium (Ca) mg/L

Chart 14: Magnesium (Mg) mg/L

Chart 15: Potassium (K) mg/L

Chart 16: Sulphate (SO4⁻²) mg/L

Chart 17: Chloride (CI) mg/L

Chart 18: Fluoride (F-) mg/L

Chart 19: pH (Lab)

Chart 20: pH (Field)

Chart 21: TPH C₆ - C₉

Chart 22: TPH C₁₀-C₃₆ Sum - Silica Cleanup

Chart 23: TRH C₁₀-C₃₆ Sum - Silica Cleanup

Chart 24: Sum of PFAS

Chart 25: Sum of PFHxS and PFOS

Appendices

Appendix A: RCA Australia 2015 (Borelogs and Laboratory Analyses)

Appendix B: Monthly Reports

Appendix C: Field Sheets and Calibration Certificates

1. INTRODUCTION

1.1 BACKGROUND

Kleinfelder Australia Pty Ltd (Kleinfelder) was engaged by Williamtown Sand Syndicate (WSS) to undertake a 12 month surface water and groundwater monitoring program to establish baseline conditions at the Newcastle Sands quarry site, 298 Cabbage Tree Road, Williamtown, New South Wales (NSW) (the 'Site'). The Site is located approximately 12 km north east of Newcastle at Williamtown, NSW. The location of the Site is depicted on **Figure 1** and the site layout is presented in **Figure 2**. This revised version of the Kleinfelder (March 2020) Baseline Water Quality Summary Report addresses comments provided by the NSW Department of Planning, Industry & Environment (DPIE).

Monitoring was undertaken to satisfy the requirements of the Soil and Water Management Plan (SWMP) (KLF, 2019) and Environmental Protection Licence 21264 (EPL). It is noted that the SWMP is a sub-plan within the overarching 'Newcastle Sands Quarry Environmental Management Plan' (June 2018), referred to herein as the EMP.

Groundwater and surface water monitoring was conducted over 12 consecutive months from February 2019 through to January 2020 and was generally completed between the 11th and 18th of each month. A Sampling Plan was prepared and presented in the SWMP, covering an appropriate methodology and quality control requirements for the monitoring program (see **Section 3** for further details).

The Sampling Plan was designed to obtain representative background data on water flow and quality in surface water bodies and groundwater that has the potential to be impacted by the site operations, or unrelated off-site sources. The SWMP identifies that, unless amended, the ongoing surface water and groundwater monitoring program will be consistent with the baseline water quality program.

1.2 PURPOSE OF THE BASELINE SUMMARY REPORT

The SWMP identifies that on completion of the baseline monitoring program, the following parameters would be reviewed and advice provided regarding ongoing monitoring requirements including:

- Location of sampling points, e.g. more suitable / representative location identified, or sampling location has insufficient water to accurately monitor development;
- The frequency of the sampling may be reduced, or increased, depending on the fluctuations in the results; and

 The parameters may be adjusted to remove superfluous analytes and/or add additional analytes.

1.3 OBJECTIVES

The objectives of the monitoring program were to:

- Establish background groundwater and surface water conditions across the Site;
- Establish site specific trigger values to be used during the operation of the quarry whereby concentrations outside these trigger values need to be reviewed in more detail; and
- Develop an ongoing sampling program (frequency and analysis) that will maintain compliance with the conditions of the EPL and EMP.

1.4 SCOPE OF WORK

The following provides the scope of work to deliver the baseline water quality summary report:

- Review and present Site characteristic information;
- Provide an assessment of quality assurance (QA) and quality control (QC) undertaken over the 12-month period and validate the data;
- Provide a summary of the water quality identified across the Site including:
 - Field observations:
 - Analytical results; =
 - Trend analysis;
- Establish trigger values for review against ongoing sampling; and
- Propose an ongoing monitoring program to be conducted during operations that will maintain compliance with the EMP and EPL.

The scope of work for each of the background monitoring rounds can be seen in the monthly summary reports.

2. SITE CHARACTERISTICS

2.1 SITE IDENTIFICATION DETAILS

Table 2.1 provides site-specific identification details.

Table 2.1 Site details

Site address	298 Cabbage Tree Road Williamtown, NSW.
Site name	Newcastle Sands Quarry.
Current Title identification details	Four titles within the Parish of Stockton, County of Gloucester including: Lot 1 DP 224587 at 398 Cabbage Tree Road, Williamtown Lot 121 DP 556403 at 282B Cabbage Tree Road, Williamtown. Lot 11 DP 629503 at 282A Cabbage Tree Road, Williamtown. Lot 1012 DP 814078 at 282 Cabbage Tree Road Williamtown
Current land use	Currently the Site comprises mostly native vegetation. Initial quarry works have progressed to include pre-works hardstand areas and administration buildings.
Site total area	Total Project Area of approximately 42.3 hectares from a Subject Land Area of approximately 176.2 hectares.
Current ownership	Port Stephens Shire Council under lease to Williamtown Sand Syndicate Pty Ltd.
Current land use zoning	The Site is currently RU2 – Rural Landscape (Port Stephens LEP 2013).
Local government	Port Stephens Council.
Proposed site use	Sand quarry extracting up to 530,000 tonnes per annum over a period of 6 to 15 years including the construction of an intersection with Cabbage Tree Road, sealed and gravel access roads, site office, workshop and weighbridges. Progressive rehabilitation of quarried land returning to native vegetation communities with potential future use of the facilities area.

2.2 CURRENT LAND USE

The Site currently has a workshop, office area comprising of demountable buildings, gravel aggregate hardstand areas for transitioning vehicles and future sorting. The areas surrounding the immediate vicinity of the Site comprise predominantly natural vegetation with exception to a gravel road, two former silica sand extraction areas and the verge of Cabbage Tree Road.

2.3 FORMER LAND USE

The Project Area consists predominantly of native vegetation, with some previously cleared areas present in the eastern part of the Site. Approximately 48 ha of the 176.2 ha Site was previously disturbed by heavy mineral sand mining and associated activities that were undertaken on the Site between 1970s and late 1990s. This disturbance included areas that were dredged as part of extracting heavy minerals, sand borrow pits, settling ponds, monazite trenches and access roads.

In March 2002, Port Stephens Council (PSC) purchased four allotments comprising the project area (398, 282B, 282A and 282 Cabbage Tree Road Williamtown) from Rutile and Zircon Mines and was subsequently used for cattle adjustment. In 2012 PSC sought tenders from interested parties for the extraction of sand from the project area.

2.4 SURROUNDING LAND USE

The Williamtown RAAF base is located 2.5 km to the north east, with Fullerton Cove approximately 600 m to the south and the Hunter River estuary beyond (**Figure 1**).

Residential dwellings are located to the east (closest dwelling is 244 m), south (closest dwelling is 61 m) and west (closest dwelling is 83 m) of the Site. Most are small properties utilised as hobby farms (e.g. keeping horses and chickens), some are larger and also graze livestock. Potable water for dwellings is likely to comprise primarily reticulated water from Hunter Water network and rainwater. Many properties appear to have spear point wells installed for stock and domestic use. No dwellings are located within 4 km north of the Site.

2.5 GEOLOGY

Review of the Newcastle 1:250,000 series geological map (Sheet S1 56-2, 1966) indicates that the site is underlain by Quaternary aged marine and freshwater deposits comprising gravel, sand, silt, clay and "Waterloo Rock".

The majority of the Site is located above the Tomago Sandbeds. The Tomago Sandbeds were formed during the Pleistocene era with the original sand deposits occurring up to 250,000 years ago. Rising sea levels created a large bay extending from Newcastle to Port Stephens. The Hunter and Karuah Rivers both flowed into the bay and deposited large volumes of sand. A combination of wave and wind action spread the sand along the coastline and formed the series of shallow dunes that make up the Tomago Sandbeds (Hunter water website 15/08/2018).

The sand dunes consist of a layer of highly permeable fine-grained sands underlain by impervious clay and rock. The thickness of the sand layer reaches a maximum of 50 metres, but on average is 20 metres deep (Hunter Water website 15/08/2018).

The North Stockton Sandbeds, which form the current coastline between Newcastle and Port Stephens, were deposited much more recently than the Tomago Sands. They overlie the eastern extremity of the Tomago Sands and were deposited in the Holocene era (10,000 years ago) (Hunter water website 15/08/2018).

2.6 HYDROLOGY & HYDROGEOLOGY

2.6.1 Surface Water

The high permeability of the Tomago Sandbeds results in little or no defined surface runoff, noting no defined natural drainage lines are on the Site. Drainage is therefore predominantly via vertical infiltration into the sand, with any ephemeral surface drainage generally expected to be in the direction of the existing surface slopes.

In the area around the Site, the Tomago Sandbeds are located on the edge of low lying (about 2-3 m AHD) Holocene aged freshwater and alluvial and estuarine swamps deposits. These low-lying areas adjoining the Site are frequently waterlogged during high rainfall, due to increasing and shallow groundwater levels and a shallow groundwater gradient that slows the percolation of surface water. It is likely that the majority of accessible surface water onsite is an expression of groundwater, typically created through man made excavation.

The western portion of the southern and norther resources areas theoretically drain to the west, while the dominant surface drainage direction for most of the Site is to the east (i.e. Catchments 2 and 3 above). Here the landform drops from the edge of the resource area around 5 m AHD to the swamp or flats over a relatively short distance with the gradient reaching up to 16%. The swamp areas have a gradient of approximately 0.1% with the elevation falling 1.5 m over the 1100 m to the eastern boundary of the Subject Land with water conveyed by an open constructed channel (in middle of Catchment 3).

From the eastern boundary of the Site, drainage is directed via constructed channels through to Dawsons Drain and the northern extent of Fullerton Cove where the elevation drops 1 m over 1900 m (with an average gradient of 0.05%).

For the south eastern portion of the Project area, a portion of the resource area has the potential to drain south east across the Subject Land to a culvert beneath Cabbage Tree Road (Catchment 4). In this area the landform drops at about 14% to the swamp or flats that then appears to have a very slight gradient to the south eastern corner of the Site (i.e. less than 0.5 m over at least 140 m). From this point the area drains via series of constructed channels through to the Ring Drain, a large constructed channel around the northern extent of Fullerton Cove over a distance of 590 m with an average gradient of less than 0.4%. Inspection of the Site shows this culvert is only likely to flow during periods of extended rainfall and a high-water table.

Cabbage Tree Road has been built up during its construction, with shallow table drains constructed partially along the northern side of the road and deeper drains constructed partially

along the southern side. The nearest culvert is located at the eastern extent of the subject land, approximately 80 m beyond the proposed road construction area.

Following quarrying at the site the catchments will progressively change with Catchment 3 increasing in size with water from within the quarry footprint (currently draining west) directed south east into Catchment 3 (i.e. Catchment 1 will drain to Catchment 3). However, given the high permeabilities it is highly unlikely that any changes in flow would be realised across the site.

2.6.2 Groundwater

The Site is located on highly permeable Pleistocene Tomago Sandbeds (sand dunes). The source of the water within the Tomago Sandbeds is rainfall that lands directly on the sand surface. While a proportion of the rainfall is lost to plants and evaporation, sufficient water is stored in the sand to provide a viable and significant source of water for ongoing extraction. Over time rainfall landing on the sandbeds has washed out any remnants of sea salt leaving the deep sand system full of fresh water (Hunter Water website 15/08/2018).

A previous groundwater investigation was undertaken by RCA Australia (RCA Australia, 2015), groundwater was encountered on the Site ranging from 0.67 m below ground level (mbgl) to 15.65 mbgl. Groundwater when at its highest is visible at or near the surface for land below 3 m AHD. Groundwater at the Site has a low hydraulic gradient and was interpreted to flow in a general southerly to south-easterly direction, towards Fullerton Cove (RCA Australia, 2015) from Grahamstown Dam in the north toward Fullerton Cove in the south, the groundwater gradient within the local area is less than 0.2%.

The northern portion of the Site is located within the Hunter Water Special Area, owing to the presence of the Tomago Sandbeds and their use for a portion of the lower Hunter's drinking water supplies.

The Project area and extent of extraction has been designed such that sand extraction remains a minimum of 0.7 m above the highest predicted groundwater level, with the final landform to be established at no less than 1 m above the highest predicted groundwater level (about 2 m above the average level).

2.7 RCA GEOTECHNICAL AND GROUNDWATER INVESTIGATION

A geotechnical and groundwater investigation was undertaken by RCA Australia in 2015 to provide input into the characterisation of Site resources for the extraction of sand and to

provide further information on background groundwater quality and elevations across the Site in preparation for the preliminary Site Environmental Impact Statement.

As part of the investigation, the installation of 12 groundwater monitoring wells were undertaken including subsequent soil and groundwater analyses. Soil logs including groundwater and soil results from RCA Australia, 2015 are provided as **Appendix A**.

3. BACKGROUND MONITORING PROGRAM

3.1 SAMPLING PLAN

The SWMP required monthly sampling to be undertaken over a 12-month period to characterise background groundwater and surface water conditions throughout the Site.

10 groundwater (BH1, BH2, BH4, BH6, BH7, BH8, BH9, BH10, BH11 and MW239S) and 4 surface water (SW1, SW2, SW3 and SW4) locations were sampled throughout the 12 monitoring rounds as outlined in **Figure 2**. The remaining Site wells (BH3, BH12, MW239D and BH5) were used to provide additional groundwater elevation data.

Each monitoring event included sampling for:

- General water quality parameters: (Calcium (Ca), Magnesium (Mg), Sodium (Na), Potassium (K), pH, Electrical Conductivity (EC), Chloride (Cl), Sulphate (SO₄), Alkalinity, Hardness & Total Dissolved Solids (TDS) (Calc'));
- Total Recoverable Hydrocarbons (TRH);
- Total Petroleum Hydrocarbons (TPH);
- Benzene, Toluene, Ethylbenzene, Total Xylenes, Naphthalene (BTEXN);
- Metals (Arsenic (As), Boron (B), Barium (Ba), Beryllium (Be), Cadmium (Cd), Chromium (Cr), Cobalt (Co), Copper (Cu), Iron (Fe), Lead (Pb), Manganese (Mn), Mercury (Hg), Nickel (Ni), Selenium (Se), Vanadium (V), Zinc (Zn)); and
- PFAS including Perfluorooctane sulfonate (PFOS), Perfluorooctanoic acid (PFOA),
 Perfluorohexanesulfonate (PFHxS) & Perfluorodecane sulfonic acid (PFDS).

Each well location was gauged using a water level meter to determine groundwater depth (relative to the top of the well casing) and the total depth of the well, in order to calculate the volume of water in the well. Following gauging, a high-density polyethylene (HDPE) HydraSleeve™ was then placed into the well ensuring the top of the sleeve was located below standing water level and left in place while all remaining wells were gauged. Following gauging, each of the HydraSleeves were removed and representative groundwater samples taken. Hydrasleeves™ were applied to this project as outlined in the SWMP and as recommended within the PFAS National Environmental Management Plan (Version 2.0, January 2020) given their suitability for sampling of PFAS.

The baseline sampling program also included an initial sampling round and quarterly monitoring where additional analysis was included for an extended water quality suite (including hardness, Nitrate, Nitrite, Ammonia, Reactive Phosphorous, Total Nitrogen and

TKN). Some additional groundwater monitoring locations were also included in quarterly monitoring as identified in **Table 3.1.**

Table 3.1 2019-2020 Monitoring Schedule

Action		2019							2020			
	Feb*	Mar	Apr	May*	Jun	Jul	Aug	Sep*	Oct	Nov*	Dec	Jan
Monthly Gauging and groundwater sampling												
BH1, BH2, BH4, BH6, BH7, BH8, BH9 ¹ , BH10 ¹ , BH11, MW239s	~	✓	√	√	√	✓	√	✓	√	✓	✓	✓
Surface water sampling SW1, SW2 ¹ , SW3, SW4	✓	✓	~	✓	~	✓	~	✓	~	✓	√	~
Gauging only BH3, BH5, BH12, MW239D	✓	✓	>	✓	>	✓	>	✓	>	✓	√	>
Groundwater Sampling BH3 & BH5	✓											

^{1:} Sample locations were dry

Following each monitoring round, a monthly factual letter report was prepared (see **Appendix B**). Each report presented:

- The field observations and field data;
- The results of the laboratory analysis;
- A comparison of the results against industry guidelines; and
- Rainfall data from the preceding month.

3.2 FIELD OBSERVATIONS

3.2.1 General

Surface water and groundwater monitoring was initiated in February 2019 and continued each month for a duration of 12 months until January 2020. Sampling times were generally consistent, undertaken each time within the middle of the month (between the 11th and 18th of the month). Within the first two monitoring rounds (February and March) re-insertion of PVC piping was required at fire effected location BH1 and for root bound effected location BH12. Site works, focussing on initial Site infrastructure and access roads, began in October 2019 in preparation for the proposed quarry extraction works which are expected to initiate from early to mid-2020.

3.2.2 Monitoring Location Observations

Groundwater and surface water observations made during gauging and sampling at monitoring locations BH1, BH2, BH3 BH4, BH6, BH7, BH8, BH9, BH10, BH11, MW239S, SW1, SW2,

^{*} Shaded months indicate quarterly sampling suite

SW3 and SW4 are summarised below. Conditions at each location were generally consistent throughout the monitoring period with the exception of surface water which provided intermittent periods of accessible water throughout the monitoring program.

Sensory observations of visual and olfactory quality were made on groundwater and surface water during sampling. A summary of these observations is presented in **Table 3.2** below.

Table 3.2 Monitoring locations: General observations

Table 3.2	Monitoring locations: General observations
Location	General Observations
BH1	Generally, slightly cloudy brown with occasional sulfur odour. Well was reinstated in February 2019 following fire damage. The month following reinstatement an acrylic odour was detected which was most likely a bonding material used to fuse the PVC well piping together.
BH2 ¹	Mostly dark brown in colour with a silty material at the base of well. A slight sulfur odour was evident throughout the monitoring period.
ВН3	Prior to well decommissioning in September 2019 due to initial site works, observations of groundwater were identified as light brown with no odour. Well base contained fine silty material. No samples were taken following initial sampling round in February 2019.
BH4 ¹	Generally light brown in colour with slight sulfur odour.
BH5	Generally light brown with no apparent odour. No samples taken throughout the monitoring program, only gauging.
BH6 ²	Generally, light brown in colour with a slight sulfur odour.
BH7 ¹	Generally, light to moderately brown in colour with a slight sulfur odour.
BH8	Generally, brown to dark brown in colour with a moderate sulfur odour.
BH9 ¹	Well was dry for the duration of the baseline monitoring program.
BH10	Well was dry for the duration of the baseline monitoring program.
BH11 ²	Generally, cloudy light brown with a moderate sulfur odour.
BH12	Well was reinstated in March 2019 following inundation of roots into the well. A 40mm inner PVC pipe was installed. The months following reinstatement of a well an acrylic odour was detected which was most likely a bonding material used to fuse the PVC well piping together. No sample was taken.
MW239S ¹	Cloudy dark brown in colour with a moderate sulfur odour.
MW239D	Cloudy dark brown in colour with a moderate sulfur odour. No sample was taken.
SW01	Intermittent periods of pooling at monitoring location. Water is generally stained with natural tannins, dark brown with a slight sulfur odour.
SW02	Monitoring location was observed to be dry for the duration of the baseline monitoring program.
SW03	Water mostly clear with no apparent odour. Often water was stagnant and at times dry.
SW04	Water mostly clear with no apparent odour. Often water was stagnant and at times dry.

^{1 –} Down-gradient monitoring location

^{2 -} Up-gradient control location

3.2.3 Geochemical Parameters and Gauging Data

Geochemical parameters and gauging data were recorded during the sampling program and are presented on field sheets in **Appendix C** and summarised as maximum and minimum values in **Table 3.3** and **Table 3.4**.

Table 3.3 Geochemical parameters (maximum and minimum values) February 2019 – January 2020

Monitoring Location	Tem	p (°C)	EC (µs/cm) (Chart 3)		pH (Chart 20)		Redox (mV)		
	Min	Max	Min	Max	Min	Max	Min	Max	
BH1	18.4	22.52	18	182	5.39	6.43	15.2	103	
			C	€roundwat	er				
BH2	18.3	24.49	48	136	4.29	6.41	88	308	
BH3 ¹	22	2.1	82	2.4	4.54	ļ	g)4	
BH4	17.6	23.3	8	129.2	3.85	6.49	88	322	
BH5 ²	20).1	3	20	4.06	3	1:	22	
BH6	17.2	24.62	110	335	4.28	5.52	-144	178	
BH7	17.2	25	164	391	4.04	5.93	-228	179	
BH8	16.8	22.5	224	995	4.08	7.43	-341	176	
ВН9	D	ry	D	ry	Dry		Dry		
BH10	D	ry	D	ry	Dry		D	ry	
BH11	16.9	22.65	124	402	3.78	6.41	-117	176	
BH12 ³	,	=						-	
MW239S	15.8	24.71	37	718	4.09	5.7	-132	179	
MW239D ³	,	=		-	•			-	
	Surface W				ter				
SW1	9.52	23.75	811	1964	3.95	6.4	99	406	
SW2	D	ry	Dry		Dry		Dry		
SW3	11.96	26	290	470	4.27	6.41	-12.8	315	
SW4	8.07	18.46	313	538	3.69	6.44	116	430.5	

^{1 -} One sampling event (Feb 2019) and well decommissioned September 2019

Table 3.4 Gauging data (maximum and minimum values) February 2019 – January 2020

Monitoring Location		ferenced (MGA-UTM)	Ground Surface RL (mAHD)	Top of Casing (mAHD)	Bore Depth (m)	Depth to Water (mBTOC)		Groundwater Elevation (mAHD) (Chart 2)	
	Easting	asting Northing				Min	Max	Min	Max
			Gro	undwater					
BH1	387741.2	6369495.8	8.21	8.64	9.45	5.776	6.701	1.939	2.864
BH2	387704.7	6369175.1	7.4	7.79	9.45	5.083	6.153	1.637	2.707

^{2 -} One sampling event (Feb 2019)

^{3 –} No sampling undertaken

Monitoring Location		erenced (MGA-UTM)	Ground Surface RL	Top of Casing (mAHD)	Bore Depth (m)	Wa	th to iter TOC)	Elev (mAHI	ndwater vation D) (Chart 2)
	Easting	Northing	(mAHD)			Min	Max	Min	Max
BH3 ¹	387751.7	6368964.4	7.03	7.57	9.45	5.938	6.146	1.424	1.632
BH4	387855	6368742.8	2.81	3.06	6.45	1.531	2.252	0.808	1.529
BH5 ²	388768.5	6369334.7	6.76	7.36	9.28	5.767	6.315	1.045	1.593
BH6	388729.8	6369582.3	3.01	3.62	4.95	1.591	2.169	1.451	2.029
BH7	388827.8	6369245.3	2.6	2.98	4.95	1.514	2.169	0.811	1.466
BH8	389178.3	6369271.7	3.28	3.88	6.28	2.233	2.969	0.911	1.647
BH9	387520.4	6368798.9	17.07	17.745	18.18			Dry	
BH10	387931.2	6369744.4	6.09	6.69	5.45		[Ory	
BH11	387650.7	6369979.8	6.02	6.63	5.95	3.02	3.962	2.668	3.61
BH12 ³	388203	6369333	8.06	8.67	8.39	6.799	7.252	1.418	1.871
MW239S	388619.1	6369306.6	3.09	3.04	4	1.248	1.823	1.217	1.792
MW239D ³	388619.2	6369305.7	2.97	2.92	20	1.226	1.799	1.241	1.814
			Surfa	ace Water ⁴					
SW1	387693	6368814	NA	NA	NA	NA	NA	Dry	290mm
SW2	387995	6369246	NA	NA	NA	NA	NA)ry ³
SW3	388424	6369061	NA	NA	NA	NA	NA	Dry	290mm
SW4	389053	6368967	NA	NA	NA	NA	NA	Dry	350mm

¹⁻ One sampling event (Feb 2019) and well decommissioned September 2019

3.3 GROUNDWATER AND SURFACE WATER ANALYSIS

3.3.1 Industry Guidelines

In order to understand background surface and groundwater quality in relation to published data, laboratory results were compared against trigger values found in industry guidelines as outlined in the SWMP.

An exceedance of any adopted trigger value does not necessarily indicate that there is an unacceptable risk on site (CRC-CARE Technical Report 10: 2011), but rather identifies the need to explore the results in more detail. For this report we are reviewing natural background conditions and this comparison identifies the quality of the natural conditions indicative of the Site and regional area.

^{2 -} One sampling event (Feb 2019)

^{3 –} No sampling undertaken

^{4 -} Surface water levels (mm) identified from measured stake at each location (When dry number is ground elevation AHD)

NA - Not applicable

The following industry guidelines have been used for baseline characterisation:

- Australian and New Zealand Environment and Conservation Council (ANZECC) & Agriculture and Resource Management Council of Australia and New Zealand (ARMCANZ), Water Quality Guidelines for Fresh and Marine Water Quality 95% species protection for fresh water (ANZECC 2000);
- The Heads of Environmental Protection Authorities in Australia and New Zealand (HEPA)
 Per- and polyfluoroalkyl substances (PFAS) National Environmental Management Plan (NEMP 2018); and
- Australian Drinking Water Guidelines 6 (ADWG) (2011).

3.3.2 Summary of results

Summary tables outlining the analytical data obtained from the Baseline Monitoring Program, and a comparison against trigger values are provided within the **Tables** section at the rear of this report. **Table 3.5** below provides a summary of groundwater and surface water concentrations as a range (minimum to maximum) for all analytes across the Site.

An assessment of Kleinfelder's Quality Assurance and Quality Control (QA/QC) processes and procedures has been provided in **Section 6**. Laboratory Certificates of Analysis (COA) including laboratory QC reports are presented as Appendix A of the monthly reports, which have been provided as **Appendix B** of this document.

Table 3.5 Summary of groundwater and surface water concentration range

Analyte	Units	LOR	ANZECC (2000) 95% level of species protection freshwater	ADWG (2011)	Detected Concentration Range (Groundwater)	Detected Concentration Range (Surface Water)	Comparison against trigger values
Benzene	μg/L	1	950	1	<1.0	<1.0	Below LOR
Toluene	μg/L	2	-	800	<2.0	<2.0	Below LOR
Ethylbenzene	μg/L	2	-	300	<2.0	<2.0	Below LOR
o Xylene	μg/L	2	350	350	<2.0	<2.0	Below LOR
Total Xylenes	μg/L	2	-	600	<2.0	<2.0	Below LOR
Naphthalene	μg/L	5	16	-	<5.0	<5.0	Below LOR
			Tota	l Petroleur	n Hydrocarbons -	- Silica Gel Clean	up (Table A)
Sum of C ₁₀ - C ₃₆	μg/L	50	-	-	<50-250	<50	No criteria
			Total	Recoverat	ole Hydrocarbons	- Silica Gel Clea	n up (Table A)
Sum of C ₁₀ - C ₄₀	μg/L	100	-	-	<100-280	<100	No criteria
					Dissolved Met	als (Table B)	
Arsenic	mg/L	0.001	0.013	0.01	<0.001-0.003	<0.001-0.006	Concentrations below trigger values
Barium	mg/L	0.001	-	-	0.001-0.034	0.027-0.08	No criteria
Beryllium	mg/L	0.001	-	0.06	<0.001	<0.001	Below LOR
Boron	mg/L	0.05	0.37	4	<0.05-0.06	<0.05-0.14	Concentrations below trigger values
Cadmium	mg/L	0.0001	0.0002	0.002	<0.0001	<0.0001- 0.0002	Concentrations below trigger values
Chromium	mg/L	0.001	0.001	0.05	<0.001-0.004	<0.001-0.002	Elevated concentrations above trigger values (ANZECC 2000 trigger values) were detected at BH1 (entire monitoring period), BH2 (Dec 2019), BH3 (Feb 2019), BH7 (Feb, April, May, Jun, Jul, Aug, Sep, Oct, Nov, Dec 2019 & Jan 2020), BH8 (Sep, Nov, Dec 2019 & Jan 2020),

Analyte	Units	LOR	ANZECC (2000) 95% level of species protection freshwater	ADWG (2011)	Detected Concentration Range (Groundwater)	Detected Concentration Range (Surface Water)	Comparison against trigger values			
							BH11 (Feb, Apr, May, Jul, Aug, Oct, Nov, Dec 2019 & Jan 2020), MW239S (entire monitoring period) and SW3 (Dec 2019)			
Cobalt	mg/L	0.001	-	-	<0.001-0.003	<0.001-0.017	No criteria			
Copper	mg/L	0.001	0.0014	2	<0.001-0.051	<0.001-0.02	Elevated concentrations above trigger values (ANZECC 2000 trigger values) were detected at BH1 (Apr, Jul, Aug, Oct 2019 & Jan 2020), BH2 (Feb, Mar, Apr, Jun, Jul, Aug, Sep, Oct, Nov, Dec 2019 & Jan 2020), BH4 (Feb, Apr, Jun, Jul, Aug, Sep, Oct, Nov, Dec 2019 & Jan 2020), BH6 (Aug, Sep & Dec 2019), BH7 (Oct & Nov 2019), BH8 (Oct, Nov & Dec 2019), SW1 (Apr, May, Jun, Jul, Aug, Sep & Oct 2019), SW3 (Jul, Aug, Sep, Oct & Dec 2019), SW4 (Apr, Jun, Jul, Sep & Oct 2019)			
Iron	mg/L	0.05	-	0.32	<0.05-12.5	0.57-9.26	Elevated concentrations above trigger values (ADWG) were detected at BH1 (entire monitoring period), BH2 (Oct 2019 & Jan 2020), BH4 (Apr & Oct 2019), BH5 (Feb 2019), BH6 (entire monitoring period), BH7 (entire monitoring period), BH8 (entire monitoring period), BH11 (Mar, Apr, May, Jun, Jul, Aug, Sep, Oct, Nov, Dec 2019 & Jan 2020), MW239S (entire sampling period), SW1 (entire monitoring period), SW3 (entire monitoring period)			
Lead	mg/L	0.001	0.0034	0.01	<0.001-0.001	<0.001-0.001	Concentrations below trigger values			
Manganese	mg/L	0.001	1.9	0.5	0.003-0.136	0.026-0.841	Elevated concentrations above trigger values (ADWG) were detected at SW1 (Apr, May, Jun, Jul and Sep 2019)			
Mercury	mg/L	0.0001	0.0006	0.001	<0.0001	<0.0001	Concentrations below initial baseline criteria			
Nickel	mg/L	0.001	0.011	0.02	<0.001-0.07	<0.001-0.02	Elevated concentrations above trigger values (ANZECC trigger values) were detected at BH2 (Feb 2019), BH4 (Feb 2019), BH7 (Sep & Nov 2019), BH8 (Nov 2019), SW1 (Apr, May & Sep 2019) and SW4 (Sep 2019). Elevated concentrations above trigger values (ADWG trigger values) were detected at BH3 (Feb 2019) and BH4 (Mar & May 2019)			
Selenium	mg/L	0.01	0.011	0.01	<0.01	<0.01	Below LOR			

Analyte	Units	LOR	ANZECC (2000) 95% level of species protection freshwater	ADWG (2011)	Detected Concentration Range (Groundwater)	Detected Concentration Range (Surface Water)	Comparison against trigger values
Vanadium	mg/L	0.01	-	-	<0.01	<0.01	Below LOR
Zinc	mg/L	0.005	0.008	32	<0.005-1.27	<0.005-0.535	Elevated concentrations above initial trigger values (ANZECC 2000 trigger values) were detected at BH1 (entire monitoring period), BH2 (Nov 2019 & Jan 2020), BH4 (Feb, Mar, May, Oct 2019 & Jan 2020), BH6 (Feb, Mar, Apr, Sep & Nov 2019), BH7 (Feb, Mar, Apr, May, Sep, Oct & Nov 2019), BH8 (Oct, Nov 2019 & Jan 2020), BH11 (Feb, Mar, Apr, May, Sep & Oct 2019), MW239S (Sep, Oct & Nov 2019), SW1 (entire monitoring period), SW3 (Feb, Mar, Apr, May, Jun, Jul, Aug, Sep & Oct 2019), SW4 (Apr, May, Jun, Jul, Aug, Sep & Oct 2019)
					PFAS (Ta	able C)	
PFOS	μg/L	0.01	0.00023 ³	-	<0.01	<0.01-0.05	Concentrations reported above LOR at SW4 (16 Sep & 25 Sep 2019).
PFOA	μg/L	0.02	19 ³ 5.6 ⁴	0.56	<0.02-0.02	<0.02	Concentrations below trigger values
PFOS/PFHxS	μg/L	0.01	0.74	0.07	<0.01	<0.01-0.05	Concentrations below trigger values
PFDS	μg/L	0.02	-	-	<0.02-0.02	<0.02	Concentrations reported above LOR at BH4 (16 Sep 2019)
Sum of PFHxS and PFOS	μg/L	0.01	-	0.07	<0.01	<0.01-0.05	Concentration reported above LOR at SW4 (16 Sep & 25 Sep 2019)
Sum of PFAS	μg/L	0.01	-	-	<0.01-0.19	<0.01-0.05	Concentrations reported above LOR at BH4 (16 Sep 2019), BH6 (17 Dec 2019) and SW4 (16 Sep & 25 Sep 2019)
				Phys	ical and Chemica	Stressors (Table	e D)
рН	pH units	0.01	6.5-8.0 ¹ -	6.5-8.5 ²	4.37-6.29	4.0-6.21	pH values across the entire Site for both surface water and groundwater were below ANZECC 2000 and ADWG acceptable range
Sodium	mg/L	1	-	180 ²	6.0-67	32-142	Concentrations below trigger values
Calcium	mg/L	1	-	-	<1.0-3.0	4.0-34	Concentrations below trigger values

Analyte	Units	LOR	ANZECC (2000) 95% level of species protection freshwater	ADWG (2011)	Detected Concentration Range (Groundwater)	Detected Concentration Range (Surface Water)	Comparison against trigger values
Magnesium	mg/L	1	-	-	<1.0-10	4.0-52	Concentrations below trigger values
Potassium	mg/L	1	-	-	<1.0-2.0	<1.0-6.0	Concentrations below trigger values
Sulphate	mg/L	1	-	250²	2.0-70	16-324	Elevated concentrations above trigger values (ADWG aesthetic) detected in April and May 2019 at SW1
Chloride	mg/L	1	-	250 ²	16-127	53-234	Concentrations below trigger values
Fluoride	mg/L	0.1	-	1.5	<0.1-0.2	<0.1-0.7	Concentrations below trigger values
Reactive phosphorus as P	mg/L	0.01	0.021	-	<0.01-0.03	<0.01-0.01	Elevated concentrations above trigger values (ANZECC 2000 default trigger values) detected at BH1 in May 2019
Total Phosphorus	mg/L	0.01	0.051	-	<0.01-2.76	<0.01-0.13	Elevated concentrations above trigger values (ANZECC 2000) trigger values were detected at BH1 (Sep 2019), BH2 (Feb, Sept & Nov 2019), BH3 (Feb 2019), BH4 (Feb, May, Sept, Nov 2019), BH 5 (Feb 2019), BH6 (May, Sep & Nov 2019), BH7 (Feb, May & Sep 2019), BH8 (Feb, Sep & Nov 2019), BH11 (Sep & Nov 2019), MW239S (Feb, May, Sep & Nov 2019), SW1 (May 2019) and SW3 (Feb 2019)
Ammonia as N	mg/L	0.01	0.9	0.5 ²	<0.01-0.34	<0.01-0.16	Concentrations below trigger values
Total Nitrogen as N	mg/L	0.01	0.35 ¹	-	0.03-5.9	0.1-1.8	Elevated concentrations above trigger values (ANZECC 2000 trigger values) were detected at BH2 (Feb, May, Oct & Nov 2019), BH3 (Feb 2019), BH4 (Feb, May & Oct 2019), BH5 (Feb 2019), BH6 (Feb, May, Sep and Nov 2019), BH7 (Feb, May, Sep & Nov 2019), BH8 (Feb, May, Sep & Nov 2019), BH11 (Feb, May, Sep & Nov 2019), MW239S (Feb, May, Sep & Nov 2019), SW1 (May, Sep & Nov 2019) and SW3 (Feb & Nov 2019)
Total Cations	meq/L	0.01	-	-	0.39-3.57	2.23-10	No criteria
Total Anions	meq/L	0.01	-	-	0.54-6.61	2.18-11	No criteria

Analyte	Units	LOR	ANZECC (2000) 95% level of species protection freshwater	ADWG (2011)	Detected Concentration Range (Groundwater)	Detected Concentration Range (Surface Water)	Comparison against trigger values
Total Alkalinity as CaCO3	mg/L	1	-	-	<1.0-24	<1.0-11	No criteria
Total Hardness as CaCO3	mg/L	1	-	200²	5.0-41	26-299	Elevated concentrations above trigger values (ADWG aesthetic) were detected at SW1 (Apr, May & Sep 2019)
Electrical Conductivity @ 25°C*	mg/L	1	125-2200	-	54-439	220-1090	Concentrations below trigger values
Total Dissolved Solids	mg/L	1	-	600 ²	35-285	143-708	Elevated concentrations above trigger values (ADWG aesthetic) were detected at SW1 (May, Sep, Oct & Nov 2019)

^{1 –} Default trigger values for physical and chemical stressors, for slightly disturbed ecosystems in lowland rivers, Southeast Australia (value is for base flow and not storm event)

^{2 –} Aesthetic

^{3 –} HEPA NEMP 2020 99% level of protection in freshwater

^{4 –} HEPA NEMP 2020 Recreation Water

4. BASELINE WATER QUALITY ASSESSMENT

4.1 METALS

Elevated concentrations of chromium above trigger values (ANZECC 2000) were recorded at monitoring locations BH1, BH2, BH3, BH7, BH8, BH11, MW239S and SW3. Concentrations ranged from <0.001mg/L - 0.004 mg/L for groundwater and from <0.001 – 0.002 mg/L for surface water.

Elevated concentrations of copper above trigger values (ANZECC 2000) were recorded at monitoring locations BH1, BH2, BH4, BH6, BH7, BH8, BH11, MW239S, SW1, SW3 and SW4. Concentrations ranged from <0.001mg/L -0.051 mg/L for groundwater and from <0.001 mg/L -0.02 mg/L for surface water.

Elevated concentrations of iron above trigger values (ADWG) were recorded at all monitoring locations. Concentrations ranged from <0.05 mg/L – 12.5 mg/L for groundwater and from 0.57mg/L– 9.26 mg/L for surface water. Iron concentrations were particularly higher at location BH1.

Elevated concentrations of manganese above trigger values (ADWG) were recorded at monitoring location SW1. Concentrations ranged from <0.003 mg/L - 0.136 mg/L for groundwater and from 0.026 mg/L - 0.841 mg/L for surface water.

Elevated concentrations of nickel above trigger values (ANZECC 2000) were recorded at monitoring locations BH2, BH4, BH7, BH8, SW1, SW3 & SW4. Elevated concentrations of nickel above trigger values (ADWG) were recorded at monitoring locations BH3, BH4 and BH11. Concentrations ranged from <0.001 mg/L – 0.07 mg/L for groundwater and from <0.001mg/L – 0.02 mg/L for surface water.

Elevated concentrations of zinc above trigger values (ANZECC 2000) were recorded at monitoring locations BH1, BH2, BH4, BH6, BH7, BH8, BH11, MW239S, SW1, SW3 and SW4. Concentrations ranged from <0.005 mg/L - 1.27 mg/L for groundwater and from <0.005 mg/L - 0.535 mg/L for surface water.

4.2 PHYSICAL AND CHEMICAL STRESSORS

Elevated concentrations of sulphate above trigger values (ADWG aesthetic) were recorded at monitoring location SW1. Concentrations ranged from 2.0 mg/L - 7.0 mg/L for groundwater and from 16 mg/L - 324 mg/L for surface water.

An elevated concentration of reactive phosphorus above trigger values (ANZECC 2000) default trigger values was recorded at BH1. Concentrations ranged from<0.01 – 0.03 mg/L for groundwater and <0.01-0.13 mg/L for surface water.

Elevated concentrations of total phosphorus above trigger values (ANZECC 2000) were recorded at monitoring locations BH1 and BH2. Concentrations ranged from <0.01 mg/L -2.11 mg/L for groundwater and from 0.01 mg/L -0.13 mg/L for surface water.

Elevated concentrations of total nitrogen above trigger values (ANZECC 2000) were recorded at monitoring locations B2, BH3, BH4, BH5, BH6, BH7 BH8, BH11, MW239S, SW1 and SW3. Concentrations ranged from <0.01 mg/L - 2.11 mg/L for groundwater and from 0.01 mg/L - 0.13 mg/L for surface water

Elevated concentrations of Total Hardness as $CaCO_3$ above trigger values (ADWG aesthetic) were recorded at monitoring location SW1. Concentrations ranged from 5.0 mg/L – 41 mg/L for groundwater and from 26 mg/L – 299 mg/L for surface water.

Elevated concentrations of Total Dissolved Solids above trigger values (ADWG aesthetic) were recorded at monitoring location SW1. Concentrations ranged from 35 mg/L - 285 mg/L for groundwater and from 143 mg/L - 708 mg/L for surface water.

Concentrations of pH were below/outside the trigger value range at all monitoring locations. Concentrations ranged from 4.37–6.29 for groundwater and from 4.0–6.21 for surface water.

4.3 TPH, TRH AND BTEXN

No hydrocarbon exceedances above adopted criteria were recorded throughout the 12-month monitoring program. Detections were recorded at locations BH1 and BH4. Detections of hydrocarbons at BH1 can be attributed to an acrylic adhesive used for the reinstatement of the above ground section of the well. Detections of hydrocarbons at BH4 followed in close succession with rainfall recorded in the region. BH4 is located adjacent to Cabbage Tree Road and detected concentrations may be attributed to roadway runoff.

4.4 PFAS

One detection of PFOS above adopted aquatic criteria (LOR) protection was recorded at SW4 (0.03 μ g/L) and subsequently identified again (0.05 μ g/L) during follow-up sampling one week later. Further detections above LOR were identified at BH4 (PFDS -0.02 μ g/L) and BH6 (6:2 FTS – 0.19 μ g/L). Detections of PFAS at SW4 followed on from recent rainfall in the area which may have contributed to groundwater migration from surrounding known sources (i.e.

Williamtown RAAF Base). Kleinfelder would expect local groundwater to exceed the aquatic criteria given the scale of PFAS reported in groundwater within the Red Zone.

4.5 TREND ANALYSIS

A description of the trends observed throughout the 12-month monitoring period are provided in the sections below and graphical representations are located in the **Chart** section at the rear of this report.

4.5.1 Rainfall

Rainfall for the Site was generally well below the mean average (1942-present) for the locality (BOM Williamtown RAAF 61078) over the 12-month monitoring period. Rainfall exceedances above the mean were recorded in March, June, August and September 2019 with the remainder of months experiencing significantly lower rainfall than would normally be expected. The total rainfall recorded over the 12-month monitoring program was 731.8mm which is 486.4mm less than the yearly mean total of 1218.2mm. **Chart 1** provides a graphical representation of rainfall totals for each month.

4.5.2 Groundwater Elevation

Groundwater throughout the sampling locations demonstrated a general decline in elevations throughout the 12-month period. Most notably the greatest decline in groundwater elevations was observed in the months following the November 2019 water monitoring event which correlate directly with a significant decrease in rainfall from the mean average and increase in temperatures. **Chart 2** provides a graphical representation of groundwater elevation identified following gauging throughout the 12-month monitoring period.

4.5.3 Mann Kendall Analysis

Where sufficient data is available, statistical trend analysis using the Mann-Kendall Trend Test has been undertaken for selected analytes at EPL and SWMP monitoring points to determine if obvious trends were apparent in the dataset (**Table 4.1** and **Table 4.2**). The purpose of the Mann-Kendall Test (Mann 1945, Kendall 1975, Gilbert 1987) is to statistically assess if there is a monotonic upward or downward trend of the variable of interest over time. A monotonic upward (downward) trend means that the variable consistently increases (decreases) through time, but the trend may or may not be linear.

MKA relies on three statistical metrics including:

• The 'S' Statistic: Indicates whether concentration trend vs. time is generally decreasing (negative S value) or increasing (positive S value).

- The Confidence Factor (CF): The CF value modifies the S Statistic calculation to indicate the degree of confidence in the trend result, as in 'Decreasing" vs. "Probably Decreasing" or "Increasing" vs. "Probably Increasing." Additionally, if the confidence factor is quite low, due either to considerable variability in concentrations vs. time or little change in concentrations vs. time, the CF is used to apply a preliminary "No Trend" classification, pending consideration of the COV.
- The Coefficient of Variation (COV): The COV is used to distinguish between a "No Trend" result (significant scatter in concentration trend vs. time) and a "Stable" result (limited variability in concentration vs. time) for datasets with no significant increasing or decreasing trend (e.g. low CF).

Where an analyte has recorded a non-detect following laboratory analysis half of the value of detection (LOR) has been applied.

Table 4.1 Mann-Kendall analysis for metals

Site	Mana Kandall Anabada				Meta	ls		
ID	Mann-Kendall Analysis	Barium	Chromium	Copper	Iron	Manganese	Nickel	Zinc
	Coefficient of Variation	0.47	0.24	0.93	0.31	0.25	0.67	1.91
BH1	Mann-Kendall Statistic (S)	-3	-12	11	-15	-16	-2	-33
亩	Confidence Factor	56.0%	79.9%	77.7%	85.9%	87.5%	53.0%	99.5%
	Concentration Trend	Stable	Stable	No Trend	Stable	Stable	Stable	Decreasing
	Coefficient of Variation	0.20	0.69	0.62	1.05	0.27	1.77	1.15
BH2	Mann-Kendall Statistic (S)	-9	9	29	16	-26	-8	24
亩	Confidence Factor	70.4%	70.4%	97.4%	87.5	95.7%	0.25 0.67 -16 -2 87.5% 53.0% Stable Stable 0.27 1.77 -26 -8 95.7% 68.1% ecreasing No Trend F 1.11 1.38 -16 -31 84.5% 98.1% No Trend Decreasing P 0.20 1.54 -19 9 88.9% 70.4% Stable No Trend 0.38 0.92 -43 -14 99.9% 81.0%	94.2%
	Concentration Trend	Stable	No Trend	Increasing	No Trend	Decreasing	No Trend	Prob. Increasing
	Coefficient of Variation	0.10	0.27	1.15	0.90	1.11	1.38	1.02
BH4	Mann-Kendall Statistic (S)	-26	9	13	2	-16	-31	-25
奋	Confidence Factor	95.7%	70.4%	79.0%	59.2%	84.5%	98.1%	95.0%
	Concentration Trend	Decreasing	No Trend	No Trend	No Trend	No Trend	Decreasing	Prob. Decreasing
	Coefficient of Variation	0.09	0.27	1.37	0.29	0.20	1.54	1.27
ВН6	Mann-Kendall Statistic (S)	-6	9	10	-2	-19	9	-12
奋	Confidence Factor	63.1%	70.4%	72.7%	52.7%	88.9%	70.4%	77.0%
	Concentration Trend	Stable	No Trend	No Trend	Stable	Stable	No Trend	No Trend
	Coefficient of Variation	0.45	0.15	1.56	0.28	0.38	0.92	1.37
BH7	Mann-Kendall Statistic (S)	18	9	7	-49	-43	-14	-6
奋	Confidence Factor	87.5%	70.4%	65.6%	>99.9%	99.9%	81.0%	63.1%
	Concentration Trend	No Trend	No Trend	No Trend	Decreasing	Decreasing	Stable	77.0% No Trend 1.37 -6 63.1% No Trend 1.70
	Coefficient of Variation	0.23	0.37	0.90	0.24	0.36	1.10	1.70
BH8	Mann-Kendall Statistic (S)	-8	30	23	-26	9	2	20
	Confidence Factor	68.1%	97.8%	93.3%	95.7%	70.4%	52.7%	90.2%

Site					Meta	ls		
ID	Mann-Kendall Analysis	Barium	Chromium	Copper	Iron	Manganese	Nickel	Zinc
	Concentration Trend	Stable	Increasing	Prob. Increasing	Decreasing	No Trend	No Trend	Prob. Increasing
	Coefficient of Variation	0.35	0.26	1.10	0.35	0.28	1.9	0.87
_	Mann-Kendall Statistic (S)	-24	9	16	7	23	-28	-32
BH1	Confidence Factor	94.2%	70.4%	84.5%	65.6%	93.3%	96.9%	98.4%
	Concentration Trend	Prob. Decreasing	No Trend	No Trend	No Trend	Prob. Increasing	Decreasing	Decreasing
	Coefficient of Variation	0.25	0.14	0.41	0.20	0.24	0.78	1.10
339S	Mann-Kendall Statistic (S)	11	9	-1	5	6	5	5
MW	Confidence Factor	74.9%	70.4%	50.0%	60.6	63.1%	60.6%	60.6%
	Concentration Trend	No Trend	No Trend	Stable	No Trend	No Trend	No Trend	No Trend
	Coefficient of Variation	0.27	0.37	0.77	0.67	0.27	0.858	0.88
2	Mann-Kendall Statistic (S)	5	10	7	-20	-26	-19	-16
S	Confidence Factor	68.3%	86.2%	80.9%	99.3%	100.0%	98.9	96.9%
	Concentration Trend	No Trend	No Trend	No Trend	Decreasing	Decreasing	Decreasing	Decreasing
	Coefficient of Variation	0.37	0.64	1.48	0.95	0.21	1.07	1.20
٧3	Mann-Kendall Statistic (S)	-23	18	8	-25	-34	-9	-3
S	Confidence Factor	95.7%	90.5%	89.8%	97.0%	99.6%	83.2%	56.0%
	Concentration Trend	Decreasing	Prob. Increasing	No Trend	Decreasing	Decreasing	No Trend	No Trend
	Coefficient of Variation	0.17	0.00	1.3	1.18	0.13	1.06	1.08
۷4	Mann-Kendall Statistic (S)	-20	0	2.0	-8	-3	-9	-11
S	Confidence Factor	99.3%	45.2%	57.0%	80.1%	59.4%	83.2%	88.7%
	Concentration Trend	Decreasing	Stable	No Trend	No Trend	Stable	No Trend	No Trend

Table 4.2 Mann-Kendall analysis for anions, cations alkalinity and inorganics

			An	ions and Cat	ions		Alkali	nity		Inorganics	
Site ID	Mann-Kendall Analysis	Sodium	Calcium	Magnesium	Sulphate	Chloride	Total Alkalinity as CaCO3	Total Hardness as CaCO3	EC	SQL	Hd
	Coefficient of Variation	0.14	0.68	0.22	0.46	0.08	0.48	0.16	0.12	0.12	0.05
	Mann-Kendall Statistic (S)	24	-19	19	3	-17	22	-5	14	14	11
BH1	Confidence Factor	96.4%	91.8%	91.8%	56.0%	89.1%	94.9%	61.9%	84.0%	84.0%	77.7%
	Concentration Trend	Increasing	Prob. Decreasing	Prob. Increasing	No Trend	Stable	Prob. Increasing	Stable	No Trend	No Trend	No Trend
	Coefficient of Variation	0.10	0.27	0.15	0.54	0.11	1.48	0.13	0.11	0.29	0.06
오	Mann-Kendall Statistic (S)	17	-5	-7	-2	-46	21	-13	30	10	34
BH2	Confidence Factor	86.0%	60.6%	65.6%	52.7%	100.0%	91.3%	79.0%	97.8%	72.7%	99.0%
	Concentration Trend	No Trend	Stable	Stable	Stable	Decreasing	Prob. Increasing	Stable	Increasing	No Trend	Increasing
	Coefficient of Variation	0.19	0.30	0.41	0.75	0.06	1.27	0.30	0.14	0.27	0.05
BH4	Mann-Kendall Statistic (S)	28	-18	19	14	-9	8	5	33	16	4
窗	Confidence Factor	96.9%	87.5%	89.9%	81.0%	70.4%	68.1%	60.6%	98.7%	84.5%	58.0%
	Concentration Trend	Increasing	Stable	No Trend	No Trend	Stable	No Trend	No Trend	Increasing	No Trend	No Trend
	Coefficient of Variation	0.11	0.21	0.12	0.21	0.10	1.29	0.10	0.12	0.13	0.07
	Mann-Kendall Statistic (S)	23	-2	-11	-19	16	19	-15	42	27	36
BH6	Confidence Factor	93.3%	52.7%	74.9%	88.9%	84.5	88.9%	82.8%	99.8%	96.3%	99.3%
	Concentration Trend	Prob. Increasing	Stable	Stable	Stable	No Trend	No Trend	Stable	Increasing	Increasing	Increasing
	Coefficient of Variation	0.12	0.00	0.15	0.14	0.14	1.31	0.16	0.10	0.13	0.05
BH7	Mann-Kendall Statistic (S)	-36	0	-20	-4	-35	20	-20	-8	-21	42
	Confidence Factor	99.3%	47.3%	90.2%	58.0%	99.2%	90.2%	90.2%	68.1%	91.3%	99.8%

	Γ	F									
			Ar	nions and Cat	ions		Alkali	nity		Inorganics	
Site ID	Mann-Kendall Analysis	Sodium	Calcium	Magnesium	Sulphate	Chloride	Total Alkalinity as CaCO3	Total Hardness as CaCO3	EC	TDS	Hd
	Concentration Trend	Decreasing	Stable	Prob. Decreasing	Stable	Decreasing	Prob. Increasing	Prob. Decreasing	Stable	Prob. Decreasing	Increasing
	Coefficient of Variation	0.08	0.00	0.27	1.49	0.18	1.55	0.29	0.09	0.12	0.05
BH8	Mann-Kendall Statistic (S)	-1	0	-29	2	-18	18	-29	4	2	51
늅	Confidence Factor	50.0%	47.3%	97.4%	52.7%	87.5%	87.5%	97.4%%	58.0%	52.7%	>99.9%
	Concentration Trend	Stable	Stable	Decreasing	No Trend	Stable	No Trend	Decreasing	No Trend	No Trend	Increasing
	Coefficient of Variation	0.27	0.00	0.56	1.52	0.20	0.78	0.58	0.28	0.36	0.03
_	Mann-Kendall Statistic (S)	-26	0	-14	-23	-34	20	-14	-4	-5	28
BH11	Confidence Factor	95.7%	47.3%	81.0%	93.3%	99.0%	90.2%	81.0%	58.0%	60.6%	96.9%
	Concentration Trend	Decreasing	Stable	Stable	Prob. Decreasing	Decreasing	Prob. Increasing	Stable	Stable	Stable	Increasing
	Coefficient of Variation	0.10	0.00	0.12	0.43	0.18	1.33	0.12	0.12	0.12	0.04
S68	Mann-Kendall Statistic (S)	22	0	19	-3	11	7	19	46	40	-11
MW239S	Confidence Factor	92.4%	47.3%	88.9%	55.4%	74.9%	65.6%	88.9%	100.0%	99.7%	74.9%
	Concentration Trend	Prob. Increasing	Stable	No Trend	Stable	No Trend	No Trend	No Trend	Increasing	Increasing	Stable
	Coefficient of Variation	0.21	0.29	0.20	0.30	0.33	0.00	0.22	0.12	0.12	0.09
_	Mann-Kendall Statistic (S)	20	-21	-20	-14	25	0	-20	10	10	10
SW1	Confidence Factor	99.3%	99.6%	99.3%	'94.6%	100.0%	45.2%	99.3%	86.2%	86.2%	86.2%
	Concentration Trend	Increasing	Decreasing	Decreasing	Prob. Decreasing	Increasing	Stable	Decreasing	No Trend	No Trend	No Trend

									$\overline{}$		
			Ar	nions and Cat	ions		Alkali	nity	Inorganics		
Site ID	Mann-Kendall Analysis	Sodium	Calcium	Magnesium	Sulphate	Chloride	Total Alkalinity as CaCO3	Total Hardness as CaCO3	EC	TDS	Н
	Coefficient of Variation	0.11	0.24	0.32	0.52	0.14	1.47	0.25	0.21	0.19	0.12
~	Mann-Kendall Statistic (S)	-2	-14	18	-4	2	-14	3	17	5	-12
SW3	Confidence Factor	53.0%	84.0%	90.5%	59.0%	53.0%	84.0%	56.0%	89.1%	61.9%	79.9%
	Concentration Trend	Stable	Stable	Prob. Increasing	Stable	No Trend	No Trend	No Trend	No Trend	No Trend	Stable
	Coefficient of Variation	0.06	0.19	0.14	0.23	0.06	0.00	0.16	0.08	0.08	0.04
SW4	Mann-Kendall Statistic (S)	8	1	5	-7	-5	0	0	10	10	21
SV	Confidence Factor	80.1%	50.0%	68.3%	76.4%	68.3%	45.2%	45.2%	86.2%	86.2%	99.6%
	Concentration Trend	No Trend	No Trend	No Trend	Stable	Stable	Stable	Stable	No Trend	No Trend	Increasing

Table 4.1 and **Table 4.2** provide trend analysis on sampling locations for a number of chemicals, primarily those identified in the EPL as requiring analysis. The trend analysis identifies if the chemical is stable, increasing or decreasing in concentration. This will be useful in future monitoring should a sample be found to be above the adopted trigger value, triggering further assessment.

The majority of the chemicals were found to be stable or no trend was identified. This is typically expected from background monitoring programs. A number of monitoring locations have identified decreasing trends (i.e. Barium is decreasing in BH4, BH11, SW3 and SW4 and Manganese is decreasing in BH2, BH7, SW1 and SW3). Only a few locations were found to be have an increasing trend (Copper in BH2, Chromium in BH8). Throughout the 12-month sampling period NSW was undergoing one of the worst drought periods on record. Changing concentrations of some chemicals may be due to natural fluctuations in in the water (especially following a rainfall event) and/or could be due to the drought conditions. Should this be the case then when periods of heavy rainfall occur it is likely that changes in chemical concentrations may also occur.

5. SITE SPECIFIC ASSESSMENT CRITERIA

5.1 SWMP & EMP REQUIREMENTS

As identified in **Section 1.1**Error! Reference source not found. and **1.2** the SWMP requires that surface and groundwater monitoring is to continue as identified in **Section 1.2**. However, it also states that the following monitoring parameters will be reviewed:

- Location of sampling points, e.g. more suitable / representative location identified, or sampling location has insufficient water to accurately monitor development;
- The frequency of the sampling may be reduced, or increased, depending on the fluctuations in the results; and
- The parameters may be adjusted to remove superfluous analytes and/or add additional analytes.

Therefore, this section presents a review of the parameters identified and makes recommendations for the ongoing monitoring program. It is noted that any proposed changes must be approved by the Department's Secretary (or delegate) and must also be updated in the SWMP.

5.2 EPL REQUIREMENTS

The Sites EPL minimum requirements for the monitoring of groundwater are outlined in **Table 5.1** below.

Table 5.1 EPA Site water monitoring requirements (EPL21264)

Pollutant	Unit of measure	Frequency	Sampling Method	Sample location
Arsenic	mg/L	Monthly	Grab Sample	BH2, BH4, BH6, BH7, BH9, BH11 & MW239S
Conductivity	mS/cm	Monthly	Grab Sample	BH2, BH4, BH6, BH7, BH9, BH11 & MW239S
Depth	М	Monthly	Grab Sample	BH2, BH4, BH6, BH7, BH9, BH11 & MW239S
Iron	mg/L	Monthly	Grab Sample	BH2, BH4, BH6, BH7, BH9, BH11 & MW239S
Manganese	mg/L	Monthly	Grab Sample	BH2, BH4, BH6, BH7, BH9, BH11 & MW239S
рН	рН	Monthly	Grab Sample	BH2, BH4, BH6, BH7, BH9, BH11 & MW239S
Turbidity	Nephelometric Turbidity Units (NTU)	Monthly	Grab Sample	BH2, BH4, BH6, BH7, BH9, BH11 & MW239S

5.3 ANALYTICAL PARAMETERS

This section provides details on the recommended analytical suite for ongoing monitoring (note this is in addition to the requirements of the EPL).

5.3.1 Metals

Beryllium, Cadmium, Mercury, Selenium, Vanadium were all identified to be below the laboratory LOR throughout the 12-month sampling period. The operations across the Site are not considered likely to introduce sources of these metals and therefore it is not considered necessary to continue to monitor for these metals. Analysis for lead identified only four samples out of 124 to be above the LOR and these were reported at the LOR. Analysis for Cadmium identified only 3 samples at SW1 to be at or marginally above the LOR. It is recommended that Lead and Cadmium also be removed from the monitoring programme.

Concentrations of Boron were identified to be present above the LOR in 7 samples. However, the exception is SW1 where all samples taken had concentrations above LOR. Cobalt was found to be above LOR in one sample with the exception of surface water and in BH7. There are no trigger values presented in the ANZECC 2000 guidelines. It is considered unlikely that the quarrying operations would introduce Boron and Cobalt into the environment at significant concentrations and therefore it is recommended that Boron and Cobalt not be analysed in groundwater. However, due to the presence of Boron in SW1 and Cobalt in the surface water, both Boron and Cobalt should continue to be monitored in surface water. Should future surface water monitoring identify an increase in Boron or Cobalt concentrations, then consideration should be given to adding these to the groundwater analytical suite.

It is recommended that 8 Metals continue to be analysed in groundwater and surface water:

- Arsenic (this is required by the EPL);
- Barium (all samples were above LOR, there is no ANZECC criteria for Barium);
- Chromium (samples were found to be above LOR and some samples were found to be above the ANZECC trigger criteria);
- Copper (samples were found to be above LOR and some samples were found to be above the ANZECC trigger criteria);
- Iron (this is required by the EPL);
- Manganese (this is required by the EPL);
- Nickel (samples were found to be above LOR and some samples were found to be above the ANZECC trigger criteria); and
- Zinc (samples were found to be above LOR and some samples were found to be above the ANZECC trigger criteria).

An additional two metals (Boron and Cobalt) should also be analysed in surface water.

5.3.2 Nutrients

Concentrations of Total Phosphorous and Total Nitrogen were found to be elevated above ANZECC 2000 Trigger Values for a low land river in south-east Australia in a number of sampling locations on multiple occasions.

Concentrations of Ammonia were also identified to be present above LOR, however, concentrations were all recorded below the ANZECC 2000 Trigger Values and aesthetic ADWG values.

It is therefore considered appropriate to maintain sampling to identify potential significant changes in concentrations that would impact the local environment.

5.3.3 Hydrocarbons

With the exception of 4 samples, all concentrations were found to be below the LOR. However, the quarry operations plan to store diesel fuel on Site for the operational plant. The Site will also have a maintenance workshop where oils, greases, lubricants and cleaning agents (degreasers) will be stored and used on Site. It is therefore necessary to continue to monitor for hydrocarbons.

It is recommended that TRH continues to be monitored. Should the TRH identify concentrations of C_6 to C_{10} then this should trigger further analysis of BTEXN. Likewise, should concentrations of C_{16} to C_{40} be identified then this should trigger the analysis of PAH.

5.3.4 **PFAS**

The majority of results were identified to be below the LOR. However, due to the sensitive nature of PFAS and the location of the Site being on the edge of the Williamtown Red Zone, PFAS monitoring should continue.

5.4 LOCATIONS

BH2, BH4, BH6, BH7, BH9, BH11 and MW239S are required to be monitored on a monthly basis as part of the EPL requirements. It is noted that MW9 has been dry consistently through the background monitoring period.

In addition to the above it is recommended that BH8 also be monitored.

5.5 SCHEDULE

Monthly monitoring is required by the EPL. It is not recommended that additional monitoring be undertaken above this every month (however we understand that DPIE has requested Site to make minor modifications to the below program e.g. monthly PFAS monitoring).

It is recommended that quarterly monitoring be undertaken to include:

- 8 metals (as identified above);
- TRH;
- PFAS:
- Nutrients (Total Phosphorus, Total Nitrogen and Ammonia as N); and
- and the inclusion of sampling BH8.

As part of the quarterly monitoring, all available wells should be gauged for groundwater depths and observed for monitoring well condition.

In order to review and confirm the continued relevance of the outcome of this summary document and proposed analytical program, an annual monitoring event should be undertaken including all analytes and locations sampled as part of the background monitoring.

Additional analysis may be required should there be a recorded spill event or other potential pollution incident.

5.6 SUMMARY OF PROPOSED SAMPLING

Table 5.2 provides a summary of the proposed ongoing operational monitoring schedule for the Site. **Table 5.3** provides a summary of the proposed testing schedule for the different monitoring events .

Table 5.2 Proposed operational monitoring schedule

Location	Monthly	Quarterly	Annually
BH2, BH4, BH6, BH7, BH9, BH11 and MW239S	√	✓	✓
BH8 SW1, SW2, SW3, SW4		✓	✓
BH1, BH5, BH12			✓

Table 5.3 Proposed testing schedule

Monthly	Quarterly	Annually
 Conductivity; pH; Depth; Turbidity; Arsenic; Iron; and Manganese. 	 Gauging all available wells; Conductivity; pH; Depth; Turbidity; Nutrients (Total Phosphorus, Total Nitrogen and Ammonia as N); 8 metals (As, Ba, Cr, Cu, Fe, Mg, Ni and Zn); Additional 2 metals (B and Co) for surface water; TRH; and PFAS. 	 Gauging all available wells; Conductivity; pH; Depth; General water quality parameters (Ca, Mg, Na, K, pH, EC, Cl, SO₄, Alkalinity, Hardness & TDS); Nutrients (Total Phosphorus, Total Nitrogen and Ammonia as N); Turbidity; Metals (As, B, Ba, Be, Cd, Cr, Co, Cu, Fe, Pb, Mn, Hg, Ni, Se, V, Zn); TRH and BTEXN; and PFAS.

5.7 SITE SPECIFIC TRIGGER VALUES

As discussed in **Section 1.3** one of the objectives of this report is to establish Site specific trigger values to be used for long-term monitoring during the operation of the sand quarry. An exceedance of a trigger value does not necessarily indicate that there is an unacceptable risk on Site, but rather a trigger for further investigation or evaluation of management options (CRC-CARE Technical Report 10: 2011). **Section 5.8** provides details on the proposed action response should a trigger value be exceeded.

The baseline groundwater and surface water assessment criteria adopted for future quarry extraction works for locations to be monitored under the Sites EPL, and defined in the SWMP, are summarised below. Nationally accepted water quality guidelines; ANZECC (2000) Australian and New Zealand Water Quality Guidelines for Fresh and Marine Waters, 95% species Protection for freshwater, HEPA NEMP (2018) PFAS National Environmental Management Plan and ADWG (2011) Australian Drinking Water Guidelines 6, have been considered in developing Site specific trigger values.

Table 5.4 and **Table 5.5** presents the proposed trigger values for groundwater and surface water respectively along with a justification for selecting that value. The trigger values are to be applied to the sample locations monitored monthly and quarterly. Locations monitored as part of the annual monitoring should be compared against currently available data for that location only as they have not been considered when developing the trigger values.

Table 5.4 Site specific trigger values for Groundwater

Analyte	Units	Adopted Site specific trigger value	Location	Justification		
	Inorganics					
рН	pH units	4 - 7	Site wide	The lowest pH value recorded was 4.37 (noting 4.0 in surface water). It is feasible that pH values could continue to be low. The highest pH value recorded was 6.21 indicating a generally acidic environment. It is therefore unlikely the pH would exceed 7.		
Total Phosphorus	mg/L	2	Site wide	The majority of baseline results were found to be elevated above the ANZECC 2000 trigger values for a Lowland river in South-east Australia. It is therefore not considered appropriate to use this criterion. The majority of baseline sample results were less than 2mg/L, however it is noted that the highest value recorded was 2.76mg/L at BH3 (noting one sample event and the well is no longer operational) and 2.11mg/L in BH11. The third highest concentration of 1.97mg/L was located at BH8. The sample locations identified represent a large cross section of the Site therefore represent the likely range that could be expected at the Site.		
Ammonia as N	mg/L	0.5	Site wide	The detected range of <0.01-0.34mg/L was not found to be elevated above the ANZECC 2000 and ADWG. Based on the results obtained it is considered that adopting the 0.5mg/L ADWG provides a conservative value for a trigger response. It is noted that the ANZECC criteria is 0.9mg/L.		
Total Nitrogen as N	mg/L	3	Site wide	Results from the majority of locations were generally found to be elevated above the ANZECC 2000 trigger values, with the exception of BH1 where concentrations were recorded to be marginally lower than the initial criteria. The highest concentrations were recorded in BH11 (considered to be up hydraulic gradient of the Site) and BH2 located centrally on Site. Concentrations as high as 2.2mg/L (in BH7) were identified at locations down/ cross hydraulic gradient of the Site. It is evident that concentrations of Nitrogen can be found naturally across the Site and can be varied over time. Concentrations of Total Nitrogen are not expected to be elevated above the highest recorded value of 5.9mg/L. However, to maintain a level of conservatism a trigger value of 3mg/L (half the highest concentration) has been adopted understanding that four previous samples exceeded this value. Elevated concentrations above the adopted trigger value is a requirement to look at the concentration with more detail to determine if it is in line with previous sampling results or considered to be an outlier potentially presenting a significant increase.		
Electrical Conductivity @ 25°C*	μc/cm	125-2200	Site wide	Concentrations across the Site were identified to vary considerably. However, no concentration was found to be elevated above 2200 µc/cm. Trigger criteria has been taken from ANZECC 2000 for a lowland river is south-eastern Australia and is considered appropriate.		

	1			
Analyte	Units	Adopted Site specific trigger value	Location	Justification
Turbidity	NTU	6-50	Site wide	Criteria taken from ANZECC 2000 for a lowland river is south-eastern Australia.
				Dissolved Metals
Arsenic	mg/L	0.003	Site wide	Arsenic was not detected within the majority of groundwater locations with the exception of BH8 recording a maximum concentration of 0.003 mg/L. The adopted trigger value has been taken as the maximum value obtained throughout the baseline monitoring period.
Barium	mg/L	0.035	Site wide	All results for Barium were found to be above the LOR. The highest concentration recorded was 0.034mg/L in BH6 (considered to be up/ cross hydraulic gradient of the Site). The adopted trigger value has been taken to be one significant figure above the highest concentration.
Chromium	mg/L	0.004	Site wide	All locations recoded concentrations of chromium at or marginally above LOR. Exceedances above initial baseline criteria (ANZECC 2000) were recorded at most locations with the exception of BH4 & BH6. The adopted trigger value has been taken as the maximum value obtained throughout the baseline monitoring period.
		0.013	Site wide (except BH4)	Detections of copper concentrations above LOR were recorded at all locations. The adopted trigger value has been taken as the maximum value obtained throughout the baseline monitoring period.
Copper	mg/L	0.051	BH4	Concentration range for copper at location BH4 was generally greater than other locations. It is feasible that stormwater runoff from the adjacent Cabbage Tree Road may impact this borehole. Therefore, a higher specific trigger value has been adopted which is the highest concentration identified during the baseline monitoring.
Iron	mg/L	4.1	Northern Half (BH6, BH7, BH8, BH11 and MW239S),	The Site can be divided into a northern section and southern section with an access road between the two sections (between BH2 and SW2). The north and south areas are divided by surface water (where SW2 and SW3 are located). Upon review of the groundwater data from the baseline monitoring it appears that there are greater concentrations of iron in the northern area than the southern area. Two separate criteria have been developed based on this. The highest concentration identified during the baseline monitoring for this area has been adopted as the Trigger Value.
		1	Southern half (BH2, BH4, BH9)	The highest concentration identified during the baseline monitoring for this area has been adopted as the Trigger Value.

Analyte	Units	Adopted Site specific trigger value	Location	Justification
				BH1, BH5, BH12 are only proposed to be sampled during the annual monitoring round. When assessing these wells, concentrations will be assessed against previous criteria for those locations.
Manganese	mg/L	0.136	Site wide	A similar range of results were identified across all locations. BH4 recorded the highest value of Manganese (0.136mg/L) across the Site. The highest concentration identified during the baseline monitoring has been adopted as the Trigger Value. It is noted that the ANZECC 2000 criteria is 1.9mg/L.
		0.037	BH11	BH11 is located to the north of the Site and is considered to be in an up hydraulic gradient location. The highest concentration identified in BH11 was 0.037mg/L. This has been adopted as the trigger value for this location.
Nickel	mg/L	0.022	Site wide (excluding BH11)	With the exception of BH6 and MW239S, at least one concentration from each monitoring location throughout the baseline monitoring was found to be elevated above than the ANZECC 2000 trigger values. Generally, concentrations of Nickel are similar across the Site (with the exception of BH11). Therefore, the highest recorded value from the baseline monitoring round has been adopted as the trigger value.
Zinc	mg/L	0.085	Site wide	At least one concentration from each monitoring location throughout the baseline monitoring was found to be elevated above than the ANZECC 2000 trigger values. Generally, concentrations of Zinc are similar across the Site. Therefore, the highest recorded value from the baseline monitoring round has been adopted as the trigger value.
				Noting that BH1 is not proposed to be sampled until the annual monitoring round where the results should be assessed against previous results from that location only.
				TRH
TRH C ₆ – C ₁₀	μg/L	20	Site wide	Concentrations of TRH were identified to be below the LOR for the majority of the baseline
C ₆ - C ₁₀ minus BTEX (F1)	μg/L	20	Site wide	monitoring. The exceptions were following well maintenance work or were observed in BH4 following a high rainfall event. It is feasible that stormwater runoff from the adjacent Cabbage Tree Road may locally impact BH4.
TRH C ₁₀ – C ₁₆	μg/L	100	Site wide	Based on the understanding of the above, generally TRH is not identified within the groundwater
TRH C ₁₀ - C ₁₆ minus N (F2)	μg/L	100	Site wide	across the Site. The Laboratory LOR has therefore been adopted as a trigger value.
TRH C ₁₆ – C ₃₄	μg/L	100	Site wide	

Analyte	Units	Adopted Site specific trigger value	Location	Justification
TRH C ₃₄ - C ₄₀	μg/L	100	Site wide	
				PFAS
PFOS+ PFHxS	μg/L	0.07	Site wide	Site criteria has been provided in the SWMP. In 2016, Food Standards Australia New Zealand
PFOA	μg/L	0.56	Site wide	(FSANZ) were commissioned to develop health-based guidance values for a selection of PFAS. FSANZ (2017) published levels for use in Site investigations which were updated and incorporated into the HEPA NEMP (2018), which was revised in 2019. The HEPA NEMP (2019) is the recognised national guidance for the investigation and management of PFAS in Australia and forms the key guidelines for this SWMP. This has therefore been adopted in this report.
PFOS	μg/L	0.01	Site wide	Standard LOR has been adopted as the Site wide criteria as it is known that PFAS are widely present in the local area owing to the Red Zone. Ambient concentrations have been detected above this in groundwater emanating from Williamtown RAAF Base.

¹⁻ National Health and Australian Drinking Water Guidelines 6 (ADWG) (2011) ANZECC (2000) 95% level of species protection in freshwater -

Table 5.5 Site specific trigger values for Surface Water

Analyte	Units	Adopted Site specific trigger value	Location	Justification
				Inorganics
рН	pH units	4 - 7	Site wide	The lowest pH value recorded was 4.01 in surface water). It is feasible that pH values could continue to be low. The highest pH value recorded was 6.21 indicating a generally acidic environment. It is therefore unlikely the pH would exceed 7.
Total Phosphorus	mg/L	0.13	Site wide	The two out of the 10 surface water baseline results were found to be above the ANZECC 2000 trigger values for a Lowland river in South-east Australia. It is therefore not considered appropriate to use this value. The highest recorded value in the surface water was 0.13mg/L in SW1. This value has been adopted as the trigger value for surface water.
Ammonia as N	mg/L	0.25	Site wide	The detected range of <0.01-0.16mg/L was not found to be elevated above the ANZECC 2000 and ADWG. Based on the results obtained it is considered that adopting half the 0.5mg/L ADWG value provides a conservative approach for a trigger level. It is noted that the ANZECC criteria is 0.9mg/L.

Analyte	Units	Adopted Site specific trigger value	Location	Justification
Total Nitrogen as N	mg/L	1.8	Site wide	Results from the majority of locations were found to be elevated above the ANZECC 2000 trigger criteria. The highest concentrations were recorded in SW1. It is evident that concentrations of Nitrogen can be found naturally across the Site and vary over time. Concentrations of Total Nitrogen are not expected to be elevated above the highest recorded value of 1.8mg/L. Therefore, this has been adopted as the trigger value.
Electrical Conductivity @ 25°C*	μc/cm	125-2200	Site wide	Concentrations across the Site were identified to vary considerably. However, no concentration was found to be elevated above 2200 µc/cm. Trigger criteria has been taken from ANZECC 2000 for a lowland river is south-eastern Australia and is considered appropriate for this Site.
Turbidity	NTU	6-50	Site wide	Criteria taken from ANZECC 2000 for a lowland river is south-eastern Australia.
			•	Dissolved Metals
Arsenic	mg/L	0.001	Site wide	Arsenic was not detected within the majority of groundwater locations with the exception of SW3 recording a maximum concentration of 0.006 mg/L. As the majority of results were recorded below the LOR, the adopted trigger value has been taken as the laboratory LOR.
Barium	mg/L	0.08	Site wide	All results for Barium were found to be above the LOR. The highest concentration recorded was 0.08mg/L in SW3. The adopted trigger value has been taken to be the highest concentration recorded.
Boron	mg/L	0.14	SW1	All results at SW1 for Boron were found to be above the LOR compared to all other locations that had concentrations below LOR. Therefore, a location specific trigger value has been adopted for SW1.
		0.05	SW3 & SW4	All results were found to be below the LOR. The adopted trigger value has been taken as LOR.
Chromium	mg/L	0.002	Site wide	The majority of results were found to be below the LOR with one result higher than the ANZECC 2000 trigger value recorded in SW3. The adopted trigger value has been taken as the maximum value obtained throughout the baseline monitoring period.
Cobalt	mg/L	0.017	Site wide	Detections of Cobalt concentrations above LOR were detected at all surface water locations. The highest concentration was 0.017mg/L in SW1. The adopted trigger value has been taken to be the highest concentration recorded.
Copper	mg/L	0.013	Site wide	Detections of Copper concentrations above LOR were recorded at all locations. The adopted trigger value has been taken as the same value as the groundwater trigger value. The maximum value obtained in surface water throughout the baseline monitoring period was 0.012mg/L.

Analyte	Units	Adopted Site specific trigger value	Location	Justification
Iron	mg/L	9.26	Site wide	The concentrations of Iron identified in the surface water monitoring results were varied and the Mann-Kendal analysis identified a decreasing trend in SW1 and SW3 and no trend in SW4. The highest concentration identified during the baseline monitoring for this area has been adopted as the Trigger Value. Based on the trend analysis it is not expected this value would be exceeded.
	mg/L	0.048	SW1 & SW3	Concentrations of manganese in SW1 and SW3 were found to be similar. The highest concentration identified has been adopted as the trigger value for these locations.
Manganese		0.841	SW4	Concentrations of manganese in SW4 were found to be elevated above those in SW1 and SW3. It is feasible that stormwater runoff from the adjacent Cabbage Tree Road may impact this location. Therefore, the highest concentration found in SW4 has been taken as the trigger value.
Nickel	mg/L	0.022	Site wide	Concentrations of nickel in each of the surface water locations was found to be similar. The highest concentration identified in SW1 was 0.02mg/L. This is similar to the trigger value adopted for groundwater; therefore, the same value has been adopted as the trigger value.
		0.085	SW1 & SW3	Concentrations of Zinc in SW1 and SW3 were found to be similar. The highest concentration identified has been adopted as the trigger value for these locations.
Zinc	mg/L	0.535	SW4	Concentrations of Zinc in SW4 were found to be elevated above those in SW1 and SW3. It is feasible that stormwater runoff from the adjacent Cabbage Tree Road may impact this location. Therefore, the highest concentration found in SW4 has been taken as the trigger value.
				TRH
TRH C ₆ – C ₁₀	μg/L	20	Site wide	All concentrations of TRH were identified to be below the LOR. The Laboratory LOR has therefore
C ₆ - C ₁₀ minus BTEX (F1)	μg/L	20	Site wide	been adopted as the trigger value.
TRH C ₁₀ – C ₁₆	μg/L	100	Site wide	
TRH C ₁₀ - C ₁₆ minus N (F2)	μg/L	100	Site wide	
TRH C ₁₆ – C ₃₄	μg/L	100	Site wide	
TRH C ₃₄ - C ₄₀	μg/L	100	Site wide	

Analyte	Units	Adopted Site specific trigger value	Location	Justification
				PFAS
PFOS+ PFHxS	μg/L	0.07	Site wide	Site criteria has been provided in the SWMP. In 2016, Food Standards Australia New Zealand
PFOA	μg/L	0.56	Site wide	(FSANZ) were commissioned to develop health-based guidance values for a selection of PFAS. FSANZ (2017) published levels for use in Site investigations which were updated and incorporated into the HEPA NEMP (2018). The HEPA NEMP (2018), revised in 2019, is the recognised national guidance for the investigation and management of PFAS in Australia and form the key guidelines for this SWMP. This has therefore been adopted in this report.
PFOS	µg/L	0.01	Site wide	Standard LOR has been adopted as the Site wide criteria as it is known that PFAS are widely present in the local area owing to the Red Zone. Ambient concentrations have been detected above this in groundwater emanating from Williamtown RAAF Base.

5.8 TRIGGER RESPONSE ACTIONS

5.8.1 Metals & Nutrients

The following provides details on the proposed response action required should an analyte concentration be found above the adopted trigger value:

- Review value against previous data including Mann-Kendal trends presented in **Table 4.1**to determine if the concentrations is in line with previous monitoring data, or if considered
 significantly different then:
 - Question result with the laboratory;
 - Discuss what operations have been undertaken that may cause the elevated concentration; and
 - Review rainfall data and groundwater elevations to establish if concentration is due to seasonal adjustments.
- Re-sample location and elevated metal in the following two monthly monitoring rounds to gauge if the exceedance was an exception of change in trend or characteristic of background changes.

Where the outcome of the above assessment indicates a potential contamination issue then a water trigger investigation should be undertaken in accordance with the SWMP (see **Section 5.8.4**).

5.8.2 Hydrocarbons

The following provides details on the proposed response action required should an analyte concentration be found above the adopted trigger value:

- Question result with the laboratory to determine if there were any laboratory errors;
- Discuss what operations have been undertaken that may cause the elevated concentration;
- Review rainfall data and groundwater elevations to establish if concentration is due to seasonal adjustments; and
- Re-sample location in the following two monthly monitoring rounds to gauge if the exceedance was an exception of change in trend, or characteristic of background changes, and include the following additional analysis:
 - Where TRH C₆ to C₁₀ has been detected then BTEXN will also be analysed; and/or
 - Where TRH C₁₆ to C₄₀ has been detected then PAH will also be analysed.

Where the outcome of the above indicates a potential issue then a water trigger investigation should be undertaken in accordance with the SWMP (see **Section 5.8.4**).

Where a spill or potential pollution incident event has occurred, or the above conversation with the quarry operations indicates a potential contamination issue, then sampling (or re-sampling) at the closest (down hydraulic gradient) location should be undertaken within 48 hours. An incident investigation in accordance with the SWMP must be undertaken.

5.8.3 **PFAS**

Where PFAS is identified above the adopted criteria (or maximum background value detected previously at a specific monitoring location) an additional water sample will be collected within 48 hours and submitted for analysis. In the event the trigger value is exceeded by more than 10% in both the primary sample and the follow-up sample, a water trigger Investigation will be completed to determine if the change is related to:

- The quarry operations;
- External influence; and/or
- Natural variation.

5.8.4 Water Trigger Investigation

Upon triggering the need for a water trigger investigation Hunter Water Corporation (HWC), NSW Environmental Protection Agency (EPA) and Department of Planning Industry and Environment (DPIE) must be notified within 24hours. The SWMP stipulates that the water trigger investigation will evaluate the following:

- A review of the Site conceptual site model to understand the risk potential of the exceedance;
- Identify the potential for other sources to be present that may require confirmatory sampling (and include intrusive investigation if considered appropriate);
- Recent climate and rainfall data:
- Other activities within the catchment (both on and off the Site) in the preceding period;
- Operational activities of the quarry in the preceding period; and
- Historical potential for those quarry activities to cause exceedance.

The water trigger investigation report will be submitted as an incident notification to HWC, EPA and DPIE. The report will also be summarised in the Annual Environmental Review (AER).

6. QUALITY ASSURANCE AND QUALITY CONTROL

6.1 DATA VALIDATION

The QA/QC program implemented for this monitoring program followed the requirements of the SWMP.

Data Quality Indicators (DQIs) were developed prior to commencing background monitoring and have been summarised in **Table 6.1.** DQIs established acceptable limits for field and laboratory data collected from the monitoring program.

Table 6.1 QA/QC data quality indicators

Table 6.1 QA/	QC data quality indicators
QA/QC Objective	Data quality indicator (DQI)
Successful completion of project	To conduct a baseline water quality sampling program in accordance with NEPM 2013 and AS4482.1 – 1999 in order to achieve the objective set out in Section 1 .
Suitable environmental consultant	The environmental consultant was to maintain QA Systems certified to AS/NZS ISO 9001:2015.
Suitable field personnel	All Kleinfelder field personnel conducting sampling were to be trained in the requirements detailed in this SWMP. All Kleinfelder field personnel have relevant tertiary qualifications and have demonstrated competence in Kleinfelder procedures for sampling (consistent with NEPM 2013 and AS4482.1 - 1999).
Adequate sample collection density	The sampling strategy was developed based on historical information available for the Site and the objective of the investigation.
Standardised sample nomenclature	All samples were labelled with a unique identifier that can be related to sample location. Surface water and Groundwater samples were labelled as per monitoring well ID. The following naming convention was utilised: Bore Hole (BH) – Number (1, 2, 3): E.g. MW1
	Surface water (SW) – Number (1, 2, 3): E.g. SW1
Decontamination of field equipment	When sampling equipment was used, nitrile gloves were worn and changed between locations. Non-dedicated sampling equipment was decontaminated between sample locations using an appropriate surface-active cleaning agent (e.g. Liquinox for use with PFAS) as consistent with NEPM 2013 and HEPA NEMP (2019).
Calibration of field instruments	All field instruments were calibrated prior to use, and the calibration certificates have been provided in Appendix C .
Transportation	A Chain of Custody (COC) document was used to ensure the integrity of the samples from collection to receipt by the analytical laboratory within appropriate holding times.
National Association of Testing Authorities (NATA) accredited laboratory analysis	All samples were forwarded to a laboratory holding NATA accreditation for the required analyses. The following Laboratories were utilised: ALS – Primary Laboratory for chemical analysis; and Eurofins – Secondary Laboratory for chemical analysis.

QA/QC Objective	Data quality indicator (DQI)
Field QA/QC	Duplicate samples (intra-laboratory) were collected at a rate of one in every twenty (1:20) primary water samples and submitted to the primary laboratory for analysis. Standard NEPM 2013 duplicate and triplicate requirements were deemed reasonable for the sampling of PFAS for the purpose of baseline water monitoring.
	Triplicate samples (inter-laboratory) were also collected at a rate of one in every twenty (1:20) primary water samples and submitted to the secondary laboratory for analysis.
	Field duplicate and triplicate samples are used to assess field and analytical precision and the precision measurement is determined using the relative percent difference (RPD) between the primary sample (X1) and duplicate sample (X2) results, as shown in the following equation:
	Relative percent difference (RPD) = $(X1 - X2) \times 100$
	(X1 + X2)/2
	Generally, it is recommended that RPD is <30% (NEPM 2013).
	Default RPD levels in the field may be non-compliant for the following reasons:
	 The differing laboratory equipment, procedures and limits of reporting (between the primary and secondary laboratories); Due to sample matrix interference; and/or
	 Due to the reported concentrations being close to the limit of reporting where laboratory precision and accuracy are inherently low.
	A rinsate blank sample was collected for each piece of non-dedicated sampling equipment per day onsite and submitted to the primary laboratory for analysis.
	A transport blank sample was collected for each batch of samples sent to the laboratory (~one per day in the field) and submitted to the primary laboratory for analysis for each day samples are taken.
	QA/QC non-compliance was documented and discussed in the monthly summary letter (see Appendix B). Where exceedances were identified (i.e. duplicates and triplicates be above the RPD or rinsate blanks, field blanks or transport blanks be above the LOR) then consideration was given to the sample(s) being re-analysed, the higher concentration level to be conservatively adopted and/or reviewing field practices for continued prevention of potential cross contamination.
Laboratory Quality	Laboratory QA/QC acceptance limits are as follows:
Control –	Surrogates: 70% to 130% recovery;
Duplicates, spikes, blanks and	Matrix Spikes: 70% to 130% recovery for organics or 80% to 120% recovery for inorganics;
surrogates – Acceptable Limits	Control Samples: 70% to 130% recovery for soil or 80% to 120% recovery for waters;
Acceptable Littles	Duplicate Samples: <4 Practical Quantitation Limits (PQL) - +/- 2PQL, 4-10PQL – 025 or 50%RPD, >10PQL – 0-10 or 30%RPD; and
	Method Blanks: zero to <pql.< td=""></pql.<>

6.2 QA/QC RESULTS

6.2.1 Field Method Validation

To ensure the completeness, comparability, representativeness, precision and accuracy of QA/QC items, **Table 6.2** details how the QA/QC compliance has been met.

Table 6.2 Field QA/QC

QA/QC Objective	Data Quality Indicator (DQI)
Suitable field personnel	The Site work was undertaken by Dan Kousbroek who has 4 years' experience in contaminated land investigations. Dan was informed of the requirements of the agreed scope of works. Dan has relevant tertiary qualifications and has demonstrated competence with Kleinfelder's sampling procedures (consistent with NEPM 2013 requirements and AS4482.1 2005).
Adequate sample	Water sampling was undertaken based on information provided in the SWMP.
collection density	A targeted sampling program was undertaken requiring sampling at 10 groundwater locations and 4 surface water locations and then analysed. It is noted that a number of the surface water locations were found to be dry throughout the 12 months due to an extended drought period in NSW.
Field equipment	YSI 556 Water Quality Meter and Solinst oil/water interface meter were used during field works.
Calibration of field instruments	Calibration certificates for each piece of equipment used in the field are attached in Appendix C
Sample preservation	Samples were collected in laboratory supplied containers and immediately stored in an insulated esky chilled with ice.
Sample handling	Samples were delivered straight to ALS Newcastle following each sampling event. Chains of custody are included in Appendix A of the monthly reports, which have been provided as Appendix B of this document.

6.2.2 Laboratory QA/QC

The results for internal laboratory QA/QC procedures are provided within the laboratory analysis reports (Appendix A of the monthly reports, which have been provided as **Appendix B** of this document). **Table 6.3** summarises conformance to specific QA/QC procedures, also see **Tables E**, **F** and **G** at the rear of this report for a summary of the data.

Table 6.3 Laboratory QA/QC

Quality assurance	Conformed	Comment
Collection of rinsate water from decontaminated field	Yes	Rinsate was sourced from a NATA accredited laboratory and supplied with the sample containers.
equipment		A rinsate sample was taken from the sampling equipment during each sampling event. A total of 12 rinsate samples were taken. All samples were non detect.
		See Tables E, F and G at the back of this report.
Collection of transport blanks through the sampling day	Majority	12 transport blank samples were collected (two samples in March (due to a return confirmatory sampling event), no transport taken in August 19)
		2 nd transport blank taken in March (15/03/19) was found to contain barium (2ug/l). As no other transport blanks were found to have concentrations above LOR and the following months samples resulted in non detect the data is considered reliable.
		See Tables E , F and G at the back of this report.
Holding times met	Yes	Holding times were met for all analytes and samples.
		Every effort was made by Kleinfelder to deliver samples to the laboratory as soon as possible after sampling.

0	0(^
Quality assurance	Conformed	Comment
LOR less than assessment criteria	Yes	Majority of LOR were below the adopted screening criteria. Adopted criteria for PFOS (HEPA NEMP 2018) is below LOR. It is noted that PFAS are likely to be in the region given the reported scale of PFAS in groundwater within the Red Zone, therefore the standard LOR has been adopted.
All analyses National Association of Testing Authorities (NATA) accredited	Yes	All samples were delivered to a NATA accredited laboratory for the required analysis, within specified holding times. The primary laboratory used was ALS (delivered to the Newcastle laboratory). Triplicate samples were forwarded by ALS to the secondary laboratory, Eurofins mgt (Newcastle).
Field intra-laboratory duplicate samples collected and analysed to represent 5% of sample population	Majority	One intra-laboratory duplicate sample and one inter-laboratory triplicate water sample were collected. This is considered to exceed the requirement of 5% of the total number of primary analyses undertaken (minimum 1 in 20 duplicate and 1 in 20 triplicate samples). Due to a laboratory error in transferring samples, one intra-laboratory triplicate (March 2019) was only sampled for Metals and PFAS with TRH and BTEX being missed from the COC to the tertiary laboratory. With the exception of some minor elevations of TRH and BTEX which were attributed to maintenance work on the well, there were no recorded concentrations above LOR. Therefore, this is not considered to impair the reliability of data in meeting the objectives of this monitoring programme. See Table 6.5 for details.
Did duplicate sample meet RPD requirements	Majority	The majority of samples met the RPD requirements of being within 30% (See Tables E , F and G at the back of this report). The following did not meet these requirements: • Arsenic – 67% BH8 (Feb 2019) • Cobalt – 40% BH7 (March 2019) • Copper – 190% SW4 (September 2019) • Lead – 67% SW4 (September 2019) • Nickel – 140% SW4 (September 2019), 67% BH6 (January 2020) • Zinc – 100% BH8 (February 2019), 151% SW4 (September 2019) In general, for these exceedances at least one sample was found to be below or close to the Laboratory LOR, which leads to exaggerated RPD calculations. In order to take a conservative approach, the highest recorded concentration has been selected for results screening. These RPD exceedances are therefore not considered to have a negative impact on the outcome of the assessment.
Did triplicate sample meet RPD requirements	Majority	The majority of samples met the RPD requirements of being within 30% (See Tables E , F and G at the back of this report). The following did not meet these requirements: Water: Arsenic – 67% BH8 (February 2019) Chromium – 86% BH8 (February 2019), 67% SW3 (June 2019) Cobalt – 40% Copper – 190% SW4 (September 2019), 156% BH6 (January 2020)

Quality assurance	Conformed	Comment
		 Lead – 67% SW4 (September 2019) Nickel – 156% BH7 (March 2019), 140% SW4 (September 2019), 111% SW4 (November 2019) Zinc – 113% BH7 (March 2019), 151% SW4 (September 2019), 172% SW4 (November 2019) & 131% BH6 (January 2020) PFOS – 100% SW4 (September 2019) Sum of PFHxS and PFOS – 100% (September 2019) Sum of PFAS (WA DER List) – 86% (September 2019) Sum of PFAS – 133% (September 2019) A number of exceedances were calculated with one sample being below the Laboratory LOR. This leads to a potentially exaggerated RPD calculations. In order to take a conservative approach, the highest recorded concentration has been selected for results screening. RPD exceedances for triplicates can often be attributed to differences in methods used by each of the labs and are not considered to impair the reliability of the data in meeting the objectives of this monitoring programme.
Internal laboratory procedures	Majority.	Holding time breaches are discussed above. Internal laboratory QC procedures were generally met. Some exceedances of internal procedures for laboratory duplicates and matrix spikes were recorded for water samples, for organic analysis. However, the primary laboratory results recorded these analytes to be below the LOR. Therefore, this does not impair the reliability of the analytical data for decision making. This is not considered to impact the outcome of the results and thus unlikely to impair the outcome of decision making.

A summary of the water sample container types, preservation and the order of container filling is provided in **Table 6.4**.

Table 6.4 Container types, preservation and order of filling

Analyte	Container Type	Preservation
PFAS incl PFOS, PFOA, PFOS/PFHxS, PFDS	1 x 60mL Plastic Bottle - Unpreserved	Refrigerate
TPH (C ₁₀ -C ₃₆)	1 x 100mL Amber Glass Bottle - Unpreserved	Refrigerate
TRH (C ₆ -C ₁₀), BTEXN, VOC	2 x 40mL amber Glass Vials with Teflon lined septa	Sulfuric Acid
Heavy metals - Dissolved	1 x 60mL Clear Plastic Bottle - Filtered	Nitric acid
Extended Water Suite	1 x 500mL Clear Plastic Bottle – Unpreserved 1 x 60mL Clear Plastic Bottle	Refrigerate Sulfuric Acid
General Water Suite	1 x 500mL Clear Plastic Bottle – Unpreserved	Refrigerate

Table 6.5 Summary of groundwater QC program

	Number of	Groundwater Sam	ples Analysed	% QC Samples
Analyte	Primary	Field Duplicates (intra-lab)	Laboratory Splits (inter-lab)	Relative to Primary Samples
TRH	124	6	5	9%
BTEXN	124	6	5	9%
Dissolved metals	124	6	6	10%
PFAS	65	5	5	15%

Bold: Indicates not meeting the triplicate density.

6.3 QUALITY STATEMENT

Field sampling procedures conformed to Kleinfelder's QA/QC protocols to prevent cross contamination, preserve sample integrity and allow for collection of a suitable data set from which to make technically sound and justifiable decisions with data of satisfactory useability.

Based on a review of the results for the Kleinfelder and laboratory QA/QC program adopted, the overall data quality is considered to be suitably reliable and representative of groundwater conditions beneath the Site. Copies of the final NATA endorsed laboratory reports, including internal QA/QC results and chain-of-custody documentation for the primary and secondary laboratories are attached as Appendix A of the monthly reports, which have been provided as **Appendix B** of this document.

6.4 EQUIPMENT CALIBRATION

All equipment used was supplied calibrated with appropriate calibration certificates (see **Appendix A**). Kleinfelder undertook pre-mobilisation checks of equipment (including calibration as required). Prior to commencing field operations, the following equipment and calibration checks were conducted:

- Water Quality Meter The water quality meter came calibrated from the supplier. A daily
 confidence check of dissolved oxygen, pH and EC was undertaken using air and standards
 of known concentration, and calibration performed as warranted.
- PID the PID came calibrated from the supplier. A daily fresh air calibration check was undertaken on Site.

7. SUMMARY STATEMENT

A baseline water monitoring program was conducted at the Site to characterise groundwater and surface water for ongoing use of the Site as an operational sand quarry from February 2019 through to January 2020.

The analytical results indicate that metals, namely barium, chromium, copper, iron manganese, nickel and zinc, were detected regularly throughout the monitoring period, and at the majority of the sample locations, indicating likely natural background concentrations. Iron concentrations were typically higher at BH1 throughout the baseline monitoring program which are likely indicative of concentrations in this area.

BTEXN, TPH and TRH were generally not detected across the majority of the Site with the exception of BH1 and BH4. At the initiation of the baseline sampling program in February 2019 BH1 was refitted with a PVC pipe to replace a previously fire damaged one. In the process an acrylic adhesive was applied to fuse the pipes together which likely initiated increased concentrations of TPH C_6 - C_9 (1,710 μ g/L) and TRH C_6 - C_{10} (1,690 μ g/L) within the well. The subsequent months following reinstallation of the well concentrations of TPH and TRH fell to below LOR. Concentration of hydrocarbons detected at BH4 are most likely influenced by the adjacent Cabbage Tree Road. Concentrations were detected following some form of rainfall in the region and ongoing detections are likely given the location of BH4 being in close proximity to a relatively busy carriageway. Ongoing monitoring of hydrocarbons is recommended, for due diligence purposes, given the potential likelihood for spills to occur from operational vehicles.

PFAS detections above LOR were recorded at locations BH4, BH6 and SW4. Concentrations of PFAS identified at BH6 and SW4 are likely sourced from an upgradient source from the Site, namely the Williamtown RAAF Base where historical use of PFAS containing materials have been used. PFAS identified at location BH4, and directly adjacent to Cabbage Tree Road, is likely to have occurred from a different historical source. Ongoing monitoring of PFAS should be undertaken directly following initial excavation works.

It should also be noted that the Site and regional area has experienced a significant drought over the past couple of years and this may have a bearing on groundwater and surface water conditions should significant rainfall reoccur in the region. Baseline data provided within this report should be reassessed following a full year of data with average to above average rainfall to identify potential outliers that may be present.

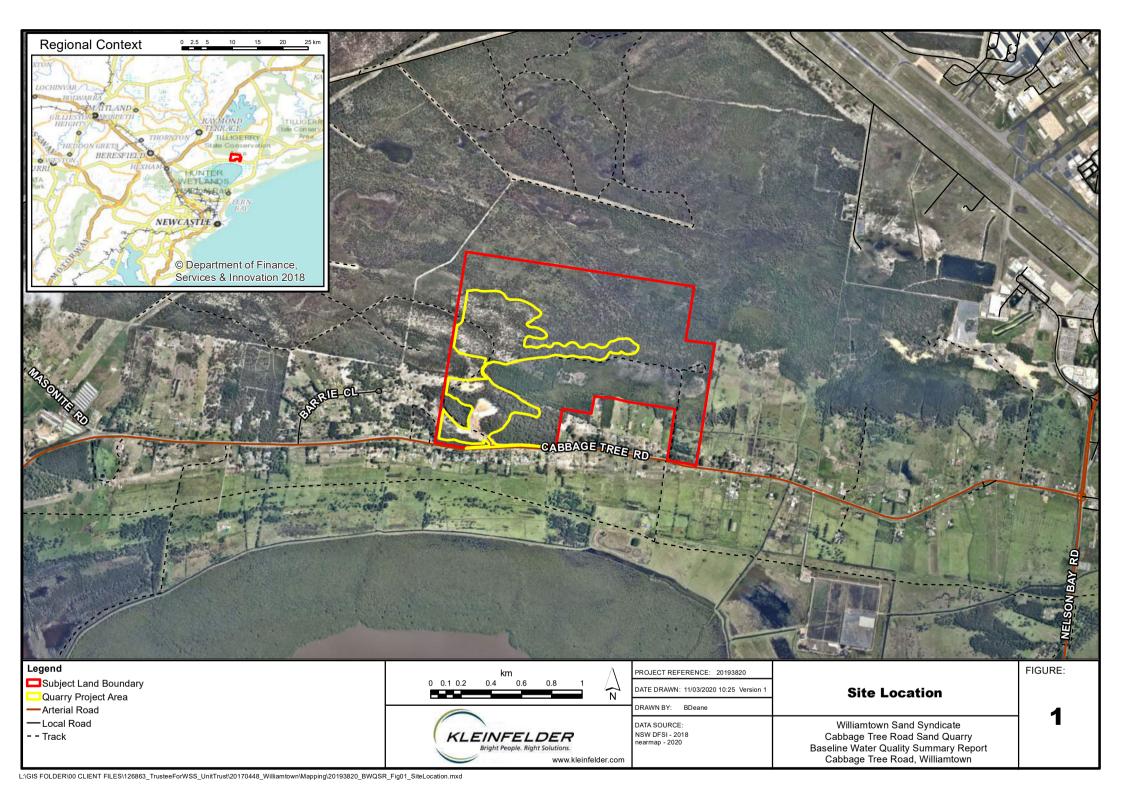
Table 7.1 provides a summary of the proposed ongoing operational monitoring schedule for the Site (however we understand that DPIE has requested Site to make minor modifications

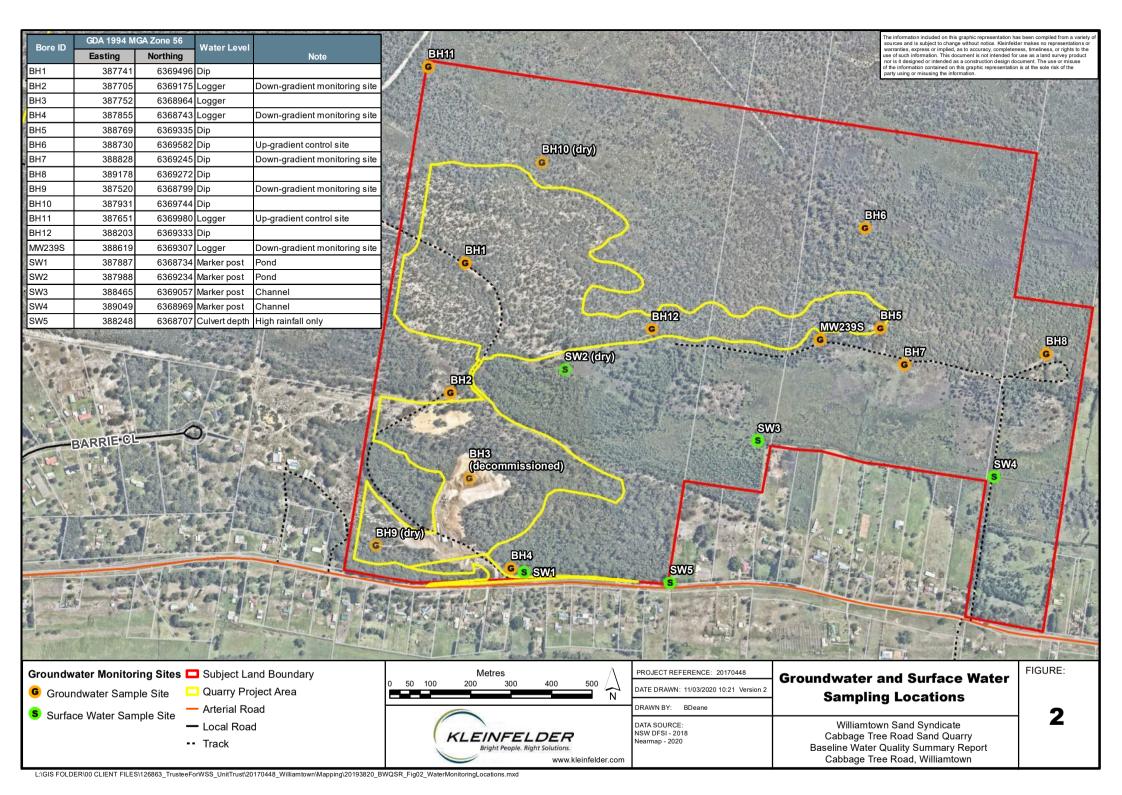
to the below program e.g. monthly PFAS monitoring). **Table 7.2** provides a summary of the proposed testing schedule for the different monitoring events and presents the adopted groundwater (GW) and surface water (SW) trigger values.

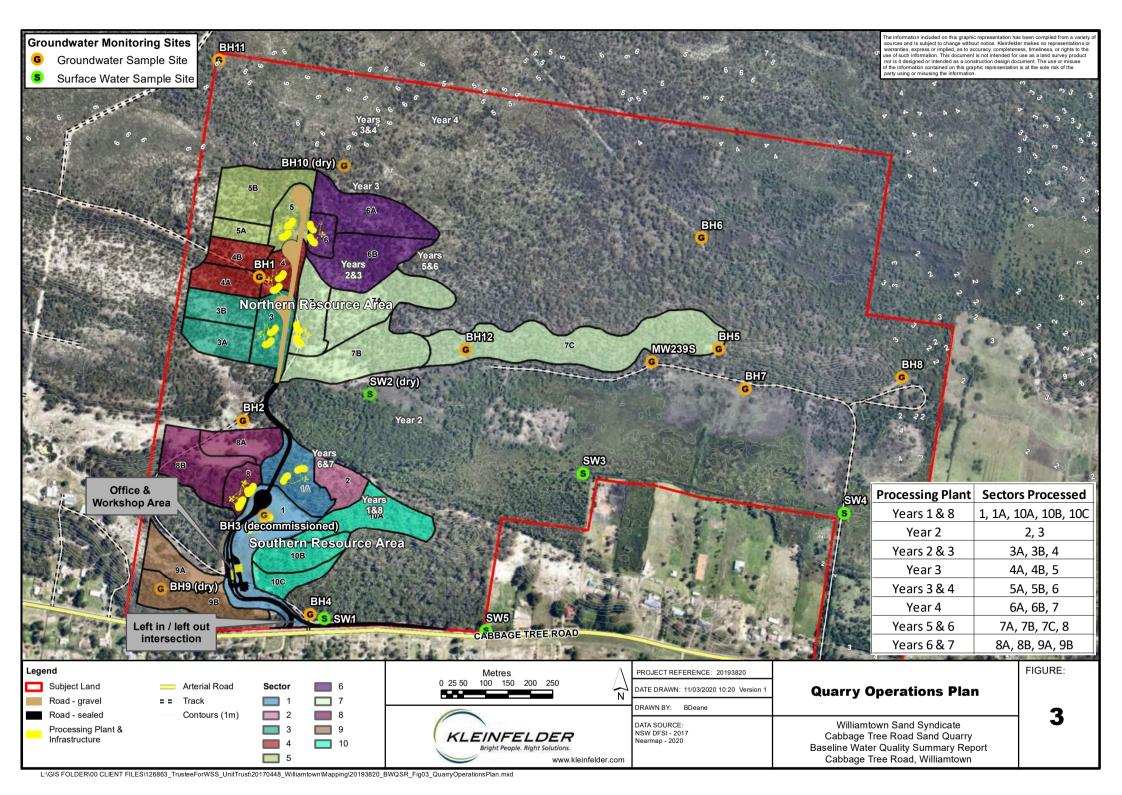
Table 7.1 Proposed operational monitoring schedule

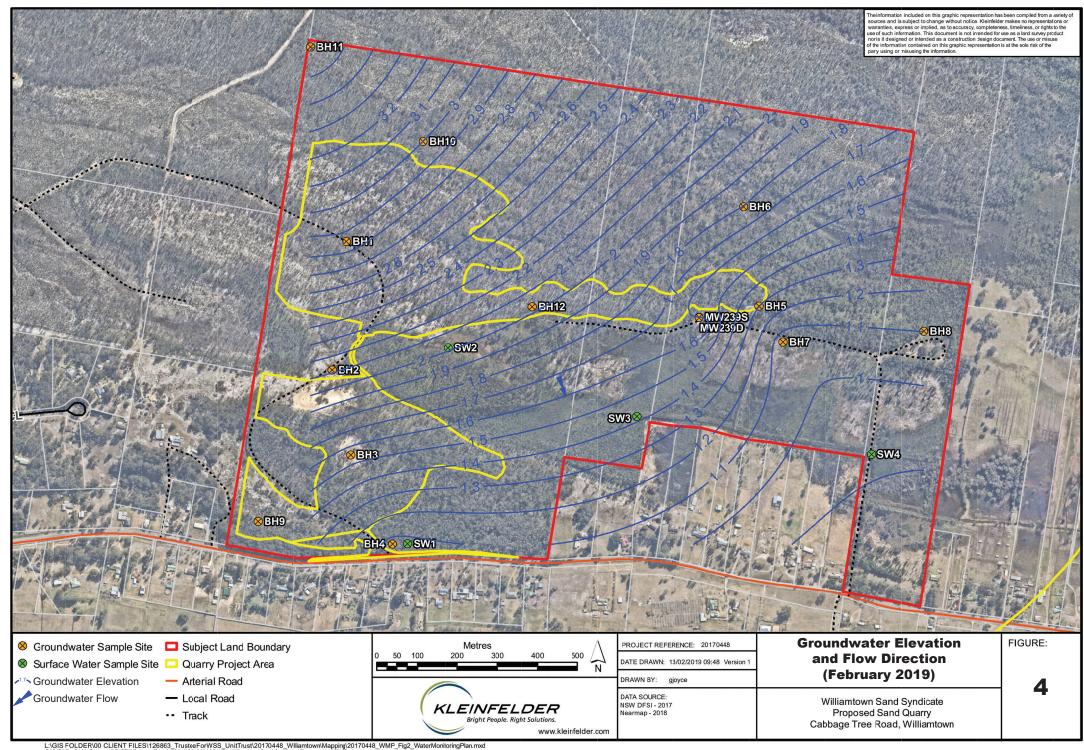
Location	Monthly	Quarterly	Annually
BH2, BH4, BH6, BH7, BH9, BH11 and MW239S	✓	√	√
BH8 SW1, SW2, SW3, SW4		✓	✓
BH1, BH5, BH12			✓

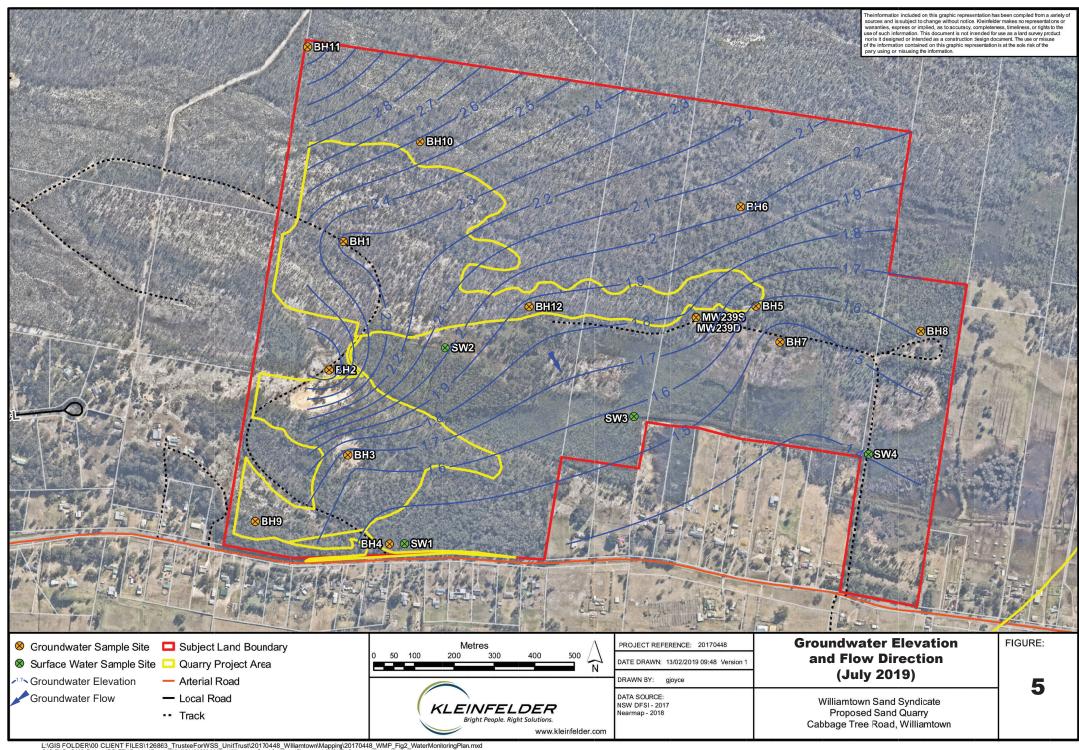
Table 7.2 Proposed testing schedule

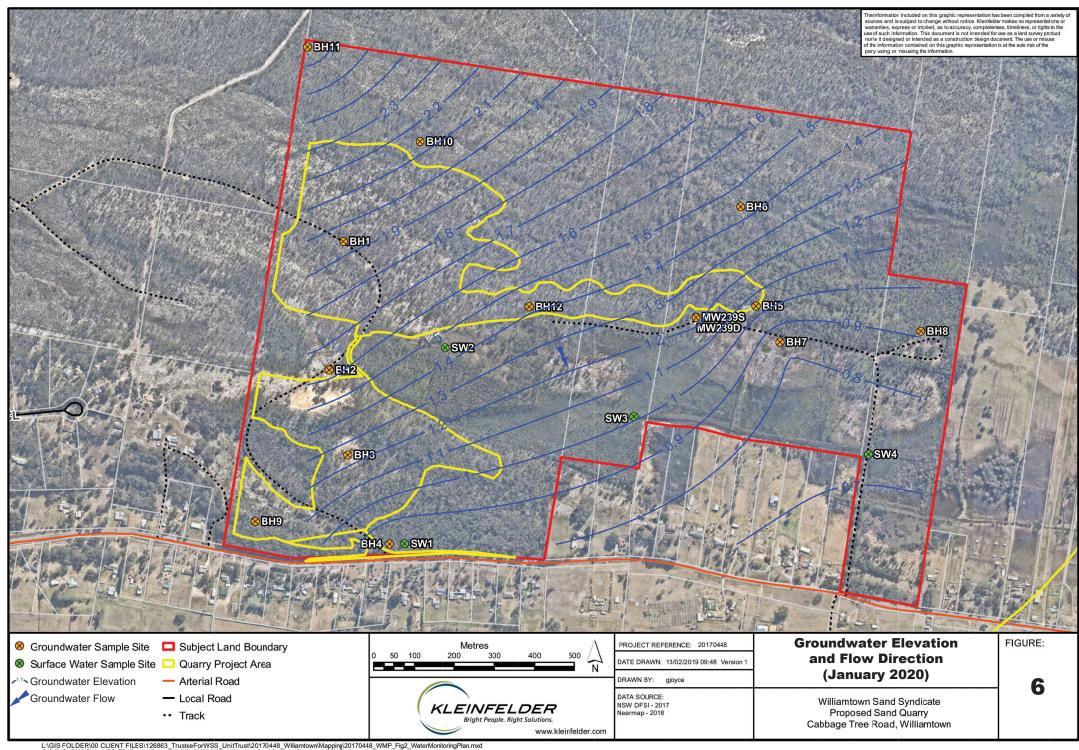

	Testing schedule		Specified Location otherwise site wide	Trigger value		
Monthly	Quarterly	Annually		Units	GW	sw
рН	pН	pH			4 - 7	4 - 7
Conductivity	Conductivity	Conductivity		μc/cm	125-2200	125-220
Turbidity	Turbidity	Turbidity		NTU	6-50	6-50
Arsenic	Arsenic	Arsenic		mg/L	0.003	0.001
Iron	Iron	Iron	Northern Half (BH6, BH7, BH8, BH11 and MW239S),	mg/L	4.1	9.26
			Southern half (BH2, BH4, BH9)	mg/L	1	
Manganese	Manganese	Manganese		mg/L	0.136	0.048
Gauging selected wells	Gauging all available wells;	Gauging all available wells;		-	-	-
	Total Phosphorus	Total Phosphorus		mg/L	2	0.13
	Total Nitrogen	Total Nitrogen		mg/L	3	1.8
	Ammonia as N	Ammonia as N		mg/L	0.5	0.25
	Barium	Barium		mg/L	0.035	0.08
	Chromium	Chromium		mg/L	0.004	0.002
	Copper	Copper	Site wide (except BH4)	mg/L	0.013	0.013
			BH4	mg/L	0.051	
	Nickel	Nickel	BH11	mg/L	0.037	0.022
			Site wide (excluding BH11)	mg/L	0.022	
	Zinc	Zinc	Site wide (excluding SW4)	mg/L	0.085	0.085
			SW4	mg/L		0.535
	Boron	Boron	SW1	mg/L	N/A	0.14
			SW2, SW3 & SW4	mg/L		0.05
	Cobalt	Cobalt		mg/L	N/A	0.017




	Testing schedule				Trigger va	lue
Monthly	Quarterly	Annually		Units	GW	sw
	TRH C ₆ – C ₁₀	TRH C ₆ – C ₁₀		μg/L	20	20
	C ₆ - C ₁₀ minus BTEX (F1)	C ₆ - C ₁₀ minus BTEX (F1)		μg/L	20	20
	TRH C ₁₀ – C ₁₆	TRH C ₁₀ – C ₁₆		μg/L	100	100
	TRH C ₁₀ - C ₁₆ minus N (F2)	TRH C ₁₀ - C ₁₆ minus N (F2)		μg/L	100	100
	TRH C ₁₆ – C ₃₄	TRH C ₁₆ – C ₃₄		μg/L	100	100
	TRH C ₃₄ - C ₄₀	TRH C ₃₄ - C ₄₀		μg/L	100	100
	PFOS	PFOS		μg/L	0.01	0.01
	PFOS+ PFHxS	PFOS+ PFHxS		μg/L	0.07	0.07
	PFOA	PFOA		μg/L	0.56	0.56
		General water quality parameters (Ca, Mg, Na, K, pH, EC, Cl, SO ₄ , Alkalinity, Hardness & TDS);		-	-	-




FIGURES



DATA TABLES

Newcastle Sands Baseline Water Quality Summary

Report

Williamtown Sand Syndicate Pty Ltd.

Project No. 20193820.001A

Report Date: 27 March 2020

Newcastle Sands

Baseline Water Quality Summary Report

298 Cabbage Tree Road, Williamtown, NSW

Document Number: NCA20R107317 Project Number: 20193820.001A

Kleinfelder File Name: 20193820_WSS Baseline Summary Report v2.0 20200327

Prepared for:

WILLIAMTOWN SAND SYNDICATE PTY LTD.

PO Box 898 Newcastle NSW 2300

Only Williamtown Sand Syndicate Pty Ltd., its designated representatives or relevant statutory authorities may use this document and only for the specific project for which this report was prepared. It should not be otherwise referenced without permission.

Document Control:

Version	Description	Date	Author	Technical Reviewer	Quality Review
2.0	Issued for approval	27 March 2020	D. Kousbroek	B.Grant	T. Overton
1.0	Draft for Client Review	24 March 2020	D. Kousbroek	B.Grant	T. Overton

Kleinfelder Australia Pty Ltd Newcastle Office 95 Mitchell Road Cardiff NSW 2282

Phone: (02) 4949 5200

ABN: 23 146 082 500

Contents

1.	INTR	ODUCTION	1
	1.1	BACKGROUND	1
	1.2	PURPOSE OF THE BASELINE SUMMARY REPORT	1
	1.3	OBJECTIVES	2
	1.4	SCOPE OF WORK	2
2.	SITE	CHARACTERISTICS	3
	2.1	SITE IDENTIFICATION DETAILS	3
	2.2	CURRENT LAND USE	3
	2.3	FORMER LAND USE	3
	2.4	SURROUNDING LAND USE	4
	2.5	GEOLOGY	4
	2.6	HYDROLOGY & HYDROGEOLOGY	5
		2.6.1 Surface Water	5
		2.6.2 Groundwater	6
3.	BAC	KGROUND MONITORING PROGRAM	7
	3.1	SAMPLING PLAN	7
	3.2	FIELD OBSERVATIONS	8
		3.2.1 General	8
		3.2.2 Monitoring Location Observations	8
		3.2.3 Geochemical parameters and gauging data	9
	3.3	GROUNDWATER AND SURFACE WATER ANALYSIS	10
		3.3.1 Industry guidelines	10
		3.3.2 Summary of results	11
4.	BASI	ELINE WATER QUALITY ASSESSMENT	17
	4.1	METALS	17
	4.2	PHYSICAL AND CHEMICAL STRESSORS	17
	4.3	TPH, TRH AND BTEXN	18
	4.4	PFAS	18
	4.5	TREND ANALYSIS	19
		4.5.1 Rainfall	19
		4.5.2 Groundwater Elevation	19
		4.5.3 Mann Kendall Analysis	19
5.	SITE	SPECIFIC ASSESSMENT CRITERIA	27

	5.1	SWMP & EMP REQUIREMENTS	27
	5.2	EPL REQUIREMENTS	27
	5.3	ANALYTICAL PARAMETERS	28
		5.3.1 Metals	28
		5.3.2 Nutrients	29
		5.3.3 Hydrocarbons	29
		5.3.4 PFAS	29
	5.4	LOCATIONS	29
	5.5	SCHEDULE	30
	5.6	SUMMARY OF PROPOSED SAMPLING	30
	5.7	SITE SPECIFIC TRIGGER VALUES	31
	5.8	TRIGGER RESPONSE ACTIONS	39
		5.8.1 Metals & Nutrients	39
		5.8.2 Hydrocarbons	39
		5.8.3 PFAS	40
		5.8.4 Water Trigger Investigation	40
6.	QUA	LITY ASSURANCE AND QUALITY CONTROL	41
	6.1	DATA VALIDATION	41
	6.2	QA/QC RESULTS	42
		6.2.1 Field Method Validation	42
		6.2.2 Laboratory QA/QC	43
	6.3	QUALITY STATEMENT	46
	6.4	EQUIPMENT CALIBRATION	46
7	CLIM	MADV STATEMENT	47

Tables

Table 2.1	Site details	3
Table 3.1	2019-2020 Monitoring Schedule	7
Table 3.2	Monitoring locations: General observations	g
Table 3.3	Geochemical Parameters and Gauging Data (maximum and minimum values)	10
Table 3.4	Summary of groundwater and surface water concentration range	12
Table 4.1	Mann-Kendall analysis for metal	21
Table 4.2	Mann-Kendall analysis for anions, cations alkalinity and inorganics	23
Table 5.1	EPA Site water monitoring requirements (EPL21264)	27
Table 5.2	Proposed operational monitoring schedule	30
Table 5.3	Proposed testing schedule	31
Table 5.4	Site specific trigger values for Groundwater	32
Table 5.5	Site specific trigger values for Surface water	35
Table 6.1	QA/QC data quality indicators	41
Table 6.2	Field QA/QC	43
Table 6.3	Laboratory QA/QC	43
Table 6.4	Container types, preservation and order of filling	45
Table 6.5	Summary of groundwater QC program	46
Table 7.1	Proposed operational monitoring schedule	48
Table 7.2	Proposed testing schedule	49

Figures

Figure 1 Site location

Figure 2 Site layout including sample location

Figure 3 Proposed extraction areas

Tables

A Groundwater and surface water analytical data - BTEXN

B Groundwater and surface water analytical data - Metals

C Groundwater and surface water analytical data - PFAS

D Groundwater and surface water analytical data - Inorganics

E Quality control sample analysis - BTEXN

F Quality control sample analysis - Metals

G Quality control sample analysis - PFAS

Charts

Chart 1: Monthly rainfall totals 2019/20 (mm)

Chart 2: Groundwater elevation (mAHD)

Chart 3: Field EC (µS/cm)

Chart 4: Iron (Fe) mg/L

Chart 5: Nickel (Ni) mg/L

Chart 6: Zinc (Zi) mg/L

Chart 7: Chromium (Cr) mg/L

Chart 8: Copper (Cu) mg/L

Chart 9: Manganese (Mn) mg/L

Chart 10: Total hardness (CaCo₃) mg/L

Chart 11: Total dissolved solids (TDS) mg/L

Chart 12: Sodium (Na) mg/L

Chart 13: Calcium (Ca) mg/L

Chart 14: Magnesium (Mg) mg/L

Chart 15: Potassium (K) mg/L

Chart 16: Sulphate (SO4⁻²) mg/L

Chart 17: Chloride (CI) mg/L

Chart 18: Fluoride (F-) mg/L

Chart 19: pH (Lab)

Chart 20: pH (Field)

Appendices

Appendix A: Field Sheets and Calibration certificates

Appendix B: Monthly Reports

1. INTRODUCTION

1.1 BACKGROUND

Kleinfelder Australia Pty Ltd (Kleinfelder) was engaged by Williamtown Sand Syndicate (WSS) to undertake a 12 month surface water and groundwater monitoring program to establish baseline conditions at the Newcastle Sands quarry site, 298 Cabbage Tree Road, Williamtown, New South Wales (NSW) (the 'Site'). The Site is located approximately 12 km north east of Newcastle at Williamtown, NSW. The location of the Site is depicted on **Figure 1** and the site layout is presented in **Figure 2**.

Monitoring was undertaken to satisfy the requirements of the Soil and Water Management Plan (SWMP) (KLF, 2019) and Environmental Protection Licence 21264 (EPL). It is noted that the SWMP is a sub-plan within the overarching 'Newcastle Sands Quarry Environmental Management Plan' (June 2018), referred to herein as the EMP.

Groundwater and surface water monitoring was conducted over 12 consecutive months from February 2019 through to January 2020 and was generally completed between the 11th and 18th of each month. A Sampling Plan was prepared and presented in the SWMP, covering an appropriate methodology and quality control requirements for the monitoring program (see **Section 3** for further details).

The Sampling Plan was designed to obtain representative background data on water flow and quality in surface water bodies and groundwater that has the potential to be impacted by the site operations, or unrelated off-site sources. The SWMP identifies that, unless amended, the ongoing surface water and groundwater monitoring program will be consistent with the baseline water quality program.

1.2 PURPOSE OF THE BASELINE SUMMARY REPORT

The SWMP identifies that on completion of the baseline monitoring program, the following parameters would be reviewed and advise ongoing monitoring requirements including:

- Location of sampling points, e.g. more suitable / representative location identified, or sampling location has insufficient water to accurately monitor development.
- The frequency of the sampling may be reduced, or increased, depending on the fluctuations in the results.
- The parameters may be adjusted to remove superfluous analytes and/or add additional analytes.

1.3 OBJECTIVES

The objectives of the monitoring program were to:

- Establish background groundwater and surface water conditions across the Site;
- Establish site specific trigger values to be used during the operation of the quarry whereby concentrations outside these trigger values need to be reviewed in more detail; and
- Develop an ongoing sampling program (frequency and analysis) that will maintain compliance with the conditions of the EPL and EMP.

1.4 SCOPE OF WORK

The following provides the scope of work to deliver the baseline water quality summary report:

- Review and present site characteristic information;
- Provide an assessment of quality assurance (QA) and quality control (QC) undertaken over the 12-month period and validate the data;
- Provide a summary of the water quality identified across the site including:
 - Field observations;
 - o Analytical results; and
 - Trend analysis;
- Establish trigger values for review against ongoing sampling; and
- Propose an ongoing monitoring programme to be conducted during operations that will maintain compliance with the EMP and EPL.

The scope of work for each of the background monitoring rounds can be seen in the monthly summary reports.

2. SITE CHARACTERISTICS

2.1 SITE IDENTIFICATION DETAILS

Table 2.1 provides site-specific identification details.

Table 2.1 Site details

Site address	298 Cabbage Tree Road Williamtown, NSW.
Site name	Newcastle Sands Quarry.
Current Title identification details	 Four titles within the Parish of Stockton, County of Gloucester including: Lot 1 DP 224587 at 398 Cabbage Tree Road, Williamtown Lot 121 DP 556403 at 282B Cabbage Tree Road, Williamtown. Lot 11 DP 629503 at 282A Cabbage Tree Road, Williamtown. Lot 1012 DP 814078 at 282 Cabbage Tree Road Williamtown
Current land use	Currently the Site comprises mostly native vegetation. Initial quarry works have progressed to include pre-works hardstand areas and administration buildings.
Site total area	Total Project Area of approximately 42.3 hectares from a Subject Land Area of approximately 176.2 hectares.
Current ownership	Port Stephens Shire Council under lease to Williamtown Sand Syndicate Pty Ltd.
Current land use zoning	The site is currently RU2 – Rural Landscape (Port Stephens LEP 2013).
Local government	Port Stephens Council.
Proposed site use	Sand quarry extracting up to 530,000 tonnes per annum over a period of 6 to 15 years including the construction of an intersection with Cabbage Tree Road, sealed and gravel access roads, site office, workshop and weighbridges. Progressive rehabilitation of quarried land returning to native vegetation communities with potential future use of the facilities area.

2.2 CURRENT LAND USE

The Site currently has a workshop, office area comprising of demountable buildings, gravel aggregate hardstand areas for transitioning vehicles and future sorting. The areas surrounding the immediate vicinity of the Site comprise predominantly natural vegetation with exception to a gravel road, two former silica sand extraction areas and the verge of Cabbage Tree Road.

2.3 FORMER LAND USE

The Project Area consists predominantly of native vegetation, with some previously cleared areas present in the eastern part of the site. Approximately 48 ha of the 176.2 ha site was previously disturbed by heavy mineral sand mining and associated activities that were undertaken on the site between 1970s and late 1990s. This disturbance included areas that were dredged as part of extracting heavy minerals, sand borrow pits, settling ponds, monazite trenches and access roads.

In March 2002, Port Stephens Council (PSC) purchased four allotments comprising the project area (398, 282B, 282A and 282 Cabbage Tree Road Williamtown) from Rutile and Zircon Mines and was subsequently used for cattle adjustment. In 2012 PSC sought tenders from interested parties for the extraction of sand from the project area.

2.4 SURROUNDING LAND USE

The Williamtown RAAF base is located 2.5 km to the north east, with Fullerton Cove approximately 600 m to the south and the Hunter River estuary beyond (**Figure 1**).

Residential dwellings are located to the east (closest dwelling is 244 m), south (closest dwelling is 61 m) and west (closest dwelling is 83 m) of the Site. Most are small properties utilised as hobby farms (e.g. keeping horses and chickens), some are larger and also graze livestock. Potable water for dwellings is likely to comprise primarily reticulated water from Hunter Water network and rainwater. Many properties appear to have spear point wells installed for stock and domestic use. No dwellings are located within 4 km north of the Site.

2.5 GEOLOGY

Review of the Newcastle 1:250,000 series geological map (Sheet S1 56-2, 1966) indicates that the site is underlain by Quaternary aged marine and freshwater deposits comprising gravel, sand, silt, clay and "Waterloo Rock".

The majority of the Site is located above the Tomago Sandbeds. The Tomago Sandbeds were formed during the Pleistocene era with the original sand deposits occurring up to 250,000 years ago. Rising sea levels created a large bay extending from Newcastle to Port Stephens. The Hunter and Karuah Rivers both flowed into the bay and deposited large volumes of sand. A combination of wave and wind action spread the sand along the coastline and formed the series of shallow dunes that make up the Tomago Sandbeds (Hunter water website 15/08/2018).

The sand dunes consist of a layer of highly permeable fine-grained sands underlain by impervious clay and rock. The thickness of the sand layer reaches a maximum of 50 metres, but on average is 20 metres deep (Hunter Water website 15/08/2018).

The North Stockton Sandbeds, which form the current coastline between Newcastle and Port Stephens, were deposited much more recently than the Tomago Sands. They overlie the eastern extremity of the Tomago Sands and were deposited in the Holocene era (10,000 years ago) (Hunter water website 15/08/2018).

2.6 HYDROLOGY & HYDROGEOLOGY

2.6.1 Surface Water

The high permeability of the Tomago Sandbeds result in little or no defined surface runoff, noting no defined natural drainage lines are on the site. Drainage is therefore predominantly via vertical infiltration into the sand, with any ephemeral surface drainage generally expected to be in the direction of the existing surface slopes.

In the area around the Site, the Tomago Sandbeds are located on the edge of low lying (about 2-3 m AHD) Holocene aged freshwater and alluvial and estuarine swamps deposits. These low-lying areas adjoining the Site are frequently waterlogged during high rainfall, due to increasing and shallow groundwater levels and a shallow groundwater gradient that slows the percolation of surface water. It is likely that the majority of accessible surface water onsite is an expression of groundwater, typically created through man made excavation.

The western portion of the southern and norther resources areas theoretically drain to the west, while the dominant surface drainage direction for most of the Site is to the east (i.e. Catchments 2 and 3 above). Here the landform drops from the edge of the resource area around 5 m AHD to the swamp or flats over a relatively short distance with the gradient reaching up to 16%. The swamp areas have a gradient of approximately 0.1% with the elevation falling 1.5 m over the 1100 m to the eastern boundary of the Subject Land with water conveyed by an open constructed channel (in middle of Catchment 3).

From the eastern boundary of the Site, drainage is directed via constructed channels through to Dawsons Drain and the northern extent of Fullerton Cove where the elevation drops 1 m over 1900 m (with an average gradient of 0.05%).

For the south eastern portion of the Project area, a portion of the resource area has the potential to drain south east across the Subject Land to a culvert beneath Cabbage Tree Road (Catchment 4). In this area the landform drops at about 14% to the swamp or flats that then appears to have a very slight gradient to the south eastern corner of the site (i.e. less than 0.5 m over at least 140 m). From this point the area drains via series of constructed channels through to the Ring Drain, a large constructed channel around the northern extent of Fullerton Cove over a distance of 590 m with an average gradient of less than 0.4%. Inspection of the site shows this culvert is only likely to flow during periods of extended rainfall and a high-water table.

Cabbage Tree Road has been built up during its construction, with shallow table drains constructed partially along the northern side of the road and deeper drains constructed partially

along the southern side. The nearest culvert is located at the eastern extent of the subject land, approximately 80 m beyond the proposed road construction area.

Following quarrying at the site the catchments will progressively change with Catchment 3 increasing in size with water from within the quarry footprint (currently draining west) directed south east into Catchment 3 (i.e. Catchment 1 will drain to Catchment 3). However, given the high permeabilities it is highly unlikely that any changes in flow would be realised across the site.

2.6.2 Groundwater

The Site is located on highly permeable Pleistocene Tomago Sandbeds (sand dunes). The source of the water within the Tomago Sandbeds is rainfall that lands directly on the sand surface. While a proportion of the rainfall is lost to plants and evaporation, sufficient water is stored in the sand to provide a viable and significant source of water for ongoing extraction. Over time rainfall landing on the sandbeds has washed out any remnants of sea salt leaving the deep sand system full of fresh water (Hunter Water website 15/08/2018).

A previous groundwater investigation was undertaken by RCA Australia (RCA Australia, 2015), groundwater was encountered on the Site ranging from 0.67 m below ground level (mbgl) to 15.65 mbgl. Groundwater when at its highest is visible at or near the surface for land below 3 m AHD. Groundwater at the Site has a low hydraulic gradient and was interpreted to flow in a general southerly to south-easterly direction, towards Fullerton Cove (RCA Australia, 2015) from Grahamstown Dam in the north toward Fullerton Cove in the south, the groundwater gradient within the local area is less than 0.2%.

The northern portion of the Site is located within the Hunter Water Special Area, owing to the presence of the Tomago Sandbeds and their use for a portion of the lower Hunter's drinking water supplies.

The Project area and extent of extraction has been designed such that sand extraction remains a minimum of 0.7 m above the highest predicted groundwater level, with the final landform to be established at no less than 1 m above the highest predicted groundwater level (about 2 m above the average level).

3. BACKGROUND MONITORING PROGRAM

3.1 SAMPLING PLAN

The SWMP required monthly sampling to be undertaken over a 12-month period to characterise background groundwater and surface water conditions throughout the site.

10 groundwater (BH1, BH2, BH4, BH6, BH7, BH8, BH9, BH10, BH11 and MW239S) and 4 surface water (SW1, SW2, SW3 and SW4) locations were sampled throughout the 12 monitoring rounds as outlined in **Figure 2**. The remaining site wells (BH3, BH12, MW239D and BH5) were used to provide additional groundwater elevation data.

Each monitoring event included sampling for:

- General water quality parameters: (Calcium (Ca), Magnesium (Mg), Sodium (Na), Potassium (K), pH, Electrical Conductivity (EC), Chloride (Cl), Sulphate (SO₄), Alkalinity, Hardness & Total Dissolved Solids (TDS) (Calc')),
- Total Recoverable Hydrocarbons (TRH),
- Total Petroleum Hydrocarbons (TPH),
- Benzene, Toluene, Ethylbenzene, Total Xylenes, Naphthalene (BTEXN),
- Metals (Arsenic (As), Boron (B), Barium (Ba), Beryllium (Be), Cadmium (Cd), Chromium (Cr), Cobalt (Co), Copper (Cu), Iron (Fe), Lead (Pb), Manganese (Mn), Mercury (Hg), Nickel (Ni), Selenium (Se), Vanadium (V), Zinc (Zn)); and
- PFAS including Perfluorooctane sulfonate (PFOS), Perfluorooctanoic acid (PFOA),
 Perfluorohexanesulfonate (PFHxS) & perfluorodecane sulfonic acid (PFDS).

The baseline sampling program also included an initial sampling round and quarterly monitoring where additional analysis was included for an extended water quality suite (including hardness, Nitrate, Nitrite, Ammonia, Reactive Phosphorous, Total Nitrogen and TKN). Some additional groundwater monitoring locations were also included in quarterly monitoring as identified in **Table 3.1.**

Table 3.1 2019-2020 Monitoring Schedule

Action		2019									2020	
	Feb*	Mar	Apr	May*	Jun	Jul	Aug	Sep*	Oct	Nov*	Dec	Jan
Monthly Gauging and groundwater sampling BH1, BH2, BH4, BH6, BH7, BH8, BH9 ¹ , BH10 ¹ , BH11, MW239s	✓	>	√	✓	>	√	√	✓	>	~	>	✓
Surface water sampling SW1, SW2 ¹ , SW3, SW4	✓	~	✓	✓	~	✓	√	√	~	>	>	✓

Action		2019									2020	
	Feb*	Mar	Apr	May*	Jun	Jul	Aug	Sep*	Oct	Nov*	Dec	Jan
Gauging only BH3, BH5, BH12, MW239D	√	✓	✓	✓	√	~	√	✓	✓	√	√	✓
Groundwater Sampling BH3 & BH5	√											

^{1:} Sample locations were dry

Following each monitoring round, a monthly factual letter report was prepared (see **Appendix A**). Each report presented:

- The field observations and field data;
- The results of the laboratory analysis;
- A comparison of the results against industry guidelines; and
- Rainfall data from the preceding month.

3.2 FIELD OBSERVATIONS

3.2.1 General

Surface water and groundwater monitoring was initiated in February 2019 and continued each month for a duration of 12 months until January 2020. Sampling times were generally consistent, undertaken each time within the middle of the month (between the 11th and 18th of the month). Within the first two monitoring rounds (February and March) re-insertion of PVC piping was required at fire effected location BH1 and for root bound effected location BH12. Site works, focussing on initial site infrastructure and access roads, began in October 2019 in preparation for the proposed quarry extraction works which are expected to initiate from early to mid 2020.

3.2.2 Monitoring Location Observations

Groundwater and surface water observations made during gauging and sampling at monitoring locations BH1, BH2, BH3 BH4, BH6, BH7, BH8, BH9, BH10, BH11, MW239S, SW1, SW2, SW3 and SW4 are summarised below. Conditions at each location were generally consistent throughout the monitoring period with the exception of surface water which provided intermittent periods of accessible water throughout the monitoring program.

Sensory observations of visual and olfactory quality were made on groundwater and surface water during sampling. A summary of these observations is presented in **Table 3.2** below.

^{*} Shaded months indicate quarterly sampling suite

Table 3.2 Monitoring locations: General observations

Location	General Observations
BH1	Generally, slightly cloudy brown with occasional sulfur odour. Well was reinstated in February 2019 following fire damage. The month following reinstatement an acrylic odour was detected which was most likely a bonding material used to fuse the PVC well piping together.
BH2 ¹	Mostly dark brown in colour with a silty material at the base of well. A slight sulfur odour was evident throughout the monitoring period.
ВН3	Prior to well decommissioning in September 2019 due to initial site works, observations of groundwater were identified as light brown with no odour. Well base contained fine silty material. No samples were taken following initial sampling round in February 2019.
BH4 ¹	Generally light brown in colour with slight sulfur odour.
BH5	Generally light brown with no apparent odour. No samples taken throughout the monitoring program, only gauging.
BH6 ²	Generally, light brown in colour with a slight sulfur odour.
BH7 ¹	Generally, light to moderately brown in colour with a slight sulfur odour.
BH8	Generally, brown to dark brown in colour with a moderate sulfur odour.
BH9 ¹	Well was dry for the duration of the baseline monitoring program.
BH10	Well was dry for the duration of the baseline monitoring program.
BH11 ²	Generally, cloudy light brown with a moderate sulfur odour.
BH12	Well was reinstated in March 2019 following inundation of roots into the well. A 40mm inner PVC pipe was installed. The months following reinstatement of a well an acrylic odour was detected which was most likely a bonding material used to fuse the PVC well piping together. No sample was taken.
MW239S ¹	Cloudy dark brown in colour with a moderate sulfur odour.
MW239D	Cloudy dark brown in colour with a moderate sulfur odour. No sample was taken.
SW01	Intermittent periods of pooling at monitoring location. Water is generally stained with natural tannins, dark brown with a slight sulfur odour.
SW02	Monitoring location was observed to be dry for the duration of the baseline monitoring program.
SW03	Water mostly clear with no apparent odour. Often water was stagnant and at times dry.
SW04	Water mostly clear with no apparent odour. Often water was stagnant and at times dry.

^{1 –} Down gradient monitoring location

3.2.3 Geochemical parameters and gauging data

Geochemical parameters and gauging data were recorded during the sampling program and are presented on field sheets in **Appendix A** and summarised as a maximum and minimum values in **Table 3.3.**

^{2 -} Upgradient control location

 Table 3.3
 Geochemical Parameters and Gauging Data (maximum and minimum values)

Monitoring Location		to Water) (Chart 1)	Temp (°C)		EC (µs/cm) (Chart 3)		pH (Chart 20)		Redox (mV)		
	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	
				Ground	water						
BH1	5.776	6.701	18.4	22.52	18	182	5.39	6.43	15.2	103	
BH2	5.083	6.153	18.3	24.49	48	136	4.29	6.41	88	308	
BH3 ¹	5.938	6.146	22	2.1	82	2.4	4.	54	S)4	
BH4	1.531	2.252	17.6	23.3	8	129.2	3.85	6.49	88	322	
BH5 ²	5.767	6.315	20).1	3	20	4.	06	122		
BH6	1.591	2.169	17.2	24.62	110	335	4.28	5.52	-144	178	
BH7	1.514	2.169	17.2	25	164	391	4.04	5.93	-228	179	
BH8	2.233	2.969	16.8	22.5	224	995	4.08	7.43	-341	176	
BH9	С	Dry	-			-		•		-	
BH10	Г	Dry		-	-		-		-		
BH11	3.02	3.962	16.9	22.65	124	402	3.78	6.41	-117	176	
BH12 ³	6.799	7.252		-		-				-	
MW239S	1.248	1.823	15.8	24.71	37	718	4.09	5.7	-132	179	
MW239D ³	1.226	1.799		•		-		•		-	
			;	Surface	Water						
SW1	Dry	0.290mm ⁴	9.52	23.75	811	1964	3.95	6.4	99	406	
SW2	Dry ^{3,4}			-		-	-		-		
SW3	Dry	0.290mm ⁴	11.96	26	290	470	4.27	6.41	-12.8	315	
SW4	Dry	0.350mm ⁴	8.07	18.46	313	538	3.69	6.44	116	430.5	

^{1 –} One sampling event (Feb 2019) and well decommissioned September 2019

3.3 GROUNDWATER AND SURFACE WATER ANALYSIS

3.3.1 Industry guidelines

In order to understand background surface and groundwater quality in relation to published data, laboratory results were compared against trigger values found in industry guidelines as outlined in the SWMP.

An exceedance of any adopted trigger value does not necessarily indicate that there is an unacceptable risk on site (CRC-CARE Technical Report 10: 2011), but rather identifies the need to explore the results in more detail. For this report we are reviewing natural background conditions and this comparison identifies the quality of the natural conditions indicative of this area.

^{2 -} One sampling event (Feb 2019)

^{3 –} No sampling undertaken

^{4 -} Surface water levels (mm) identified from measured stake at each location (When dry number is ground elevation AHD)

The following industry guidelines have been used:

- Australian and New Zealand Environment and Conservation Council (ANZECC) & Agriculture and Resource Management Council of Australia and New Zealand (ARMCANZ), Water Quality Guidelines for Fresh and Marine Water Quality 95% species protection for fresh water (ANZECC 2000);
- The Heads of Environmental Protection Authorities in Australia and New Zealand (HEPA)
 Per- and polyfluoroalkyl substances (PFAS) National Environmental Management Plan (NEMP 2018); and
- Australian Drinking Water Guidelines 6 (ADWG) (2011).

3.3.2 Summary of results

Summary tables outlining the analytical data obtained from the Baseline Monitoring Program, and a comparison against trigger values are provided within the **Tables** section at the rear of this report. **Table 3.4** below provides a summary of groundwater and surface water concentrations as a range (minimum to maximum) for all analytes across the Site.

An assessment of Kleinfelder's Quality Assurance and Quality Control (QA/QC) processes and procedures has been provided in **Section 6**. Laboratory Certificates of Analysis (COA) including laboratory QC reports are presented as Appendix A of the monthly reports, which have been provided as **Appendix B** of this document.

Table 3.4 Summary of groundwater and surface water concentration range

Analyte	Units	LOR	ANZECC (2000) 95% level of species protection freshwater	ADWG (2011)	Detected Concentration Range (Groundwater)	Detected Concentration Range (Surface Water)	Comparison against trigger values					
					BETXN	(Table A)						
Benzene	μg/L	1	950	1	<1.0	<1.0	Below LOR					
Toluene	μg/L	2	-	800	<2.0	<2.0	Below LOR					
Ethylbenzene	μg/L	2	-	300	<2.0	<2.0	Below LOR					
o Xylene	μg/L	2	350	350	<2.0	<2.0	Below LOR					
Total Xylenes	μg/L	2	-	600	<2.0	<2.0	Below LOR					
Naphthalene	μg/L	5	16	-	<5.0	<5.0	Below LOR					
	Total Petroleum Hydrocarbons – Silica Gel Clean up (Table A)											
Sum of C ₁₀ - C ₃₆	μg/L	50	•	-	<50-250	<50	No criteria					
			Tota	l Recovera	able Hydrocarbon	s – Silica Gel Cle	ean up (Table A)					
Sum of C ₁₀ - C ₄₀	μg/L	100	-	-	<100-280	<100	No criteria					
					Dissolved Me	etals (Table B)						
Arsenic	mg/L	0.001	0.013	0.01	<0.001-0.003	<0.001-0.006	Concentrations below trigger values					
Barium	mg/L	0.001	-	-	0.001-0.034	0.027-0.08	No criteria					
Beryllium	mg/L	0.001	-	0.06	<0.001	<0.001	Below LOR					
Boron	mg/L	0.05	0.37	4	<0.05-0.06	<0.05-0.14	Concentrations below trigger values					
Cadmium	mg/L	0.0001	0.0002	0.002	<0.0001	<0.0001- 0.0002	Concentrations below trigger values					
Chromium	mg/L	0.001	0.001	0.05	<0.001-0.004	<0.001-0.002	Elevated concentrations above trigger values (ANZECC 2000 trigger values) were detected at BH1 (entire monitoring period), BH2 (Dec 2019), BH3 (Feb 2019), BH7 (Feb, April, May, Jun, Jul, Aug, Sep, Oct, Nov, Dec 2019 & Jan 2020), BH8 (Sep, Nov, Dec 2019 & Jan 2020),					

Analyte	Units	LOR	ANZECC (2000) 95% level of species protection freshwater	ADWG (2011)	Detected Concentration Range (Groundwater)	Detected Concentration Range (Surface Water)	Comparison against trigger values
							BH11 (Feb, Apr, May, Jul, Aug, Oct, Nov, Dec 2019 & Jan 2020), MW239S (entire monitoring period) and SW3 (Dec 2019)
Cobalt	mg/L	0.001	-	-	<0.001-0.003	<0.001-0.017	No criteria
Copper	mg/L	0.001	0.0014	2	<0.001-0.051	<0.001-0.02	Elevated concentrations above trigger values (ANZECC 2000 trigger values) were detected at BH1 (Apr, Jul, Aug, Oct 2019 & Jan 2020), BH2 (Feb, Mar, Apr, Jun, Jul, Aug, Sep, Oct, Nov, Dec 2019 & Jan 2020), BH4 (Feb, Apr, Jun, Jul, Aug, Sep, Oct, Nov, Dec 2019 & Jan 2020), BH6 (Aug, Sep & Dec 2019), BH7 (Oct & Nov 2019), BH8 (Oct, Nov & Dec 2019), SW1 (Apr, May, Jun, Jul, Aug, Sep & Oct 2019), SW3 (Jul, Aug, Sep, Oct & Dec 2019), SW4 (Apr, Jun, Jul, Sep & Oct 2019)
Iron	mg/L	0.05	-	0.32	<0.05-12.5	0.57-9.26	Elevated concentrations above trigger values (ADWG) were detected at BH1 (entire monitoring period), BH2 (Oct 2019 & Jan 2020), BH4 (Apr & Oct 2019), BH5 (Feb 2019), BH6 (entire monitoring period), BH7 (entire monitoring period), BH8 (entire monitoring period), BH11 (Mar, Apr, May, Jun, Jul, Aug, Sep, Oct, Nov, Dec 2019 & Jan 2020), MW239S (entire sampling period), SW1 (entire monitoring period), SW3 (entire monitoring period)
Lead	mg/L	0.001	0.0034	0.01	<0.001-0.001	<0.001-0.001	Concentrations below trigger values
Manganese	mg/L	0.001	1.9	0.5	0.003-0.136	0.026-0.841	Elevated concentrations above trigger values (ADWG) were detected at SW1 (Apr, May, Jun, Jul and Sep 2019)
Mercury	mg/L	0.0001	0.0006	0.001	<0.0001	<0.0001	Concentrations below initial baseline criteria
Nickel	mg/L	0.001	0.011	0.02	<0.001-0.07	<0.001-0.02	Elevated concentrations above trigger values (ANZECC trigger values) were detected at BH2 (Feb 2019), BH4 (Feb 2019), BH7 (Sep & Nov 2019), BH8 (Nov 2019), SW1 (Apr, May & Sep 2019) and SW4 (Sep 2019). Elevated concentrations above trigger values (ADWG trigger values) were detected at BH3 (Feb 2019) and BH4 (Mar & May 2019)
Selenium	mg/L	0.01	0.011	0.01	<0.01	<0.01	Below LOR
		•					·

Analyte	Units	LOR	ANZECC (2000) 95% level of species protection freshwater	ADWG (2011)	Detected Concentration Range (Groundwater)	Detected Concentration Range (Surface Water)	Comparison against trigger values						
Vanadium	mg/L	0.01	-	-	<0.01	<0.01	Below LOR						
Zinc	mg/L	0.005	0.008	32	<0.005-1.27	<0.005-0.535	Elevated concentrations above initial trigger values (ANZECC 2000 trigger values) were detected at BH1 (entire monitoring period), BH2 (Nov 2019 & Jan 2020), BH4 (Feb, Mar, May, Oct 2019 & Jan 2020), BH6 (Feb, Mar, Apr, Sep & Nov 2019), BH7 (Feb, Mar, Apr, May, Sep, Oct & Nov 2019), BH8 (Oct, Nov 2019 & Jan 2020), BH11 (Feb, Mar, Apr, May, Sep & Oct 2019), MW239S (Sep, Oct & Nov 2019), SW1 (entire monitoring period), SW3 (Feb, Mar, Apr, May, Jun, Jul, Aug, Sep & Oct 2019), SW4 (Apr, May, Jun, Jul, Aug, Sep & Oct 2019)						
	PFAS (Table C)												
PFOS	μg/L	0.01	0.00023 ³	-	<0.01	<0.01-0.05	Concentrations reported above LOR at SW4 (16 Sep & 25 Sep 2019).						
PFOA	μg/L	0.02	19 ³ 5.6 ⁴	0.56	<0.02-0.02	<0.02	Concentrations below trigger values						
PFOS/PFHxS	μg/L	0.01	0.74	0.07	<0.01	<0.01-0.05	Concentrations below trigger values						
PFDS	μg/L		-	-	<0.02-0.02	<0.02	Concentrations below trigger values						
				Phy	sical and Chemic	al Stressors (Tab	ole D)						
рН	pH units	0.01	6.5-8.0 ¹ -	6.5-8.5 ²	4.37-6.29	4.0-6.21	pH values across the entire site for both surface water and groundwater were below ANZECC 2000 and ADWG acceptable range						
Sodium	mg/L	1	-	180 ²	6.0-67	32-142	Concentrations below trigger values						
Calcium	mg/L	1	-	-	<1.0-3.0	4.0-34	Concentrations below trigger values						
Magnesium	mg/L	1	-	-	<1.0-10	4.0-52	Concentrations below trigger values						
Potassium	mg/L	1	-	-	<1.0-2.0	<1.0-6.0	Concentrations below trigger values						
Sulphate	mg/L	1	-	250 ²	2.0-70	16-324	Elevated concentrations above trigger values (ADWG aesthetic) detected in April and May 2019 at SW1						
Chloride	mg/L	1	-	250 ²	16-127	53-234	Concentrations below trigger values						
Fluoride	mg/L	0.1	-	1.5	<0.1-0.2	<0.1-0.7	Concentrations below trigger values						

Analyte	Units	LOR	ANZECC (2000) 95% level of	ADWG (2011)	Detected Concentration	Detected Concentration	Comparison against trigger values
			species protection freshwater		Range (Groundwater)	Range (Surface Water)	
Reactive phosphorus as P	mg/L	0.01	0.02 ¹	-	<0.01-0.03	<0.01-0.01	Elevated concentrations above trigger values (ANZECC 2000 default trigger values) detected at BH1 in May 2019
Total Phosphorus	mg/L	0.01	0.05 ¹	-	<0.01-2.76	<0.01-0.13	Elevated concentrations above trigger values (ANZECC 2000) trigger values were detected at BH1 (Sep 2019), BH2 (Feb, Sept & Nov 2019), BH3 (Feb 2019), BH4 (Feb, May, Sept, Nov 2019), BH 5 (Feb 2019), BH6 (May, Sep & Nov 2019), BH7 (Feb, May & Sep 2019), BH8 (Feb, Sep & Nov 2019), BH11 (Sep & Nov 2019), MW239S (Feb, May, Sep & Nov 2019), SW1 (May 2019) and SW3 (Feb 2019).
Ammonia as N	mg/L	0.01	0.9	0.5 ²	<0.01-0.34	<0.01-0.16	Concentrations below trigger values
Total Nitrogen as N	mg/L	0.01	0.351	-	0.03-5.9	0.1-1.8	Elevated concentrations above trigger values (ANZECC 2000 trigger values) were detected at BH2 (Feb, May, Oct & Nov 2019), BH3 (Feb 2019), BH4 (Feb, May & Oct 2019), BH5 (Feb 2019), BH6 (Feb, May, Sep and Nov 2019), BH7 (Feb, May, Sep & Nov 2019), BH8 (Feb, May, Sep & Nov 2019), BH11 (Feb, May, Sep & Nov 2019), MW239S (Feb, May, Sep & Nov 2019), SW1 (May, Sep & Nov 2019) and SW3 (Feb & Nov 2019).
Total Cations	meq/L	0.01	-	-	0.39-3.57	2.23-10	No criteria
Total Anions	meq/L	0.01	-	-	0.54-6.61	2.18-11	No criteria
Total Alkalinity as CaCO3	mg/L	1	-	-	<1.0-24	<1.0-11	No criteria
Total Hardness as CaCO3	mg/L	1	-	200²	5.0-41	26-299	Elevated concentrations above trigger values (ADWG aesthetic) were detected at SW1 (Apr, May & Sep 2019).
Electrical Conductivity @ 25°C*	mg/L	1	125-2200	-	54-439	220-1090	Concentrations below trigger values

Analyte	Units	LOR	ANZECC (2000) 95% level of species protection freshwater	ADWG (2011)	Detected Concentration Range (Groundwater)	Detected Concentration Range (Surface Water)	Comparison against trigger values
Total Dissolved Solids	mg/L	1	-	600 ²	35-285	143-708	Elevated concentrations above trigger values (ADWG aesthetic) were detected at SW1 (May, Sep, Oct & Nov 2019).

^{1 –} Default trigger values for physical and chemical stressors, for slightly disturbed ecosystems in lowland rivers, Southeast Australia (value is for base flow and not storm event)

^{2 –} Aesthetic

^{3 –} HEPA NEMP 2018 99% level of protection in freshwater

^{4 –} HEPA NEMP 2018 Recreation Water

4. BASELINE WATER QUALITY ASSESSMENT

4.1 METALS

Elevated concentrations of chromium above trigger values (ANZECC 2000) were recorded at monitoring locations BH1, BH2, BH3, BH7, BH8, BH11, MW239S and SW3. Concentrations ranged from <0.001mg/L - 0.004 mg/L for groundwater and from <0.001 – 0.002 mg/L for surface water.

Elevated concentrations of copper above trigger values (ANZECC 2000) were recorded at monitoring locations BH1, BH2, BH4, BH6, BH7, BH8, BH11, MW239S, SW1, SW3 and SW4. Concentrations ranged from <0.001mg/L - 0.051 mg/L for groundwater and from <0.001 mg/L - 0.02 mg/L for surface water.

Elevated concentrations of iron above trigger values (ADWG) were recorded at all monitoring locations. Concentrations ranged from <0.05 mg/L – 12.5 mg/L for groundwater and from 0.57mg/L– 9.26 mg/L for surface water. Iron concentrations were particularly higher at location BH1.

Elevated concentrations of manganese above trigger values (ADWG) were recorded at monitoring location SW1. Concentrations ranged from <0.003 mg/L - 0.136 mg/L for groundwater and from 0.026 mg/L - 0.841 mg/L for surface water.

Elevated concentrations of nickel above trigger values (ANZECC 2000) were recorded at monitoring locations BH2, BH4, BH7, BH8, SW1, SW3 & SW4. Elevated concentrations of nickel above trigger values (ADWG) were recorded at monitoring locations BH3, BH4 and BH11. Concentrations ranged from <0.001 mg/L – 0.07 mg/L for groundwater and from <0.001mg/L– 0.02 mg/L for surface water.

Elevated concentrations of zinc above trigger values (ANZECC 2000) were recorded at monitoring locations BH1, BH2, BH4, BH6, BH7, BH8, BH11, MW239S, SW1, SW3 and SW4. Concentrations ranged from <0.005 mg/L - 1.27 mg/L for groundwater and from <0.005 mg/L - 0.535 mg/L for surface water.

4.2 PHYSICAL AND CHEMICAL STRESSORS

Elevated concentrations of sulphate above trigger values (ADWG aesthetic) were recorded at monitoring location SW1. Concentrations ranged from 2.0 mg/L - 7.0 mg/L for groundwater and from 16 mg/L - 324 mg/L for surface water.

An elevated concentration of reactive phosphorus above trigger values (ANZECC 2000) default trigger values was recorded at BH1. Concentrations ranged from<0.01 – 0.03 mg/L for groundwater and <0.01-0.13 mg/L for surface water.

Elevated concentrations of total phosphorus above trigger values (ANZECC 2000) were recorded at monitoring locations BH1 and BH2. Concentrations ranged from <0.01 mg/L -2.11 mg/L for groundwater and from 0.01 mg/L -0.13 mg/L for surface water.

Elevated concentrations of total nitrogen above trigger values (ANZECC 2000) were recorded at monitoring locations B2, BH3, BH4, BH5, BH6, BH7 BH8, BH11, MW239S, SW1 and SW3. Concentrations ranged from <0.01 mg/L - 2.11 mg/L for groundwater and from 0.01 mg/L - 0.13 mg/L for surface water

Elevated concentrations of Total Hardness as $CaCO_3$ above trigger values (ADWG aesthetic) were recorded at monitoring location SW1. Concentrations ranged from 5.0 mg/L – 41 mg/L for groundwater and from 26 mg/L – 299 mg/L for surface water.

Elevated concentrations of Total Dissolved Solids above trigger values (ADWG aesthetic) were recorded at monitoring location SW1. Concentrations ranged from 35 mg/L - 285 mg/L for groundwater and from 143 mg/L - 708 mg/L for surface water.

Concentrations of pH were below/outside the trigger value range at all monitoring locations. Concentrations ranged from 4.37–6.29 for groundwater and from 4.0–6.21 for surface water.

4.3 TPH, TRH AND BTEXN

No hydrocarbon exceedances above adopted criteria were recorded throughout the 12-month monitoring program. Detections were recorded at locations BH1 and BH4. Detections of hydrocarbons at BH1 can be attributed to an acrylic adhesive used for the reinstatement of the above ground section of the well. Detections of hydrocarbons at BH4 followed in close succession with rainfall recorded in the region. BH4 is located adjacent to Cabbage Tree Road and detected concentrations may be attributed to roadway runoff.

4.4 PFAS

One detection of PFOS above adopted aquatic criteria (LOR) protection was recorded at SW4 (0.03 μ g/L) and subsequently identified again (0.05 μ g/L) during follow-up sampling one week later. Further detections above LOR were identified at BH4 (PFDS -0.02 μ g/L) and BH6 (6:2 FTS – 0.19 μ g/L). Detections of PFAS at SW4 followed on from recent rainfall in the area which may have contributed to groundwater migration from surrounding known sources (i.e.

Williamtown RAAF Base). Kleinfelder would expect local groundwater to exceed the aquatic criteria given the scale of PFAS reported in groundwater within the Red Zone.

4.5 TREND ANALYSIS

A description of the trends observed throughout the 12-month monitoring period are provided in the sections below and graphical representations are located in the **Chart** section at the rear of this report.

4.5.1 Rainfall

Rainfall for the site was generally well below the mean average (1942-present) for the locality (BOM Williamtown RAAF 61078) over the 12-month monitoring period. Rainfall exceedances above the mean were recorded in March, June, August and September 2019 with the remainder of months experiencing significantly lower rainfall than would normally be expected. The total rainfall recorded over the 12-month monitoring program was 731.8mm which is 486.4mm less than the yearly mean total of 1218.2mm. **Chart 1** provides a graphical representation of rainfall totals for each month.

4.5.2 Groundwater Elevation

Groundwater throughout the sampling locations demonstrated a general decline in elevations throughout the 12-month period. Most notably the greatest decline in groundwater elevations was observed in the months following the November 2019 water monitoring event which correlate directly with a significant decrease in rainfall from the mean average and increase in temperatures. **Chart 2** provides a graphical representation of groundwater elevation identified following gauging throughout the 12-month monitoring period.

4.5.3 Mann Kendall Analysis

Where sufficient data is available, statistical trend analysis using the Mann-Kendall Trend Test has been undertaken for selected analytes at EPL and SWMP monitoring points to determine if obvious trends were apparent in the dataset (**Table 4.1** and **Table 4.2**). The purpose of the Mann-Kendall Test (Mann 1945, Kendall 1975, Gilbert 1987) is to statistically assess if there is a monotonic upward or downward trend of the variable of interest over time. A monotonic upward (downward) trend means that the variable consistently increases (decreases) through time, but the trend may or may not be linear.

MKA relies on three statistical metrics including:

• The 'S' Statistic: Indicates whether concentration trend vs. time is generally decreasing (negative S value) or increasing (positive S value).

- The Confidence Factor (CF): The CF value modifies the S Statistic calculation to indicate the degree of confidence in the trend result, as in 'Decreasing" vs. "Probably Decreasing" or "Increasing" vs. "Probably Increasing." Additionally, if the confidence factor is quite low, due either to considerable variability in concentrations vs. time or little change in concentrations vs. time, the CF is used to apply a preliminary "No Trend" classification, pending consideration of the COV.
- The Coefficient of Variation (COV): The COV is used to distinguish between a "No Trend" result (significant scatter in concentration trend vs. time) and a "Stable" result (limited variability in concentration vs. time) for datasets with no significant increasing or decreasing trend (e.g. low CF).

Where an analyte has recorded a non-detect following laboratory analysis half of the value of detection (LOR) has been applied.

Table 4.1 Mann-Kendall analysis for metal

Site	Manua Kanalali Anabada				Meta	ls		
ID	Mann-Kendall Analysis	Barium	Chromium	Copper	Iron	Manganese	Nickel	Zinc
	Coefficient of Variation	0.47	0.24	0.93	0.31	0.25	0.67	1.91
BH1	Mann-Kendall Statistic (S)	-3	-12	11	-15	-16	-2	-33
亩	Confidence Factor	56.0%	79.9%	77.7%	85.9%	87.5%	53.0%	99.5%
	Concentration Trend	Stable	Stable	No Trend	Stable	Stable	Stable	Decreasing
	Coefficient of Variation	0.20	0.69	0.62	1.05	0.27	1.77	1.15
BH2	Mann-Kendall Statistic (S)	-9	9	29	16	-26	-8	24
苗	Confidence Factor	70.4%	70.4%	97.4%	87.5	95.7%	68.1%	94.2%
	Concentration Trend	Stable	No Trend	Increasing	No Trend	Decreasing	No Trend	Prob. Increasing
	Coefficient of Variation	0.10	0.27	1.15	0.90	1.11	1.38	1.02
BH4	Mann-Kendall Statistic (S)	-26	9	13	2	-16	-31	-25
亩	Confidence Factor	95.7%	70.4%	79.0%	59.2%	84.5%	98.1%	95.0%
	Concentration Trend	Decreasing	No Trend	No Trend	No Trend	No Trend	Decreasing	Prob. Decreasing
	Coefficient of Variation	0.09	0.27	1.37	0.29	0.20	1.54	1.27
ВН6	Mann-Kendall Statistic (S)	-6	9	10	-2	-19	9	-12
亩	Confidence Factor	63.1%	70.4%	72.7%	52.7%	88.9%	70.4%	77.0%
	Concentration Trend	Stable	No Trend	No Trend	Stable	Stable	No Trend	No Trend
	Coefficient of Variation	0.45	0.15	1.56	0.28	0.38	0.92	1.37
BH7	Mann-Kendall Statistic (S)	18	9	7	-49	-43	-14	-6
亩	Confidence Factor	87.5%	70.4%	65.6%	>99.9%	99.9%	81.0%	63.1%
	Concentration Trend	No Trend	No Trend	No Trend	Decreasing	Decreasing	Stable	No Trend
	Coefficient of Variation	0.23	0.37	0.90	0.24	0.36	1.10	1.70
BH8	Mann-Kendall Statistic (S)	-8	30	23	-26	9	2	20
	Confidence Factor	68.1%	97.8%	93.3%	95.7%	70.4%	52.7%	90.2%

Site	Mann-Kendall Analysis				Meta	ls		
ID	Maiiii-Reiluali Alialysis	Barium	Chromium	Copper	Iron	Manganese	Nickel	Zinc
	Concentration Trend	Stable	Increasing	Prob. Increasing	Decreasing	No Trend	No Trend	Prob. Increasing
	Coefficient of Variation	0.35	0.26	1.10	0.35	0.28	1.9	0.87
_	Mann-Kendall Statistic (S)	-24	9	16	7	23	-28	-32
BH11	Confidence Factor	94.2%	70.4%	84.5%	65.6%	93.3%	96.9%	98.4%
	Concentration Trend	Prob. Decreasing	No Trend	No Trend	No Trend	Prob. Increasing	Decreasing	Decreasing
	Coefficient of Variation	0.25	0.14	0.41	0.20	0.24	0.78	1.10
MW239S	Mann-Kendall Statistic (S)	11	9	-1	5	6	5	5
MW	Confidence Factor	74.9%	70.4%	50.0%	60.6	63.1%	60.6%	60.6%
	Concentration Trend	No Trend	No Trend	Stable	No Trend	No Trend	No Trend	No Trend
	Coefficient of Variation	0.27	0.37	0.77	0.67	0.27	0.858	0.88
SW1	Mann-Kendall Statistic (S)	5	10	7	-20	-26	-19	-16
S	Confidence Factor	68.3%	86.2%	80.9%	99.3%	100.0%	98.9	96.9%
	Concentration Trend	No Trend	No Trend	No Trend	Decreasing	Decreasing	Decreasing	Decreasing
	Coefficient of Variation	0.37	0.64	1.48	0.95	0.21	1.07	1.20
SW3	Mann-Kendall Statistic (S)	-23	18	8	-25	-34	-9	-3
SV	Confidence Factor	95.7%	90.5%	89.8%	97.0%	99.6%	83.2%	56.0%
	Concentration Trend	Decreasing	Prob. Increasing	No Trend	Decreasing	Decreasing	No Trend	No Trend
	Coefficient of Variation	0.17	0.00	1.3	1.18	0.13	1.06	1.08
SW4	Mann-Kendall Statistic (S)	-20	0	2.0	-8	-3	-9	-11
S	Confidence Factor	99.3%	45.2%	57.0%	80.1%	59.4%	83.2%	88.7%
	Concentration Trend	Decreasing	Stable	No Trend	No Trend	Stable	No Trend	No Trend

Table 4.2 Mann-Kendall analysis for anions, cations alkalinity and inorganics

			An	ions and Cat	ions		Alkali	nity		Inorganics	
Site ID	Mann-Kendall Analysis	Sodium	Calcium	Magnesium	Sulphate	Chloride	Total Alkalinity as CaCO3	Total Hardness as CaCO3	EC	TDS	Hd
	Coefficient of Variation	0.14	0.68	0.22	0.46	0.08	0.48	0.16	0.12	0.12	0.05
	Mann-Kendall Statistic (S)	24	-19	19	3	-17	22	-5	14	14	11
BH1	Confidence Factor	96.4%	91.8%	91.8%	56.0%	89.1%	94.9%	61.9%	84.0%	84.0%	77.7%
	Concentration Trend	Increasing	Prob. Decreasing	Prob. Increasing	No Trend	Stable	Prob. Increasing	Stable	No Trend	No Trend	No Trend
	Coefficient of Variation	0.10	0.27	0.15	0.54	0.11	1.48	0.13	0.11	0.29	0.06
오	Mann-Kendall Statistic (S)	17	-5	-7	-2	-46	21	-13	30	10	34
BH2	Confidence Factor	86.0%	60.6%	65.6%	52.7%	100.0%	91.3%	79.0%	97.8%	72.7%	99.0%
	Concentration Trend	No Trend	Stable	Stable	Stable	Decreasing	Prob. Increasing	Stable	Increasing	No Trend	Increasing
	Coefficient of Variation	0.19	0.30	0.41	0.75	0.06	1.27	0.30	0.14	0.27	0.05
BH4	Mann-Kendall Statistic (S)	28	-18	19	14	-9	8	5	33	16	4
B	Confidence Factor	96.9%	87.5%	89.9%	81.0%	70.4%	68.1%	60.6%	98.7%	84.5%	58.0%
	Concentration Trend	Increasing	Stable	No Trend	No Trend	Stable	No Trend	No Trend	Increasing	No Trend	No Trend
	Coefficient of Variation	0.11	0.21	0.12	0.21	0.10	1.29	0.10	0.12	0.13	0.07
	Mann-Kendall Statistic (S)	23	-2	-11	-19	16	19	-15	42	27	36
BH6	Confidence Factor	93.3%	52.7%	74.9%	88.9%	84.5	88.9%	82.8%	99.8%	96.3%	99.3%
	Concentration Trend	Prob. Increasing	Stable	Stable	Stable	No Trend	No Trend	Stable	Increasing	Increasing	Increasing
	Coefficient of Variation	0.12	0.00	0.15	0.14	0.14	1.31	0.16	0.10	0.13	0.05
BH7	Mann-Kendall Statistic (S)	-36	0	-20	-4	-35	20	-20	-8	-21	42
	Confidence Factor	99.3%	47.3%	90.2%	58.0%	99.2%	90.2%	90.2%	68.1%	91.3%	99.8%

	Γ	F									
			Ar	nions and Cat	ions		Alkalinity			Inorganics	
Site ID	Mann-Kendall Analysis	Sodium	Calcium	Magnesium	Sulphate	Chloride	Total Alkalinity as CaCO3	Total Hardness as CaCO3	EC	TDS	Н
	Concentration Trend	Decreasing	Stable	Prob. Decreasing	Stable	Decreasing	Prob. Increasing	Prob. Decreasing	Stable	Prob. Decreasing	Increasing
	Coefficient of Variation	0.08	0.00	0.27	1.49	0.18	1.55	0.29	0.09	0.12	0.05
BH8	Mann-Kendall Statistic (S)	-1	0	-29	2	-18	18	-29	4	2	51
苗	Confidence Factor	50.0%	47.3%	97.4%	52.7%	87.5%	87.5%	97.4%%	58.0%	52.7%	>99.9%
	Concentration Trend	Stable	Stable	Decreasing	No Trend	Stable	No Trend	Decreasing	No Trend	No Trend	Increasing
	Coefficient of Variation	0.27	0.00	0.56	1.52	0.20	0.78	0.58	0.28	0.36	0.03
_	Mann-Kendall Statistic (S)	-26	0	-14	-23	-34	20	-14	-4	-5	28
BH11	Confidence Factor	95.7%	47.3%	81.0%	93.3%	99.0%	90.2%	81.0%	58.0%	60.6%	96.9%
	Concentration Trend	Decreasing	Stable	Stable	Prob. Decreasing	Decreasing	Prob. Increasing	Stable	Stable	Stable	Increasing
	Coefficient of Variation	0.10	0.00	0.12	0.43	0.18	1.33	0.12	0.12	0.12	0.04
S68	Mann-Kendall Statistic (S)	22	0	19	-3	11	7	19	46	40	-11
MW239S	Confidence Factor	92.4%	47.3%	88.9%	55.4%	74.9%	65.6%	88.9%	100.0%	99.7%	74.9%
	Concentration Trend	Prob. Increasing	Stable	No Trend	Stable	No Trend	No Trend	No Trend	Increasing	Increasing	Stable
	Coefficient of Variation	0.21	0.29	0.20	0.30	0.33	0.00	0.22	0.12	0.12	0.09
_	Mann-Kendall Statistic (S)	20	-21	-20	-14	25	0	-20	10	10	10
SW1	Confidence Factor	99.3%	99.6%	99.3%	'94.6%	100.0%	45.2%	99.3%	86.2%	86.2%	86.2%
	Concentration Trend	Increasing	Decreasing	Decreasing	Prob. Decreasing	Increasing	Stable	Decreasing	No Trend	No Trend	No Trend

									$\overline{}$		
			Ar	nions and Cat	ions		Alkali	nity	Inorganics		
Site ID	Mann-Kendall Analysis	Sodium	Calcium	Magnesium	Sulphate	Chloride	Total Alkalinity as CaCO3	Total Hardness as CaCO3	EC	TDS	Н
	Coefficient of Variation	0.11	0.24	0.32	0.52	0.14	1.47	0.25	0.21	0.19	0.12
	Mann-Kendall Statistic (S)	-2	-14	18	-4	2	-14	3	17	5	-12
SW3	Confidence Factor	53.0%	84.0%	90.5%	59.0%	53.0%	84.0%	56.0%	89.1%	61.9%	79.9%
	Concentration Trend	Stable	Stable	Prob. Increasing	Stable	No Trend	No Trend	No Trend	No Trend	No Trend	Stable
	Coefficient of Variation	0.06	0.19	0.14	0.23	0.06	0.00	0.16	0.08	0.08	0.04
SW4	Mann-Kendall Statistic (S)	8	1	5	-7	-5	0	0	10	10	21
SV	Confidence Factor	80.1%	50.0%	68.3%	76.4%	68.3%	45.2%	45.2%	86.2%	86.2%	99.6%
	Concentration Trend	No Trend	No Trend	No Trend	Stable	Stable	Stable	Stable	No Trend	No Trend	Increasing

Table 4.1 and **Table 4.2** provide trend analysis on sampling locations for a number of chemicals, primarily those identified in the EPL as requiring analysis. The trend analysis identifies if the chemical is stable, increasing or decreasing in concentration. This will be useful in future monitoring should a sample be found to be above the adopted trigger value, triggering further assessment.

The majority of the chemicals were found to be stable or no trend was identified. This is typically expected for background monitoring. A number of monitoring locations have identified decreasing trends (i.e. Barium is decreasing in BH4, BH11, SW3 and SW4 and Manganese is decreasing in BH2, BH7, SW1 and SW3). Only a few locations were found to be have an increasing trend (Copper in BH2, Chromium in BH8). Throughout the 12-month sampling period NSW was undergoing one of the worst drought periods on record. Changing concentrations of some chemicals may be due to natural fluctuations in in the water (especially following a rainfall event) and/or could be due to the drought conditions. Should this be the case then when periods of heavy rainfall occur it is likely that changes in chemical concentrations may also occur.

5. SITE SPECIFIC ASSESSMENT CRITERIA

5.1 SWMP & EMP REQUIREMENTS

As identified in **Section 1.1**Error! Reference source not found. and **1.2** the SWMP requires that surface and groundwater monitoring is to continue as identified in **Section 1.2**. However, it also states that the following monitoring parameters will be reviewed:

- Location of sampling points, e.g. more suitable / representative location identified, or sampling location has insufficient water to accurately monitor development.
- The frequency of the sampling may be reduced, or increased, depending on the fluctuations in the results.
- The parameters may be adjusted to remove superfluous analytes and/or add additional analytes.

Therefore, this section presents a review of the parameters identified and makes recommendations for the ongoing monitoring program. It is noted that any proposed changes must be approved by the Department's Secretary (or delegate) and must also be updated in the SWMP.

5.2 EPL REQUIREMENTS

The sites EPL minimum requirements for the monitoring of groundwater are outlined in **Table 5.1** below.

Table 5.1 EPA Site water monitoring requirements (EPL21264)

Pollutant	Unit of measure	Frequency	Sampling Method	Sample location
Arsenic	mg/L	Monthly	Grab Sample	BH2, BH4, BH6, BH7, BH9, BH11 & MW239S
Conductivity	mS/cm	Monthly	Grab Sample	BH2, BH4, BH6, BH7, BH9, BH11 & MW239S
Depth	М	Monthly	Grab Sample	BH2, BH4, BH6, BH7, BH9, BH11 & MW239S
Iron	mg/L	Monthly	Grab Sample	BH2, BH4, BH6, BH7, BH9, BH11 & MW239S
Manganese	mg/L	Monthly	Grab Sample	BH2, BH4, BH6, BH7, BH9, BH11 & MW239S
рН	рН	Monthly	Grab Sample	BH2, BH4, BH6, BH7, BH9, BH11 & MW239S
Turbidity	Nephelometric Turbidity Units (NTU)	Monthly	Grab Sample	BH2, BH4, BH6, BH7, BH9, BH11 & MW239S

5.3 ANALYTICAL PARAMETERS

This section provides details on the recommended analytical suite for ongoing monitoring (note this is in addition to the requirements of the EPL).

5.3.1 **Metals**

Beryllium, Cadmium, Mercury, Selenium, Vanadium were all identified to be below the laboratory LOR throughout the 12-month sampling period. The operations across the Site are not considered likely to introduce sources of these metals and therefore it is not considered necessary to continue to monitor for these metals. Analysis for lead identified only four samples out of 124 to be above the LOR and these were reported at the LOR. Analysis for Cadmium identified only 3 samples at SW1 to be at or marginally above the LOR. It is recommended that Lead and Cadmium also be removed from the monitoring programme.

Concentrations of Boron were identified to be present above the LOR in 7 samples. However, the exception is SW1 where all samples taken had concentrations above LOR. Cobalt was found to be above LOR in one sample with the exception of surface water and in BH7. There are no trigger values presented in the ANZECC 2000 guidelines. It is considered unlikely that the quarrying operations would introduce Boron and Cobalt into the environment at significant concentrations and therefore it is recommended that Boron and Cobalt not be analysed in groundwater. However, due to the presence of Boron in SW1 and Cobalt in the surface water, both Boron and Cobalt should continue to be monitored in surface water. Should future surface water monitoring identify an increase in Boron or Cobalt concentrations, then consideration should be given to adding these to the groundwater analytical suite.

It is recommended that 8 Metals continue to be analysed in groundwater and surface water:

- Arsenic (this is required by the EPL);
- Barium (all samples were above LOR, there is no ANZECC criteria for Barium);
- Chromium (samples were found to be above LOR and some samples were found to be above the ANZECC trigger criteria);
- Copper (samples were found to be above LOR and some samples were found to be above the ANZECC trigger criteria);
- Iron (this is required by the EPL);
- Manganese (this is required by the EPL);
- Nickel (samples were found to be above LOR and some samples were found to be above the ANZECC trigger criteria); and
- Zinc (samples were found to be above LOR and some samples were found to be above the ANZECC trigger criteria).

An additional two metals (Boron and Cobalt) should also be analysed in surface water.

5.3.2 Nutrients

Concentrations of Total Phosphorous and Total Nitrogen were found to be elevated above ANZECC 2000 Trigger Values for a low land river in south-east Australia in a number of sampling locations on multiple occasions.

Concentrations of Ammonia were also identified to be present above LOR, however, concentrations were all recorded below the ANZECC 2000 Trigger Values and aesthetic ADWG values.

It is therefore considered appropriate to maintain sampling to identify potential significant changes in concentrations that would impact the local environment.

5.3.3 Hydrocarbons

With the exception of 4 samples, all concentrations were found to be below the LOR. However, the quarry operations plan to store diesel fuel on site for the operational plant. The site will also have a maintenance workshop where oils, greases, lubricants and cleaning agents (degreasers) will be stored and used on site. It is therefore necessary to continue to monitor for hydrocarbons.

It is recommended that TRH continues to be monitored. Should the TRH identify concentrations of C_6 to C_{10} then this should trigger further analysis of BTEXN. Likewise, should concentrations of C_{16} to C_{40} be identified then this should trigger the analysis of PAH.

5.3.4 **PFAS**

The majority of results were identified to be below the LOR. However, due to the sensitive nature of PFAS and the location of the site being on the edge of the Williamtown Red Zone, PFAS monitoring should continue.

5.4 LOCATIONS

BH2, BH4, BH6, BH7, BH9, BH11 and MW239S are required to be monitored on a monthly basis as part of the EPL requirements. It is noted that MW9 has been dry consistently through the background monitoring period.

In addition to the above it is recommended that BH8 also be monitored.

5.5 SCHEDULE

Monthly monitoring is required by the EPL. It is not recommended that additional monitoring be undertaken above this every month.

It is recommended that quarterly monitoring be undertaken to include:

- 8 metals (as identified above);
- TRH;
- PFAS:
- Nutrients (Total Phosphorus, Total Nitrogen and Ammonia as N); and
- and the inclusion of sampling BH8.

As part of the quarterly monitoring, all available wells should be gauged for groundwater depths and observed for monitoring well condition.

In order to review and confirm the continued relevance of the outcome of this summary document and proposed analytical program, an annual monitoring event should be undertaken including all analytes and locations sampled as part of the background monitoring.

Additional analysis may be required should there be a recorded spill event or other potential pollution incident.

5.6 SUMMARY OF PROPOSED SAMPLING

Table 5.2 provides a summary of the proposed ongoing operational monitoring schedule for the site. **Table 5.3** provides a summary of the proposed testing schedule for the different monitoring events.

Table 5.2 Proposed operational monitoring schedule

Location	Monthly	Quarterly	Annually
BH2, BH4, BH6, BH7, BH9, BH11 and MW239S	✓	✓	√
BH8 SW1, SW2, SW3, SW4		√	✓
BH1, BH5, BH12			✓

Table 5.3 Proposed testing schedule

Monthly	Quarterly	Annually
 Conductivity; pH; Depth; Turbidity; Arsenic; Iron; and Manganese. 	 Gauging all available wells; Conductivity; pH; Depth; Turbidity; Nutrients (Total Phosphorus, Total Nitrogen and Ammonia as N); 8 metals (As, Ba, Cr, Cu, Fe, Mg, Ni and Zn); Additional 2 metals (B and Co) for surface water; TRH; and PFAS. 	 Gauging all available wells; Conductivity; pH; Depth; General water quality parameters (Ca, Mg, Na, K, pH, EC, Cl, SO₄, Alkalinity, Hardness & TDS); Nutrients (Total Phosphorus, Total Nitrogen and Ammonia as N); Turbidity; Metals (As, B, Ba, Be, Cd, Cr, Co, Cu, Fe, Pb, Mn, Hg, Ni, Se, V, Zn); TRH and BTEXN; and PFAS.

5.7 SITE SPECIFIC TRIGGER VALUES

As discussed in **Section 1.3** one of the objectives of this report is to establish Site specific trigger values to be used for long-term monitoring during the operation of the sand quarry. An exceedance of a trigger value does not necessarily indicate that there is an unacceptable risk on site, but rather a trigger for further investigation or evaluation of management options (CRC-CARE Technical Report 10: 2011). **Section 5.8** provides details on the proposed action response should a trigger value be exceeded.

The baseline groundwater and surface water assessment criteria adopted for future quarry extraction works for locations to be monitored under the Sites EPL, and defined in the SWMP, are summarised below. Nationally accepted water quality guidelines; ANZECC (2000) Australian and New Zealand Water Quality Guidelines for Fresh and Marine Waters, 95% species Protection for freshwater, HEPA NEMP (2018) PFAS National Environmental Management Plan and ADWG (2011) Australian Drinking Water Guidelines 6, have been considered in developing site specific trigger values.

Table 5.4 and **Table 5.5** presents the proposed trigger values for groundwater and surface water respectively along with a justification for selecting that value. The trigger values are to be applied to the sample locations monitored monthly and quarterly. Locations monitored as part of the annual monitoring should be compared against currently available data for that location only as they have not been considered when developing the trigger values.

Table 5.4 Site specific trigger values for Groundwater

Analyte	Units	Adopted Site specific trigger value	Location	Justification				
	Inorganics							
рН	pH units	4 - 7	Site wide	The lowest pH value recorded was 4.37 (noting 4.0 in surface water). It is feasible that pH values could continue to be low. The highest pH value recorded was 6.21 indicating a generally acidic environment. It is therefore unlikely the pH would exceed 7.				
Total Phosphorus	mg/L	2	Site wide	The majority of baseline results were found to be elevated above the ANZECC 2000 trigger values for a Lowland river in South-east Australia. It is therefore not considered appropriate to use this criterion. The majority of baseline sample results were less than 2mg/L, however it is noted that the highest value recorded was 2.76mg/L at BH3 (noting one sample event and the well is no longer operational) and 2.11mg/L in BH11. The third highest concentration of 1.97mg/L was located at BH8. The sample locations identified represent a large cross section of the Site therefore represent the likely range that could be expected at the Site.				
Ammonia as N	mg/L	0.5	Site wide	The detected range of <0.01-0.34mg/L was not found to be elevated above the ANZECC 2000 and ADWG. Based on the results obtained it is considered that adopting the 0.5mg/L ADWG provides a conservative value for a trigger response. It is noted that the ANZECC criteria is 0.9mg/L.				
Total Nitrogen as N	mg/L	3	Site wide	Results from the majority of locations were generally found to be elevated above the ANZECC 2000 trigger values, with the exception of BH1 where concentrations were recorded to be marginally lower than the initial criteria. The highest concentrations were recorded in BH11 (considered to be up hydraulic gradient of the Site) and BH2 located centrally on Site. Concentrations as high as 2.2mg/L (in BH7) were identified at locations down/ cross hydraulic gradient of the Site. It is evident that concentrations of Nitrogen can be found naturally across the Site and can be varied over time. Concentrations of Total Nitrogen are not expected to be elevated above the highest recorded value of 5.9mg/L. However, to maintain a level of conservatism a trigger value of 3mg/L (half the highest concentration) has been adopted understanding that four previous samples exceeded this value. Elevated concentrations above the adopted trigger value is a requirement to look at the concentration with more detail to determine if it is in line with previous sampling results or considered to be an outlier potentially presenting a significant increase.				
Electrical Conductivity @ 25°C*	μc/cm	125-2200	Site wide	Concentrations across the Site were identified to vary considerably. However, no concentration was found to be elevated above 2200 µc/cm. Trigger criteria has been taken from ANZECC 2000 for a lowland river is south-eastern Australia and is considered appropriate.				

Analyte	Units	Adopted Site specific trigger value	Location	Justification		
Turbidity	NTU	6-50	Site wide	Criteria taken from ANZECC 2000 for a lowland river is south-eastern Australia.		
				Dissolved Metals		
Arsenic	mg/L	0.003	Site wide	Arsenic was not detected within the majority of groundwater locations with the exception of BH8 recording a maximum concentration of 0.003 mg/L. The adopted trigger value has been taken as the maximum value obtained throughout the baseline monitoring period.		
Barium	mg/L	0.035	Site wide	All results for Barium were found to be above the LOR. The highest concentration recorded was 0.034mg/L in BH6 (considered to be up/ cross hydraulic gradient of the Site). The adopted trigger value has been taken to be one significant figure above the highest concentration.		
Chromium	mg/L	0.004	Site wide	All locations recoded concentrations of chromium at or marginally above LOR. Exceedances above initial baseline criteria (ANZECC 2000) were recorded at most locations with the exception of BH4 & BH6. The adopted trigger value has been taken as the maximum value obtained throughout the baseline monitoring period.		
				0.013	Site wide (except BH4)	Detections of copper concentrations above LOR were recorded at all locations. The adopted trigger value has been taken as the maximum value obtained throughout the baseline monitoring period.
Copper	mg/L	0.051	BH4	Concentration range for copper at location BH4 was generally greater than other locations. It is feasible that stormwater runoff from the adjacent Cabbage Tree Road may impact this borehole. Therefore, a higher specific trigger value has been adopted which is the highest concentration identified during the baseline monitoring.		
Iron	4.1 Northern Half (BH6, BH7, BH8, BH11 and MW239S),		(BH6, BH7, BH8, BH11	The Site can be divided into a northern section and southern section with an access road between the two sections (between BH2 and SW2). The north and south areas are divided by surface water (where SW2 and SW3 are located). Upon review of the groundwater data from the baseline monitoring it appears that there are greater concentrations of iron in the northern area than the southern area. Two separate criteria have been developed based on this. The highest concentration identified during the baseline monitoring for this area has been adopted as the Trigger Value.		
	1	1	Southern half (BH2, BH4, BH9)	The highest concentration identified during the baseline monitoring for this area has been adopted as the Trigger Value.		

Analyte	Units	Adopted Site specific trigger value	Location	Justification
				BH1, BH5, BH12 are only proposed to be sampled during the annual monitoring round. When assessing these wells, concentrations will be assessed against previous criteria for those locations.
Manganese	mg/L	0.136	Site wide	A similar range of results were identified across all locations. BH4 recorded the highest value of Manganese (0.136mg/L) across the Site. The highest concentration identified during the baseline monitoring has been adopted as the Trigger Value. It is noted that the ANZECC 2000 criteria is 1.9mg/L.
		0.037	BH11	BH11 is located to the north of the Site and is considered to be in an up hydraulic gradient location. The highest concentration identified in BH11 was 0.037mg/L. This has been adopted as the trigger value for this location.
Nickel	mg/L	0.022	Site wide (excluding BH11)	With the exception of BH6 and MW239S, at least one concentration from each monitoring location throughout the baseline monitoring was found to be elevated above than the ANZECC 2000 trigger values. Generally, concentrations of Nickel are similar across the Site (with the exception of BH11). Therefore, the highest recorded value from the baseline monitoring round has been adopted as the trigger value.
Zinc	mg/L	0.085	Site wide	At least one concentration from each monitoring location throughout the baseline monitoring was found to be elevated above than the ANZECC 2000 trigger values. Generally, concentrations of Zinc are similar across the Site. Therefore, the highest recorded value from the baseline monitoring round has been adopted as the trigger value. Noting that BH1 is not proposed to be sampled until the annual monitoring round where the results
				should be assessed against previous results from that location only.
				TRH
TRH C ₆ – C ₁₀	μg/L	20	Site wide	Concentrations of TRH were identified to be below the LOR for the majority of the baseline
C ₆ - C ₁₀ minus BTEX (F1)	μg/L	20	Site wide	monitoring. The exceptions were following well maintenance work or were observed in BH4 following a high rainfall event. It is feasible that stormwater runoff from the adjacent Cabbage Tree Road may locally impact BH4.
TRH C ₁₀ – C ₁₆	μg/L	100	Site wide	Based on the understanding of the above, generally TRH is not identified within the groundwater
TRH C ₁₀ - C ₁₆ minus N (F2)	μg/L	100	Site wide	across the Site. The Laboratory LOR has therefore been adopted as a trigger value.
TRH C ₁₆ – C ₃₄	μg/L	100	Site wide	

Analyte	Units	Adopted Site specific trigger value	Location	Justification	
TRH C ₃₄ - C ₄₀	μg/L	100	Site wide		
	PFAS				
PFOS+ PFHxS	μg/L	0.07	Site wide	Site criteria has been provided in the SWMP. In 2016, Food Standards Australia New Zealand	
PFOA	μg/L	0.56	Site wide	(FSANZ) were commissioned to develop health-based guidance values for a selection of PFAS. FSANZ (2017) published levels for use in Site investigations which were updated and incorporated into the HEPA NEMP (2018), which was revised in 2019. The HEPA NEMP (2019) is the recognised national guidance for the investigation and management of PFAS in Australia and forms the key guidelines for this SWMP. This has therefore been adopted in this report.	
PFOS	μg/L	0.01	Site wide	Standard LOR has been adopted as the Site wide criteria as it is known that PFAS are widely present in the local area owing to the Red Zone. Ambient concentrations have been detected above this in groundwater emanating from Williamtown RAAF Base.	

¹⁻ National Health and Australian Drinking Water Guidelines 6 (ADWG) (2011) ANZECC (2000) 95% level of species protection in freshwater -

Table 5.5 Site specific trigger values for Surface water

Analyte	Units	Adopted Site specific trigger value	Location	Justification
				Inorganics
рН	pH units	4 - 7	Site wide	The lowest pH value recorded was 4.01 in surface water). It is feasible that pH values could continue to be low. The highest pH value recorded was 6.21 indicating a generally acidic environment. It is therefore unlikely the pH would exceed 7.
Total Phosphorus	mg/L	0.13	Site wide	The two out of the 10 surface water baseline results were found to be above the ANZECC 2000 trigger values for a Lowland river in South-east Australia. It is therefore not considered appropriate to use this value. The highest recorded value in the surface water was 0.13mg/L in SW1. This value has been adopted as the trigger value for surface water.
Ammonia as N	mg/L	0.25	Site wide	The detected range of <0.01-0.16mg/L was not found to be elevated above the ANZECC 2000 and ADWG. Based on the results obtained it is considered that adopting half the 0.5mg/L ADWG value provides a conservative approach for a trigger level. It is noted that the ANZECC criteria is 0.9mg/L.

Analyte	Units	Adopted Site specific trigger value	Location	Justification
Total Nitrogen as N	mg/L	1.8	Site wide	Results from the majority of locations were found to be elevated above the ANZECC 2000 trigger criteria. The highest concentrations were recorded in SW1. It is evident that concentrations of Nitrogen can be found naturally across the Site and vary over time. Concentrations of Total Nitrogen are not expected to be elevated above the highest recorded value of 1.8mg/L. Therefore, this has been adopted as the trigger value.
Electrical Conductivity @ 25°C*	μc/cm	125-2200	Site wide	Concentrations across the Site were identified to vary considerably. However, no concentration was found to be elevated above 2200 µc/cm. Trigger criteria has been taken from ANZECC 2000 for a lowland river is south-eastern Australia and is considered appropriate for this Site.
Turbidity	NTU	6-50	Site wide	Criteria taken from ANZECC 2000 for a lowland river is south-eastern Australia.
				Dissolved Metals
Arsenic	mg/L	0.001	Site wide	Arsenic was not detected within the majority of groundwater locations with the exception of SW3 recording a maximum concentration of 0.006 mg/L. As the majority of results were recorded below the LOR, the adopted trigger value has been taken as the laboratory LOR.
Barium	mg/L	0.08	Site wide	All results for Barium were found to be above the LOR. The highest concentration recorded was 0.08mg/L in SW3. The adopted trigger value has been taken to be the highest concentration recorded.
Boron	mg/L	0.14	SW1	All results at SW1 for Boron were found to be above the LOR compared to all other locations that had concentrations below LOR. Therefore, a location specific trigger value has been adopted for SW1.
		0.05	SW3 & SW4	All results were found to be below the LOR. The adopted trigger value has been taken as LOR.
Chromium	mg/L	0.002	Site wide	The majority of results were found to be below the LOR with one result higher than the ANZECC 2000 trigger value recorded in SW3. The adopted trigger value has been taken as the maximum value obtained throughout the baseline monitoring period.
Cobalt	mg/L	0.017	Site wide	Detections of Cobalt concentrations above LOR were detected at all surface water locations. The highest concentration was 0.017mg/L in SW1. The adopted trigger value has been taken to be the highest concentration recorded.
Copper	mg/L	0.013	Site wide	Detections of Copper concentrations above LOR were recorded at all locations. The adopted trigger value has been taken as the same value as the groundwater trigger value. The maximum value obtained in surface water throughout the baseline monitoring period was 0.012mg/L.

Analyte	Units	Adopted Site specific trigger value	Location	Justification
Iron	mg/L	9.26	Site wide	The concentrations of Iron identified in the surface water monitoring results were varied and the Mann-Kendal analysis identified a decreasing trend in SW1 and SW3 and no trend in SW4. The highest concentration identified during the baseline monitoring for this area has been adopted as the Trigger Value. Based on the trend analysis it is not expected this value would be exceeded.
	mg/L	0.048	SW1 & SW3	Concentrations of manganese in SW1 and SW3 were found to be similar. The highest concentration identified has been adopted as the trigger value for these locations.
Manganese		0.841	SW4	Concentrations of manganese in SW4 were found to be elevated above those in SW1 and SW3. It is feasible that stormwater runoff from the adjacent Cabbage Tree Road may impact this location. Therefore, the highest concentration found in SW4 has been taken as the trigger value.
Nickel	mg/L	0.022	Site wide	Concentrations of nickel in each of the surface water locations was found to be similar. The highest concentration identified in SW1 was 0.02mg/L. This is similar to the trigger value adopted for groundwater; therefore, the same value has been adopted as the trigger value.
		0.085	SW1 & SW3	Concentrations of Zinc in SW1 and SW3 were found to be similar. The highest concentration identified has been adopted as the trigger value for these locations.
Zinc	mg/L	0.535	SW4	Concentrations of Zinc in SW4 were found to be elevated above those in SW1 and SW3. It is feasible that stormwater runoff from the adjacent Cabbage Tree Road may impact this location. Therefore, the highest concentration found in SW4 has been taken as the trigger value.
				TRH
TRH C ₆ – C ₁₀	μg/L	20	Site wide	All concentrations of TRH were identified to be below the LOR. The Laboratory LOR has therefore
C ₆ - C ₁₀ minus BTEX (F1)	μg/L	20	Site wide	been adopted as the trigger value.
TRH C ₁₀ – C ₁₆	μg/L	100	Site wide	
TRH C ₁₀ - C ₁₆ minus N (F2)	μg/L	100	Site wide	
TRH C ₁₆ – C ₃₄	μg/L	100	Site wide	
TRH C ₃₄ - C ₄₀	μg/L	100	Site wide	

Analyte	Units	Adopted Site specific trigger value	Location	Justification
				PFAS
PFOS+ PFHxS	μg/L	0.07	Site wide	Site criteria has been provided in the SWMP. In 2016, Food Standards Australia New Zealand
PFOA	μg/L	0.56	Site wide	(FSANZ) were commissioned to develop health-based guidance values for a selection of PFAS. FSANZ (2017) published levels for use in Site investigations which were updated and incorporated into the HEPA NEMP (2018). The HEPA NEMP (2018), revised in 2019, is the recognised national guidance for the investigation and management of PFAS in Australia and form the key guidelines for this SWMP. This has therefore been adopted in this report.
PFOS	μg/L	0.01	Site wide	Standard LOR has been adopted as the Site wide criteria as it is known that PFAS are widely present in the local area owing to the Red Zone. Ambient concentrations have been detected above this in groundwater emanating from Williamtown RAAF Base.

5.8 TRIGGER RESPONSE ACTIONS

5.8.1 Metals & Nutrients

The following provides details on the proposed response action required should an analyte concentration be found above the adopted trigger value:

- Review value against previous data including Mann-Kendal trends presented in **Table 4.1**to determine if the concentrations is in line with previous monitoring data, or if considered
 significantly different then:
 - Question result with the laboratory;
 - Discuss what operations have been undertaken that may cause the elevated concentration; and
 - Review rainfall data and groundwater elevations to establish if concentration is due to seasonal adjustments.
- Re-sample location and elevated metal in the following two monthly monitoring rounds to gauge if the exceedance was an exception of change in trend or characteristic of background changes.

Where the outcome of the above assessment indicates a potential contamination issue then a water trigger investigation should be undertaken in accordance with the SWMP (see **Section 5.8.4**).

5.8.2 Hydrocarbons

The following provides details on the proposed response action required should an analyte concentration be found above the adopted trigger value:

- Question result with the laboratory to determine if there were any laboratory errors;
- Discuss what operations have been undertaken that may cause the elevated concentration;
- Review rainfall data and groundwater elevations to establish if concentration is due to seasonal adjustments; and
- Re-sample location in the following two monthly monitoring rounds to gauge if the exceedance was an exception of change in trend, or characteristic of background changes, and include the following additional analysis:
 - Where TRH C₆ to C₁₀ has been detected then BTEXN will also be analysed; and/or
 - Where TRH C₁₆ to C₄₀ has been detected then PAH will also be analysed.

Where the outcome of the above indicates a potential issue then a water trigger investigation should be undertaken in accordance with the SWMP (see **Section 5.8.4**).

Where a spill or potential pollution incident event has occurred, or the above conversation with the quarry operations indicates a potential contamination issue, then sampling (or re-sampling) at the closest (down hydraulic gradient) location should be undertaken within 48 hours. An incident investigation in accordance with the SWMP must be undertaken.

5.8.3 **PFAS**

Where PFAS is identified above the adopted criteria (or maximum background value detected previously at a specific monitoring location) an additional water sample will be collected within 48 hours and submitted for analysis. In the event the trigger value is exceeded by more than 10% in both the primary sample and the follow-up sample, a water trigger Investigation will be completed to determine if the change is related to:

- The quarry operations;
- External influence; and/or
- Natural variation.

5.8.4 Water Trigger Investigation

Upon triggering the need for a water trigger investigation Hunter Water Corporation (HWC), NSW Environmental Protection Agency (EPA) and Department of Planning Industry and Environment (DPIE) must be notified within 24hours. The SWMP stipulates that the water trigger investigation will evaluate the following:

- A review of the site conceptual site model to understand the risk potential of the exceedance;
- Identify the potential for other sources to be present that may require confirmatory sampling (and include intrusive investigation if considered appropriate);
- Recent climate and rainfall data:
- Other activities within the catchment (both on and off the Site) in the preceding period;
- Operational activities of the quarry in the preceding period; and
- Historical potential for those quarry activities to cause exceedance.

The water trigger investigation report will be submitted as an incident notification to HWC, EPA and DPIE. The report will also be summarised in the Annual Environmental Review (AER).

6. QUALITY ASSURANCE AND QUALITY CONTROL

6.1 DATA VALIDATION

The QA/QC program implemented for this monitoring program followed the requirements of the SWMP.

Data Quality Indicators (DQIs) were developed prior to commencing background monitoring and have been summarised in **Table 6.1.** DQIs established acceptable limits for field and laboratory data collected from the monitoring program.

Table 6.1 QA/QC data quality indicators

Table 6.1 QA/QC data quality indicators				
QA/QC Objective	Data quality indicator (DQI)			
Successful completion of project	To conduct a baseline water quality sampling program in accordance with NEPM 2013 and AS4482.1 – 1999 in order to achieve the objective set out in Section 1 .			
Suitable environmental consultant	The environmental consultant was to maintain QA Systems certified to AS/NZS ISO 9001:2015.			
Suitable field personnel	All Kleinfelder field personnel conducting sampling were to be trained in the requirements detailed in this SWMP. All Kleinfelder field personnel have relevant tertiary qualifications and have demonstrated competence in Kleinfelder procedures for sampling (consistent with NEPM 2013 and AS4482.1 - 1999).			
Adequate sample collection density	The sampling strategy was developed based on historical information available for the site and the objective of the investigation.			
Standardised sample nomenclature	All samples were labelled with a unique identifier that can be related to sample location. Surface water and Groundwater samples were labelled as per monitoring well ID. The following naming convention was utilised: Bore Hole (BH) – Number (1, 2, 3): E.g. MW1 Surface water (SW) – Number (1, 2, 3):			
	E.g. SW1			
Decontamination of field equipment	When sampling equipment was used, nitrile gloves were worn and changed between locations. Non-dedicated sampling equipment was decontaminated between sample locations using an appropriate surface-active cleaning agent (e.g. Liquinox for use with PFAS) as consistent with NEPM 2013 and HEPA NEMP (2019).			
Calibration of field instruments	All field instruments were calibrated prior to use, and the calibration certificates have been provided in Appendix A .			
Transportation	A Chain of Custody (COC) document was used to ensure the integrity of the samples from collection to receipt by the analytical laboratory within appropriate holding times.			
National Association of Testing Authorities (NATA) accredited laboratory analysis	All samples were forwarded to a laboratory holding NATA accreditation for the required analyses. The following Laboratories were utilised: ALS – Primary Laboratory for chemical analysis; and Eurofins – Secondary Laboratory for chemical analysis.			

QA/QC Objective	Data quality indicator (DQI)
Field QA/QC	Duplicate samples (intra-laboratory) were collected at a rate of one in every twenty (1:20) primary water samples and submitted to the primary laboratory for analysis. Standard NEPM 2013 duplicate and triplicate requirements were deemed reasonable for the sampling of PFAS for the purpose of baseline water monitoring.
	Triplicate samples (inter-laboratory) were also collected at a rate of one in every twenty (1:20) primary water samples and submitted to the secondary laboratory for analysis.
	Field duplicate and triplicate samples are used to assess field and analytical precision and the precision measurement is determined using the relative percent difference (RPD) between the primary sample (X1) and duplicate sample (X2) results, as shown in the following equation:
	Relative percent difference (RPD) = $(X1 - X2) \times 100$
	(X1 + X2)/2
	Generally, it is recommended that RPD is <30% (NEPM 2013).
	Default RPD levels in the field may be non-compliant for the following reasons:
	 The differing laboratory equipment, procedures and limits of reporting (between the primary and secondary laboratories); Due to sample matrix interference; and/or
	 Due to the reported concentrations being close to the limit of reporting where laboratory precision and accuracy are inherently low.
	A rinsate blank sample was collected for each piece of non-dedicated sampling equipment per day onsite and submitted to the primary laboratory for analysis.
	A transport blank sample was collected for each batch of samples sent to the laboratory (~one per day in the field) and submitted to the primary laboratory for analysis for each day samples are taken.
	QA/QC non-compliance was documented and discussed in the monthly summary letter (see Appendix B). Where exceedances were identified (i.e. duplicates and triplicates be above the RPD or rinsate blanks, field blanks or transport blanks be above the LOR) then consideration was given to the sample(s) being re-analysed, the higher concentration level to be conservatively adopted and/or reviewing field practices for continued prevention of potential cross contamination.
Laboratory Quality	Laboratory QA/QC acceptance limits are as follows:
Control –	Surrogates: 70% to 130% recovery;
Duplicates, spikes, blanks and	Matrix Spikes: 70% to 130% recovery for organics or 80% to 120% recovery for inorganics;
surrogates – Acceptable Limits	Control Samples: 70% to 130% recovery for soil or 80% to 120% recovery for waters;
7006Plable Littles	Duplicate Samples: <4 Practical Quantitation Limits (PQL) - +/- 2PQL, 4-10PQL – 025 or 50%RPD, >10PQL – 0-10 or 30%RPD; and
	Method Blanks: zero to <pql.< td=""></pql.<>

6.2 QA/QC RESULTS

6.2.1 Field Method Validation

To ensure the completeness, comparability, representativeness, precision and accuracy of QA/QC items, **Table 6.2** details how the QA/QC compliance has been met.

Table 6.2 Field QA/QC

QA/QC Objective	Data Quality Indicator (DQI)
Suitable field personnel	The site work was undertaken by Dan Kousbroek who has 4 years' experience in contaminated land investigations. Dan was informed of the requirements of the agreed scope of works. Dan has relevant tertiary qualifications and has demonstrated competence with Kleinfelder's sampling procedures (consistent with NEPM 2013 requirements and AS4482.1 2005).
Adequate sample collection density	Water sampling was undertaken based on information provided in the SWMP. A targeted sampling program was undertaken requiring sampling at 10 groundwater locations and 4 surface water locations and then analysed. It is noted that a number of
	the surface water locations were found to be dry throughout the 12 months due to an extended drought period in NSW.
Field equipment	YSI 556 Water Quality Meter and Solinst oil/water interface meter were used during field works.
Calibration of field instruments	Calibration certificates for each piece of equipment used in the field are attached in Appendix A
Sample preservation	Samples were collected in laboratory supplied containers and immediately stored in an insulated esky chilled with ice.
Sample handling	Samples were delivered straight to ALS Newcastle following each sampling event. Chains of custody are included in Appendix A of the monthly reports, which have been provided as Appendix B of this document.

6.2.2 Laboratory QA/QC

The results for internal laboratory QA/QC procedures are provided within the laboratory analysis reports (Appendix A of the monthly reports, which have been provided as **Appendix B** of this document). **Table 6.3** summarises conformance to specific QA/QC procedures, also see **Tables E**, **F** and **G** at the rear of this report for a summary of the data.

Table 6.3 Laboratory QA/QC

Quality assurance	Conformed	Comment
Collection of rinsate water from decontaminated field	Yes	Rinsate was sourced from a NATA accredited laboratory and supplied with the sample containers.
equipment		A rinsate sample was taken from the sampling equipment during each sampling event. A total of 12 rinsate samples were taken. All samples were non detect.
		See Tables E , F and G at the back of this report.
Collection of transport blanks through the sampling day	Majority	12 transport blank samples were collected (two samples in March (due to a return confirmatory sampling event), no transport taken in August 19)
		2 nd transport blank taken in March (15/03/19) was found to contain barium (2ug/l). As no other transport blanks were found to have concentrations above LOR and the following months samples resulted in non detect the data is considered reliable.
		See Tables E , F and G at the back of this report.
Holding times met	Yes	Holding times were met for all analytes and samples.
		Every effort was made by Kleinfelder to deliver samples to the laboratory as soon as possible after sampling.

Quality assurance	Conformed	Comment
LOR less than assessment criteria	Yes	Majority of LOR were below the adopted screening criteria. Adopted criteria for PFOS (HEPA NEMP 2018) is below LOR. It is noted that PFAS are likely to be in the region given the reported scale of PFAS in groundwater within the Red Zone, therefore the standard LOR has been adopted.
All analyses National Association of Testing Authorities (NATA) accredited	Yes	All samples were delivered to a NATA accredited laboratory for the required analysis, within specified holding times. The primary laboratory used was ALS (delivered to the Newcastle laboratory). Triplicate samples were forwarded by ALS to the secondary laboratory, Eurofins mgt (Newcastle).
Field intra-laboratory duplicate samples collected and analysed to represent 5% of sample population	Majority	One intra-laboratory duplicate sample and one inter-laboratory triplicate water sample were collected. This is considered to exceed the requirement of 5% of the total number of primary analyses undertaken (minimum 1 in 20 duplicate and 1 in 20 triplicate samples). Due to a laboratory error in transferring samples, one intra-laboratory triplicate (March 2019) was only sampled for Metals and PFAS with TRH and BTEX being missed from the COC to the tertiary laboratory. With the exception of some minor elevations of TRH and BTEX which were attributed to maintenance work on the well, there were no recorded concentrations above LOR. Therefore, this is not considered to impair the reliability of data in meeting the objectives of this monitoring programme. See Table 6.5 for details.
Did duplicate sample meet RPD requirements	Majority	The majority of samples met the RPD requirements of being within 30% (See Tables E , F and G at the back of this report). The following did not meet these requirements: • Arsenic – 67% BH8 (Feb 2019) • Cobalt – 40% BH7 (March 2019) • Copper – 190% SW4 (September 2019) • Lead – 67% SW4 (September 2019) • Nickel – 140% SW4 (September 2019), 67% BH6 (January 2020) • Zinc – 100% BH8 (February 2019), 151% SW4 (September 2019) In general, for these exceedances at least one sample was found to be below or close to the Laboratory LOR, which leads to exaggerated RPD calculations. In order to take a conservative approach, the highest recorded concentration has been selected for results screening. These RPD exceedances are therefore not considered to have a negative impact on the outcome of the assessment.
Did triplicate sample meet RPD requirements	Majority	The majority of samples met the RPD requirements of being within 30% (See Tables E , F and G at the back of this report). The following did not meet these requirements: Water: Arsenic – 67% BH8 (February 2019) Chromium – 86% BH8 (February 2019), 67% SW3 (June 2019) Cobalt – 40% Copper – 190% SW4 (September 2019), 156% BH6 (January 2020)

Quality assurance	Conformed	Comment
		 Lead – 67% SW4 (September 2019) Nickel – 156% BH7 (March 2019), 140% SW4 (September 2019), 111% SW4 (November 2019) Zinc – 113% BH7 (March 2019), 151% SW4 (September 2019), 172% SW4 (November 2019) & 131% BH6 (January 2020) PFOS – 100% SW4 (September 2019) Sum of PFHxS and PFOS – 100% (September 2019) Sum of PFAS (WA DER List) – 86% (September 2019) Sum of PFAS – 133% (September 2019) A number of exceedances were calculated with one sample being below the Laboratory LOR. This leads to a potentially exaggerated RPD calculations. In order to take a conservative approach, the highest recorded concentration has been selected for results screening. RPD exceedances for triplicates can often be attributed to differences in methods used by each of the labs and are not considered to impair the reliability of the data in meeting the objectives of this monitoring programme.
Internal laboratory procedures	Majority.	Holding time breaches are discussed above. Internal laboratory QC procedures were generally met. Some exceedances of internal procedures for laboratory duplicates and matrix spikes were recorded for water samples, for organic analysis. However, the primary laboratory results recorded these analytes to be below the LOR. Therefore, this does not impair the reliability of the analytical data for decision making. This is not considered to impact the outcome of the results and thus unlikely to impair the outcome of decision making.

A summary of the water sample container types, preservation and the order of container filling is provided in **Table 6.4**.

Table 6.4 Container types, preservation and order of filling

Analyte	Container Type	Preservation
PFAS incl PFOS, PFOA, PFOS/PFHxS, PFDS	1 x 60mL Plastic Bottle - Unpreserved	Refrigerate
TPH (C ₁₀ -C ₃₆)	1 x 100mL Amber Glass Bottle - Unpreserved	Refrigerate
TRH (C ₆ -C ₁₀), BTEXN, VOC	2 x 40mL amber Glass Vials with Teflon lined septa	Sulfuric Acid
Heavy metals - Dissolved	1 x 60mL Clear Plastic Bottle - Filtered	Nitric acid
Extended Water Suite	1 x 500mL Clear Plastic Bottle – Unpreserved 1 x 60mL Clear Plastic Bottle	Refrigerate Sulfuric Acid
General Water Suite	1 x 500mL Clear Plastic Bottle – Unpreserved	Refrigerate

Table 6.5 Summary of groundwater QC program

	Number of	Groundwater Sam	ples Analysed	% QC Samples
Analyte	Primary	Field Duplicates (intra-lab)	Laboratory Splits (inter-lab)	Relative to Primary Samples
TRH	124	6	5	9%
BTEXN	124	6	5	9%
Dissolved metals	124	6	6	10%
PFAS	65	5	5	15%

Bold: Indicates not meeting the triplicate density.

6.3 QUALITY STATEMENT

Field sampling procedures conformed to Kleinfelder's QA/QC protocols to prevent cross contamination, preserve sample integrity and allow for collection of a suitable data set from which to make technically sound and justifiable decisions with data of satisfactory useability.

Based on a review of the results for the Kleinfelder and laboratory QA/QC program adopted, the overall data quality is considered to be suitably reliable and representative of groundwater conditions beneath the Site. Copies of the final NATA endorsed laboratory reports, including internal QA/QC results and chain-of-custody documentation for the primary and secondary laboratories are attached as Appendix A of the monthly reports, which have been provided as **Appendix B** of this document.

6.4 EQUIPMENT CALIBRATION

All equipment used was supplied calibrated with appropriate calibration certificates (see **Appendix A**). Kleinfelder undertook pre-mobilisation checks of equipment (including calibration as required). Prior to commencing field operations, the following equipment and calibration checks were conducted:

- Water Quality Meter The water quality meter came calibrated from the supplier. A daily
 confidence check of dissolved oxygen, pH and EC was undertaken using air and standards
 of known concentration, and calibration performed as warranted.
- **PID** the PID came calibrated from the supplier. A daily fresh air calibration check was undertaken on site.

7. SUMMARY STATEMENT

A baseline water monitoring program was conducted at the Site to characterise groundwater and surface water for ongoing use of the Site as an operational sand quarry from February 2019 through to January 2020.

The analytical results indicate that metals, namely barium, chromium, copper, iron manganese, nickel and zinc, were detected regularly throughout the monitoring period, and at the majority of the sample locations, indicating likely natural background concentrations. Iron concentrations were typically higher at BH1 throughout the baseline monitoring program which are likely indicative of concentrations in this area.

BTEXN, TPH and TRH were generally not detected across the majority of the Site with the exception of BH1 and BH4. At the initiation of the baseline sampling program in February 2019 BH1 was refitted with a PVC pipe to replace a previously fire damaged one. In the process an acrylic adhesive was applied to fuse the pipes together which likely initiated increased concentrations of TPH C_6 - C_9 (1,710 μ g/L) and TRH C_6 - C_{10} (1,690 μ g/L) within the well. The subsequent months following reinstallation of the well concentrations of TPH and TRH fell to below LOR. Concentration of hydrocarbons detected at BH4 are most likely influenced by the adjacent Cabbage Tree Road. Concentrations were detected following some form of rainfall in the region and ongoing detections are likely given the location of BH4 being in close proximity to a relatively busy carriageway. Ongoing monitoring of hydrocarbons is recommended, for due diligence purposes, given the potential likelihood for spills to occur from operational vehicles.

PFAS detections above LOR were recorded at locations BH4, BH6 and SW4. Concentrations of PFAS identified at BH6 and SW4 are likely sourced from an upgradient source from the Site, namely the Williamtown RAAF Base where historical use of PFAS containing materials have been used. PFAS identified at location BH4, and directly adjacent to Cabbage Tree Road, is likely to have occurred from a different historical source. Ongoing monitoring of PFAS should be undertaken directly following initial excavation works.

It should also be noted that the Site and regional area has experienced a significant drought over the past couple of years and this may have a bearing on groundwater and surface water conditions should significant rainfall reoccur in the region. Baseline data provided within this report should be reassessed following a full year of data with average to above average rainfall to identify potential outliers that may be present.

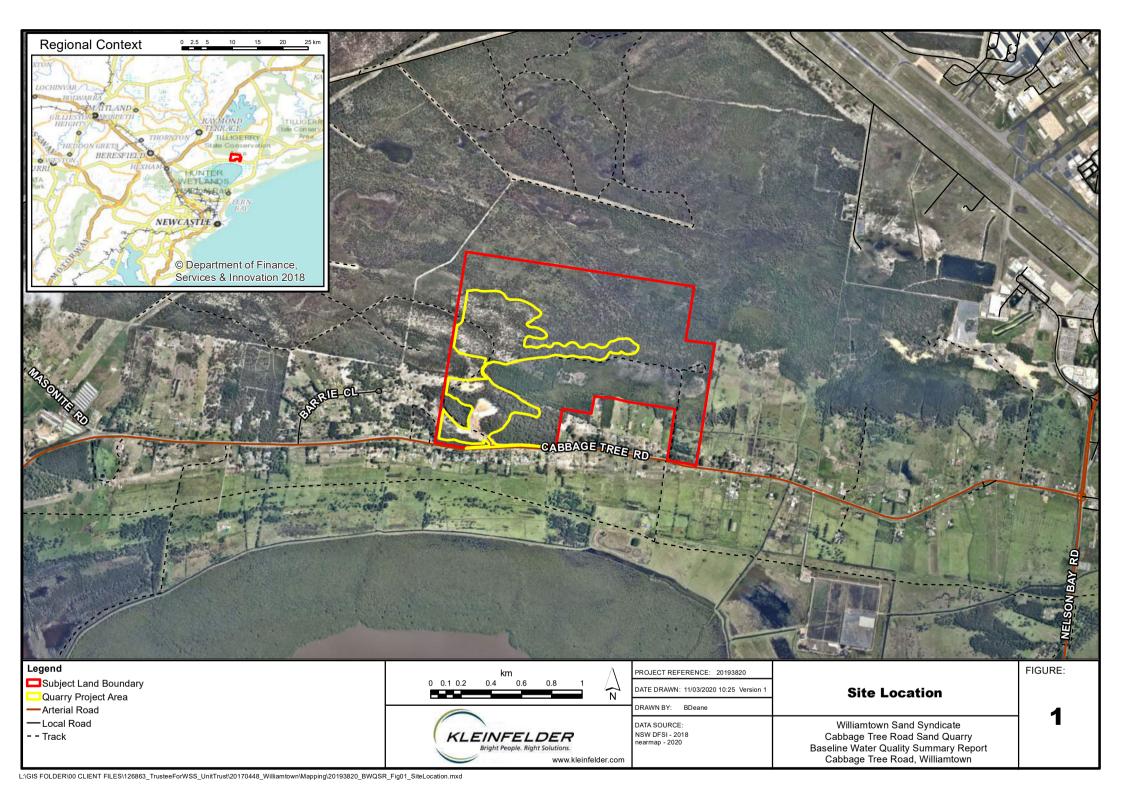
Table 7.1 provides a summary of the proposed ongoing operational monitoring schedule for the Site. **Table 7.2** provides a summary of the proposed testing schedule for the different

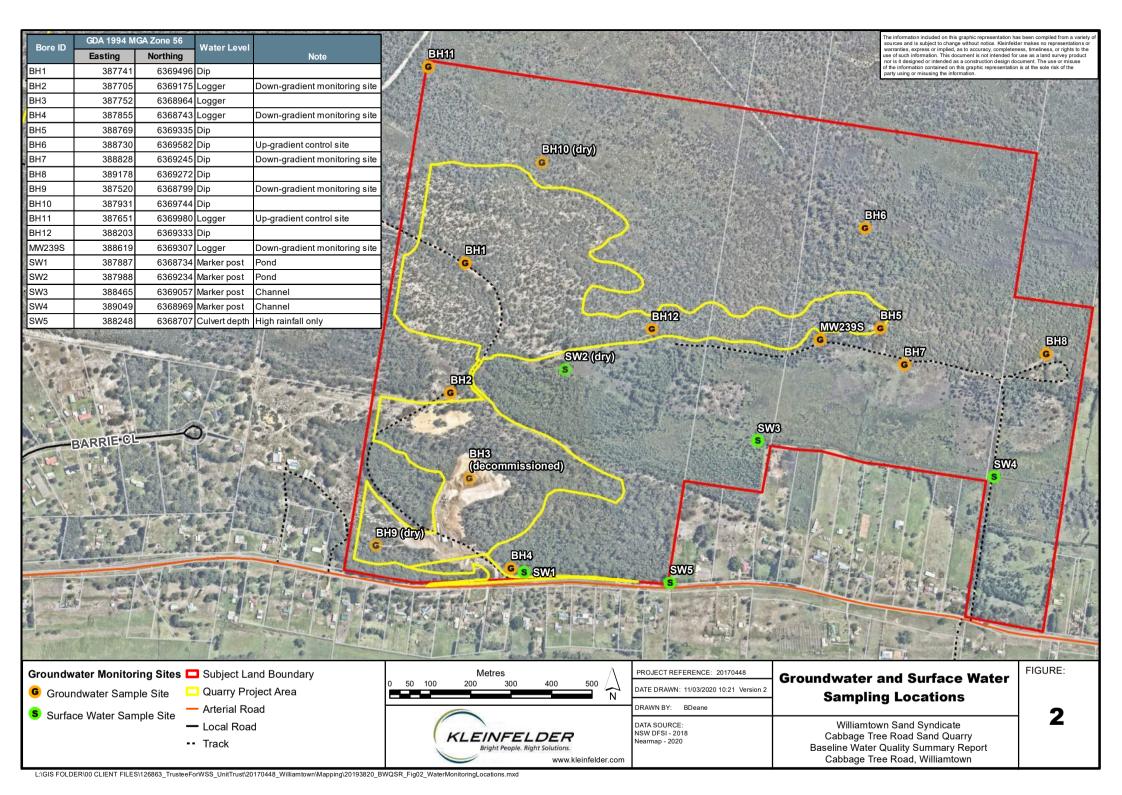
monitoring events and presents the adopted groundwater (GW) and surface water (SW) trigger values.

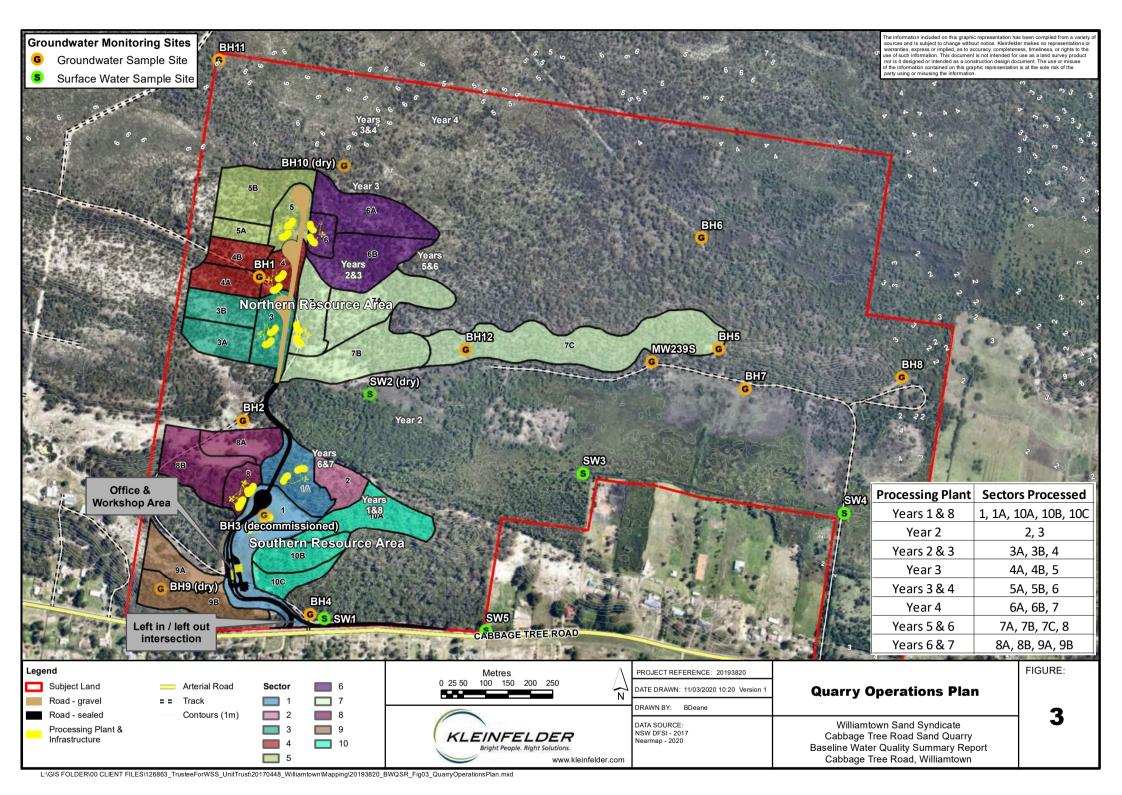
Table 7.1 Proposed operational monitoring schedule

Location	Monthly	Quarterly	Annually
BH2, BH4, BH6, BH7, BH9, BH11 and MW239S	✓	✓	√
BH8 SW1, SW2, SW3, SW4		√	√
BH1, BH5, BH12			✓

Table 7.2 Proposed testing schedule


	Testing schedule		Specified Location otherwise site wide		Trigger valu	ue
Monthly	Quarterly	Annually		Units	GW	sw
рН	рН	pН			4 - 7	4 - 7
Conductivity	Conductivity	Conductivity		μc/cm	125-2200	125-2200
Turbidity	Turbidity	Turbidity		NTU	6-50	6-50
Arsenic	Arsenic	Arsenic		mg/L	0.003	0.001
Iron	Iron	Iron	Northern Half (BH6, BH7, BH8, BH11 and MW239S),	mg/L	4.1	9.26
			Southern half (BH2, BH4, BH9)	mg/L	1	
Manganese	Manganese	Manganese		mg/L	0.136	0.048
Gauging selected wells	Gauging all available wells;	Gauging all available wells;		-	-	-
	Total Phosphorus	Total Phosphorus		mg/L	2	0.13
	Total Nitrogen	Total Nitrogen		mg/L	3	1.8
	Ammonia as N	Ammonia as N		mg/L	0.5	0.25
	Barium	Barium		mg/L	0.035	0.08
	Chromium	Chromium		mg/L	0.004	0.002
	Copper	Copper	Site wide (except BH4)	mg/L	0.013	0.013
			BH4	mg/L	0.051	
	Nickel	Nickel	BH11	mg/L	0.037	0.022
			Site wide (excluding BH11)	mg/L	0.022	
	Zinc	Zinc	Site wide (excluding SW4)	mg/L	0.085	0.085
			SW4	mg/L		0.535
	Boron	Boron	SW1	mg/L	N/A	0.14
			SW2, SW3 & SW4	mg/L		0.05
	Cobalt	Cobalt		mg/L	N/A	0.017




	Testing schedule		Specified Location otherwise site wide		Trigger va	llue
Monthly	Quarterly	Annually		Units	GW	sw
	TRH C ₆ – C ₁₀	TRH C ₆ – C ₁₀		μg/L	20	20
	C ₆ - C ₁₀ minus BTEX (F1)	C ₆ - C ₁₀ minus BTEX (F1)		μg/L	20	20
	TRH C ₁₀ – C ₁₆	TRH C ₁₀ – C ₁₆		μg/L	100	100
	TRH C ₁₀ - C ₁₆ minus N (F2)	TRH C ₁₀ - C ₁₆ minus N (F2)		μg/L	100	100
	TRH C ₁₆ – C ₃₄	TRH C ₁₆ – C ₃₄		μg/L	100	100
	TRH C ₃₄ - C ₄₀	TRH C ₃₄ - C ₄₀		μg/L	100	100
	PFOS	PFOS		μg/L	0.01	0.01
	PFOS+ PFHxS	PFOS+ PFHxS		μg/L	0.07	0.07
	PFOA	PFOA		μg/L	0.56	0.56
		General water quality parameters (Ca, Mg, Na, K, pH, EC, Cl, SO ₄ , Alkalinity, Hardness & TDS);		-	-	-

FIGURES

DATA TABLES

	nalyte				втех	(N				Total Petroleum Hydrocarbons	Tot	al Petroleum Hydroca	ırbons - Silcia Clean ı	1Þ		tecoverable rocarbons		Total Recoverab	le Hydrocarbons	- Silcia Clean u	p
An	naiyte	Benzene**	Toluene	Ethylbenzene	meta- & para- Xylene	ortho- Xylene**	Total Xylenes	Naphthalene **	Sum of BTEX	C ₆ - C ₉	C ₁₀ -C ₁₄ - Silica Cleanup	C ₁₅ -C ₂₈ - Silica Cleanup	C ₂₉ -C ₃₆ - Silica Cleanup	C ₁₀ -C ₃₆ Sum - Silica Cleanup	C ₆ - C ₁₀	C ₆ - C ₁₀ minus BTEX (F1)	>C ₁₀ -C ₁₆ - Silica Cleanup	F2 - Silica Cleanup	>C ₁₆ -C ₃₄ - Silica Cleanup	>C ₃₄ -C ₄₀ - Silica Cleanup	
u	LOR Jnits	1 µg/L	2 µg/L	2 μg/L	2 μg/L	2 μg/L	2 μg/L	5 μg/L	1 μg/L	20 μg/L	50 μg/L	100 μg/L	50 μg/L	50 μg/L	20 μg/L	20 μg/L	100 μg/L	100 μg/L	100 μg/L	100 μg/L	100 μg/L
	00 Trigger Values C ADWG 6	950 1	800	300	-	350 350	600	16													
Sample Name	Sample Date																				
	15-Mar-19 23-Apr-19	< 1.0 < 1.0	< 2.0 < 2.0	< 2.0 < 2.0	< 2.0 < 2.0	< 2.0 < 2.0	< 2.0 < 2.0	< 5.0 < 5.0	< 1.0 < 1.0	1,710 40	< 50 < 50	< 100 < 100	< 50 < 50	< 50 < 50	1,690 30	1,690 30	< 100 < 100	< 100 < 100	< 100 < 100	< 100 < 100	< 100 < 100
	16-May-19	< 1.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 5.0	< 1.0	< 20	< 50	< 100	< 50	< 50	< 20	< 20	< 100	< 100	< 100	< 100	< 100
	14-Jun-19 16-Jul-19	< 1.0 < 1.0	< 2.0 < 2.0	< 2.0 < 2.0	< 2.0 < 2.0	< 2.0 < 2.0	< 2.0 < 2.0	< 5.0 < 5.0	< 1.0 < 1.0	< 20 < 20	< 50 < 50	< 100 < 100	< 50 < 50	< 50 < 50	< 20 < 20	< 20 < 20	< 100 < 100	< 100 < 100	< 100 < 100	< 100 < 100	< 100 < 100
BH1	15-Aug-19	< 1.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 5.0	< 1.0	< 20	< 50	< 100	< 50	< 50	< 20	< 20	< 100	< 100	< 100	< 100	< 100
	16-Sep-19	< 1.0	< 2.0 < 2.0	< 2.0 < 2.0	< 2.0	< 2.0 < 2.0	< 2.0 < 2.0	< 5.0 < 5.0	< 1.0	< 20 < 20	< 50 < 50	< 100 < 100	< 50 < 50	< 50 < 50	< 20 < 20	< 20 < 20	< 100 < 100	< 100 < 100	< 100	< 100	< 100
	15-Oct-19 18-Nov-19	< 1.0 < 1.0	< 2.0	< 2.0	< 2.0 < 2.0	< 2.0	< 2.0	< 5.0	< 1.0 < 1.0	< 20	< 50	< 100	< 50	< 50	< 20	< 20	< 100	< 100	< 100 < 100	< 100 < 100	< 100 < 100
	17-Dec-19 16-Jan-20	< 1.0 < 1.0	< 2.0 < 2.0	< 2.0	< 2.0	< 2.0 < 2.0	< 2.0 < 2.0	< 5.0 < 5.0	< 1.0 < 1.0	< 20 < 20	< 50 < 50	< 100 < 100	< 50 < 50	< 50 < 50	< 20 < 20	< 20 < 20	< 100 < 100	< 100 < 100	< 100 < 100	< 100	< 100 < 100
	21-Feb-19	< 1.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 5.0 < 5.0	< 1.0	< 20	< 50 < 50	< 100	< 50 < 50	< 50 < 50	< 20	< 20	< 100	< 100	< 100	< 100 < 100	< 100
	15-Mar-19	< 1.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 5.0	< 1.0	< 20	< 50	< 100	< 50	< 50	< 20	< 20	< 100	< 100	< 100	< 100	< 100
	23-Apr-19 16-May-19	< 1.0 < 1.0	< 2.0 < 2.0	< 2.0 < 2.0	< 2.0 < 2.0	< 2.0 < 2.0	< 2.0 < 2.0	< 5.0 < 5.0	< 1.0 < 1.0	< 20 < 20	< 50 < 50	< 100 < 100	< 50 < 50	< 50 < 50	< 20 < 20	< 20 < 20	< 100 < 100	< 100 < 100	< 100 < 100	< 100 < 100	< 100 < 100
	14-Jun-19	< 1.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 5.0	< 1.0	< 20	< 50	< 100	< 50	< 50	< 20	< 20	< 100	< 100	< 100	< 100	< 100
BH11	16-Jul-19 15-Aug-19	< 1.0	< 2.0 < 2.0	< 2.0 < 2.0	< 2.0	< 2.0 < 2.0	< 2.0	< 5.0 < 5.0	< 1.0	< 20 < 20	< 50 < 50	< 100 < 100	< 50 < 50	< 50 < 50	< 20 < 20	< 20 < 20	< 100 < 100	< 100 < 100	< 100 < 100	< 100 < 100	< 100 < 100
	16-Sep-19	< 1.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 5.0	< 1.0	< 20	< 50	< 100	< 50	< 50	< 20	< 20	< 100	< 100	< 100	< 100	< 100
	15-Oct-19 18-Nov-19	< 1.0	< 2.0	< 2.0 < 2.0	< 2.0	< 2.0 < 2.0	< 2.0 < 2.0	< 5.0 < 5.0	< 1.0	< 20 < 20	< 50 < 50	< 100 < 100	< 50 < 50	< 50 < 50	< 20 < 20	< 20 < 20	< 100 < 100	< 100 < 100	< 100 < 100	< 100 < 100	< 100 < 100
	17-Dec-19	< 1.0 < 1.0	< 2.0 < 2.0	< 2.0	< 2.0 < 2.0	< 2.0	< 2.0	< 5.0	< 1.0 < 1.0	< 20	< 50	< 100	< 50	< 50	< 20	< 20	< 100	< 100	< 100	< 100	< 100
	16-Jan-20	< 1.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 5.0	< 1.0	< 20	< 50	< 100	< 50	< 50	< 20	< 20	< 100	< 100	< 100	< 100	< 100
	22-Feb-19 15-Mar-19	< 1.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 5.0 < 5.0	< 1.0	< 20	< 50 < 50	< 100 < 100	< 50 < 50	< 50 < 50	< 20 < 20	< 20	< 100 < 100	< 100 < 100	< 100 < 100	< 100 < 100	< 100 < 100
	23-Apr-19	< 1.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 5.0	< 1.0	< 20	< 50	< 100	< 50	< 50	< 20	< 20	< 100	< 100	< 100	< 100	< 100
	16-May-19 14-Jun-19	< 1.0 < 1.0	< 2.0 < 2.0	< 2.0 < 2.0	< 2.0 < 2.0	< 2.0 < 2.0	< 2.0 < 2.0	< 5.0 < 5.0	< 1.0 < 1.0	< 20 < 20	< 50 < 50	< 100 < 100	< 50 < 50	< 50 < 50	< 20 < 20	< 20 < 20	< 100 < 100	< 100 < 100	< 100 < 100	< 100 < 100	< 100 < 100
BH2	16-Jul-19	< 1.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 5.0	< 1.0	< 20	< 50	< 100	< 50	< 50	< 20	< 20	< 100	< 100	< 100	< 100	< 100
Dilz	15-Aug-19 16-Sep-19	< 1.0 < 1.0	< 2.0 < 2.0	< 2.0 < 2.0	< 2.0 < 2.0	< 2.0 < 2.0	< 2.0 < 2.0	< 5.0 < 5.0	< 1.0 < 1.0	< 20 < 20	< 50 < 50	< 100 < 100	< 50 < 50	< 50 < 50	< 20 < 20	< 20 < 20	< 100 < 100	< 100 < 100	< 100 < 100	< 100 < 100	< 100 < 100
	15-Oct-19	< 1.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 5.0	< 1.0	< 20 < 20 < 20	< 50	< 100	< 50	< 50	< 20	< 20	< 100	< 100	< 100	< 100	< 100
	18-Nov-19 17-Dec-19	< 1.0 < 1.0	< 2.0 < 2.0	< 2.0	< 2.0 < 2.0	< 2.0 < 2.0	< 2.0 < 2.0	< 5.0 < 5.0	< 1.0 < 1.0		< 50 < 50	< 100 < 100	< 50 < 50	< 50 < 50	< 20	< 20 < 20	< 100 < 100	< 100 < 100	< 100 < 100	< 100 < 100	< 100 < 100
	16-Jan-20	< 1.0	< 2.0	< 2.0 < 2.0	< 2.0	< 2.0	< 2.0	< 5.0	< 1.0	< 20 < 20	< 50	< 100	< 50	< 50	< 20 < 20	< 20	< 100	< 100	< 100	< 100	< 100
BH3	21-Feb-19	< 1.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 5.0	< 1.0	< 20	< 50	< 100	< 50	< 50	< 20	< 20	< 100	< 100	< 100	< 100	< 100
	21-Feb-19 15-Mar-19	< 1.0 < 1.0	< 2.0 < 2.0	< 2.0 < 2.0	< 2.0 < 2.0	< 2.0 < 2.0	< 2.0 < 2.0	< 5.0 < 5.0	< 1.0 < 1.0	< 20 < 20	< 50 < 50	< 100 < 100	< 50 < 50	< 50 < 50	< 20 < 20	< 20 < 20	< 100 < 100	< 100 < 100	< 100 < 100	< 100 < 100	< 100 < 100
	23-Apr-19	< 1.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 5.0	< 1.0	< 20	< 50	< 100	< 50	< 50	< 20	< 20	< 100	< 100	< 100	< 100	< 100
	16-May-19 14-Jun-19	< 1.0 < 1.0	< 2.0 < 2.0	< 2.0 < 2.0	< 2.0 < 2.0	< 2.0 < 2.0	< 2.0 < 2.0	< 5.0 < 5.0	< 1.0 < 1.0	< 20 < 20	< 50 < 50	250 < 100	< 50 < 50	250 < 50	< 20 < 20	< 20 < 20	< 100 < 100	< 100 < 100	280 < 100	< 100 < 100	280 < 100
BH4	16-Jul-19	< 1.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 5.0	< 1.0	< 20	< 50	< 100	< 50	< 50	< 20	< 20	< 100	< 100	< 100	< 100	< 100
5114	15-Aug-19 16-Sep-19	< 1.0 < 1.0	< 2.0 < 2.0	< 2.0 < 2.0	< 2.0 < 2.0	< 2.0 < 2.0	< 2.0 < 2.0	< 5.0 < 5.0	< 1.0 < 1.0	< 20 < 20	< 50 < 50	< 100 130	< 50 < 50	< 50 130	< 20 < 20	< 20 < 20	< 100 < 100	< 100 < 100	< 100 140	< 100 < 100	< 100 140
	15-Oct-19	< 1.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 5.0	< 1.0	< 20	< 50	< 100	< 50	< 50	< 20	< 20	< 100	< 100	< 100	< 100	< 100
	18-Nov-19 17-Dec-19	< 1.0 < 1.0	< 2.0 < 2.0	< 2.0	< 2.0 < 2.0	< 2.0 < 2.0	< 2.0 < 2.0	< 5.0 < 5.0	< 1.0 < 1.0	< 20 < 20	< 50 < 50	< 100 < 100	< 50 < 50	< 50 < 50	< 20 < 20	< 20 < 20	< 100 < 100	< 100 < 100	< 100 < 100	< 100 < 100	< 100 < 100
	17-Dec-19 16-Jan-20	< 1.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 5.0	< 1.0	< 20	< 50 < 50	< 100 < 100	< 50 < 50	< 50	< 20	< 20	< 100	< 100 < 100	< 100 < 100	< 100 < 100	< 100
BH5	22-Feb-19	< 1.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 5.0	< 1.0	< 20	< 50	< 100	< 50	< 50	< 20	< 20	< 100	< 100	< 100	< 100	< 100
	22-Feb-19 14-Mar-19	< 1.0 < 1.0	< 2.0 < 2.0	< 2.0 < 2.0	< 2.0 < 2.0	< 2.0 < 2.0	< 2.0 < 2.0	< 5.0 < 5.0	< 1.0 < 1.0	< 20 < 20	< 50 < 50	< 100 < 100	< 50 < 50	< 50 < 50	< 20 < 20	< 20 < 20	< 100 < 100	< 100 < 100	< 100 < 100	< 100 < 100	< 100 < 100
	23-Apr-19	< 1.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 5.0	< 1.0	< 20	< 50	< 100	< 50	< 50	< 20	< 20	< 100	< 100	< 100	< 100	< 100
	16-May-19 14-Jun-19	< 1.0 < 1.0	< 2.0 < 2.0	< 2.0 < 2.0	< 2.0 < 2.0	< 2.0 < 2.0	< 2.0 < 2.0	< 5.0 < 5.0	< 1.0 < 1.0	< 20 < 20	< 50 < 50	< 100 < 100	< 50 < 50	< 50 < 50	< 20 < 20	< 20 < 20	< 100 < 100	< 100 < 100	< 100 < 100	< 100 < 100	< 100 < 100
BH6	16-Jul-19	< 1.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 5.0	< 1.0	< 20	< 50	< 100	< 50	< 50	< 20	< 20	< 100	< 100	< 100	< 100	< 100
	15-Aug-19 16-Sep-19	< 1.0 < 1.0	< 2.0 < 2.0	< 2.0 < 2.0	< 2.0 < 2.0	< 2.0 < 2.0	< 2.0 < 2.0	< 5.0 < 5.0	< 1.0	< 20 < 20	< 50 < 50	< 100 < 100	< 50 < 50	< 50 < 50	< 20 < 20	< 20 < 20	< 100 < 100	< 100 < 100	< 100 < 100	< 100 < 100	< 100 < 100
	15-Oct-19	< 1.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 5.0	< 1.0	< 20	< 50	< 100	< 50	< 50	< 20	< 20	< 100	< 100	< 100	< 100	< 100
	18-Nov-19	< 1.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 5.0	< 1.0	< 20	< 50	< 100	< 50	< 50	< 20	< 20	< 100	< 100	< 100	< 100	< 100
	17-Dec-19 16-Jan-20	< 1.0 < 1.0	< 2.0 < 2.0	< 2.0 < 2.0	< 2.0 < 2.0	< 2.0 < 2.0	< 2.0 < 2.0	< 5.0 < 5.0	< 1.0 < 1.0	< 20 < 20	< 50 < 50	< 100 < 100	< 50 < 50	< 50 < 50	< 20 < 20	< 20 < 20	< 100 < 100	< 100 < 100	< 100 < 100	< 100 < 100	< 100 < 100
	22-Feb-19 14-Mar-19	< 1.0 < 1.0	< 2.0 < 2.0	< 2.0 < 2.0	< 2.0 < 2.0	< 2.0 < 2.0	< 2.0 < 2.0	< 5.0 < 5.0	< 1.0 < 1.0	< 20 < 20	< 50 < 50	< 100 < 100	< 50 < 50	< 50 < 50	< 20 < 20	< 20 < 20	< 100 < 100	< 100 < 100	< 100 < 100	< 100 < 100	< 100 < 100
	23-Apr-19	< 1.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 5.0	< 1.0	< 20	< 50	< 100	< 50	< 50	< 20	< 20	< 100	< 100	< 100	< 100	< 100
	16-May-19 14-Jun-19	< 1.0 < 1.0	< 2.0 < 2.0	< 2.0 < 2.0	< 2.0 < 2.0	< 2.0 < 2.0	< 2.0 < 2.0	< 5.0 < 5.0	< 1.0 < 1.0	< 20 < 20	< 50 < 50	< 100 < 100	< 50 < 50	< 50 < 50	< 20 < 20	< 20 < 20	< 100 < 100	< 100 < 100	< 100 < 100	< 100 < 100	< 100 < 100
BH7	16-Jul-19	< 1.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 5.0	< 1.0	< 20	< 50	< 100	< 50	< 50	< 20	< 20	< 100	< 100	< 100	< 100	< 100
bn/	15-Aug-19	< 1.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 5.0	< 1.0	< 20	< 50	< 100	< 50	< 50	< 20	< 20	< 100	< 100	< 100	< 100	< 100
	16-Sep-19 15-Oct-19	< 1.0 < 1.0	< 2.0 < 2.0	< 2.0 < 2.0	< 2.0 < 2.0	< 2.0 < 2.0	< 2.0 < 2.0	< 5.0 < 5.0	< 1.0 < 1.0	< 20 < 20	< 50 < 50	< 100 < 100	< 50 < 50	< 50 < 50	< 20 < 20	< 20 < 20	< 100 < 100	< 100 < 100	< 100 < 100	< 100 < 100	< 100 < 100
	18-Nov-19	< 1.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 5.0	< 1.0	< 20	< 50	< 100	< 50	< 50	< 20	< 20	< 100	< 100	< 100	< 100	< 100
	17-Dec-19 16-Jan-20	< 1.0 < 1.0	< 2.0 < 2.0	< 2.0 < 2.0	< 2.0 < 2.0	< 2.0 < 2.0	< 2.0 < 2.0	< 5.0 < 5.0	< 1.0 < 1.0	< 20 < 20	< 50 < 50	< 100 < 100	< 50 < 50	< 50 < 50	< 20 < 20	< 20 < 20	< 100 < 100	< 100 < 100	< 100 < 100	< 100 < 100	< 100 < 100
	21-Feb-19	< 1.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 5.0	< 1.0	< 20	< 50	< 100	< 50	< 50	< 20	< 20	< 100	< 100	< 100	< 100	< 100
	14-Mar-19 23-Apr-19	< 1.0 < 1.0	< 2.0 < 2.0	< 2.0 < 2.0	< 2.0 < 2.0	< 2.0 < 2.0	< 2.0 < 2.0	< 5.0 < 5.0	< 1.0 < 1.0	< 20 < 20	< 50 < 50	< 100 < 100	< 50 < 50	< 50 < 50	< 20 < 20	< 20 < 20	< 100 < 100	< 100 < 100	< 100 < 100	< 100 < 100	< 100 < 100
1	23 Apr 13	V 1.0	\ \ Z.U	\ Z.U	N 4.0	1 ~ 2.0	1 ~ 2.0	\ J.U	7 1.0	` 40	~ J0	1 100	1 10	1 ~ 30	1 > 20	` 20	V 100	V 100	V 100	V 100	_ \ 100

20193820.001A Page 1 of 16

Ana	luto				втех	N				Total Petroleum Hydrocarbons	Tot	al Petroleum Hydrocai	rbons - Silcia Clean u	p		Recoverable rocarbons	1	Fotal Recoverab	le Hydrocarbons	- Silcia Clean up	9
7.11.2	.,	Benzene**	Toluene	Ethylbenzene	meta- & para- Xylene	ortho- Xylene**	Total Xylenes	Naphthalene **	Sum of BTEX	C ₆ - C ₉	C ₁₀ -C ₁₄ - Silica Cleanup	C ₁₅ -C ₂₈ - Silica Cleanup	C ₂₉ -C ₃₆ - Silica Cleanup	C ₁₀ -C ₃₆ Sum - Silica Cleanup	C ₆ - C ₁₀	C ₆ - C ₁₀ minus BTEX (F1)	>C ₁₀ -C ₁₆ - Silica Cleanup	F2 - Silica Cleanup	>C ₁₆ -C ₃₄ - Silica Cleanup	>C ₃₄ -C ₄₀ - Silica Cleanup	>C ₁₀ -C ₄₀ - Silica Cleanup
LC		1	2	2	2	2	2	5	1	20	50	100	50	50	20	20	100	100	100	100	100
Un		μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L
ANZECC 2000	Trigger Values ADWG 6	950 1	800	300	-	350 350	600	16													
Sample Name	Sample Date	1	000	300	<u>-</u>	330	600														
	16-May-19	< 1.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 5.0	< 1.0	< 20	< 50	< 100	< 50	< 50	< 20	< 20	< 100	< 100	< 100	< 100	< 100
	14-Jun-19	< 1.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 5.0	< 1.0	< 20	< 50	< 100	< 50	< 50	< 20	< 20	< 100	< 100	< 100	< 100	< 100
BH8	16-Jul-19	< 1.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 5.0	< 1.0	< 20	< 50 < 50	< 100	< 50	< 50	< 20	< 20	< 100	< 100	< 100	< 100	< 100
	15-Aug-19 16-Sep-19	< 1.0 < 1.0	< 2.0 < 2.0	< 2.0	< 2.0 < 2.0	< 2.0 < 2.0	< 2.0	< 5.0 < 5.0	< 1.0 < 1.0	< 20 < 20	< 50 < 50	< 100 < 100	< 50 < 50	< 50 < 50	< 20 < 20	< 20 < 20	< 100 < 100	< 100 < 100	< 100 < 100	< 100 < 100	< 100 < 100
	15-Oct-19	< 1.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 5.0	< 1.0	< 20	< 50	< 100	< 50	< 50	< 20	< 20	< 100	< 100	< 100	< 100	< 100
	18-Nov-19	< 1.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 5.0	< 1.0	< 20	< 50	< 100	< 50	< 50	< 20	< 20	< 100	< 100	< 100	< 100	< 100
	17-Dec-19 16-Jan-20	< 1.0 < 1.0	< 2.0 < 2.0	< 2.0 < 2.0	< 2.0 < 2.0	< 2.0 < 2.0	< 2.0 < 2.0	< 5.0 < 5.0	< 1.0 < 1.0	< 20 < 20	< 50 < 50	< 100 < 100	< 50 < 50	< 50 < 50	< 20 < 20	< 20 < 20	< 100 < 100	< 100 < 100	< 100 < 100	< 100 < 100	< 100 < 100
-	22-Feb-19	< 1.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 5.0 < 5.0	< 1.0	< 20	< 50 < 50	< 100 < 100	< 50 < 50	< 50 < 50	< 20	< 20	< 100	< 100	< 100	< 100	< 100
	14-Mar-19	< 1.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 5.0	< 1.0	< 20	< 50	< 100	< 50	< 50	< 20	< 20	< 100	< 100	< 100	< 100	< 100
	23-Apr-19	< 1.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 5.0	< 1.0	< 20	< 50	< 100	< 50	< 50	< 20	< 20	< 100	< 100	< 100	< 100	< 100
	16-May-19	< 1.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 5.0	< 1.0	< 20	< 50	< 100	< 50	< 50	< 20	< 20	< 100	< 100	< 100	< 100	< 100
	14-Jun-19 16-Jul-19	< 1.0 < 1.0	< 2.0 < 2.0	< 2.0 < 2.0	< 2.0 < 2.0	< 2.0 < 2.0	< 2.0 < 2.0	< 5.0 < 5.0	< 1.0 < 1.0	< 20 < 20	< 50 < 50	< 100 < 100	< 50 < 50	< 50 < 50	< 20 < 20	< 20 < 20	< 100 < 100	< 100 < 100	< 100 < 100	< 100 < 100	< 100 < 100
MW239S	15-Aug-19	< 1.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 5.0	< 1.0	< 20	< 50	< 100	< 50	< 50	< 20	< 20	< 100	< 100	< 100	< 100	< 100
	16-Sep-19	< 1.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 5.0	< 1.0	< 20	< 50	< 100	< 50	< 50	< 20	< 20	< 100	< 100	< 100	< 100	< 100
	15-Oct-19	< 1.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 5.0	< 1.0	< 20	< 50	< 100	< 50	< 50	< 20	< 20	< 100	< 100	< 100	< 100	< 100
	18-Nov-19 17-Dec-19	< 1.0 < 1.0	< 2.0 < 2.0	< 2.0	< 2.0 < 2.0	< 2.0 < 2.0	< 2.0 < 2.0	< 5.0 < 5.0	< 1.0 < 1.0	< 20 < 20	< 50 < 50	< 100 < 100	< 50 < 50	< 50 < 50	< 20 < 20	< 20 < 20	< 100 < 100	< 100 < 100	< 100 < 100	< 100 < 100	< 100 < 100
	16-Jan-20	< 1.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 5.0	< 1.0	< 20	< 50	< 100	< 50	< 50	< 20	< 20	< 100	< 100	< 100	< 100	< 100
	23-Apr-19	< 1.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 5.0	< 1.0	< 20	< 50	< 100	< 50	< 50	< 20	< 20	< 100	< 100	< 100	< 100	< 100
	16-May-19	< 1.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 5.0	< 1.0	< 20	< 50	< 100	< 50	< 50	< 20	< 20	< 100	< 100	< 100	< 100	< 100
	14-Jun-19 16-Jul-19	< 1.0 < 1.0	< 2.0 < 2.0	< 2.0 < 2.0	< 2.0 < 2.0	< 2.0 < 2.0	< 2.0 < 2.0	< 5.0 < 5.0	< 1.0 < 1.0	< 20 < 20	< 50 < 50	< 100 < 100	< 50 < 50	< 50 < 50	< 20 < 20	< 20 < 20	< 100 < 100	< 100 < 100	< 100 < 100	< 100 < 100	< 100 < 100
SW1	15-Aug-19	< 1.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 5.0	< 1.0	< 20	< 50	< 100	< 50	< 50	< 20	< 20	< 100	< 100	< 100	< 100	< 100
	16-Sep-19	< 1.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 5.0	< 1.0	< 20	< 50	< 100	< 50	< 50	< 20	< 20	< 100	< 100	< 100	< 100	< 100
	15-Oct-19	< 1.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 5.0	< 1.0	< 20	< 50	< 100	< 50	< 50	< 20	< 20	< 100	< 100	< 100	< 100	< 100
	18-Nov-19	< 1.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 5.0	< 1.0	< 20	< 50	< 100	< 50	< 50	< 20	< 20	< 100	< 100	< 100	< 100	< 100
	22-Feb-19 14-Mar-19	< 1.0 < 1.0	< 2.0 < 2.0	< 2.0 < 2.0	< 2.0 < 2.0	< 2.0 < 2.0	< 2.0 < 2.0	< 5.0 < 5.0	< 1.0 < 1.0	< 20 < 20	< 50 < 50	< 100 < 100	< 50 < 50	< 50 < 50	< 20 < 20	< 20 < 20	< 100 < 100	< 100 < 100	< 100 < 100	< 100 < 100	< 100 < 100
	23-Apr-19	< 1.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 5.0	< 1.0	< 20	< 50	< 100	< 50	< 50	< 20	< 20	< 100	< 100	< 100	< 100	< 100
	16-May-19	< 1.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 5.0	< 1.0	< 20	< 50	< 100	< 50	< 50	< 20	< 20	< 100	< 100	< 100	< 100	< 100
CMD.	14-Jun-19	< 1.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 5.0	< 1.0	< 20	< 50	< 100	< 50	< 50	< 20	< 20	< 100	< 100	< 100	< 100	< 100
SW3	16-Jul-19 15-Aug-19	< 1.0 < 1.0	< 2.0 < 2.0	< 2.0 < 2.0	< 2.0 < 2.0	< 2.0 < 2.0	< 2.0 < 2.0	< 5.0 < 5.0	< 1.0 < 1.0	< 20 < 20	< 50 < 50	< 100 < 100	< 50 < 50	< 50 < 50	< 20 < 20	< 20 < 20	< 100 < 100	< 100 < 100	< 100 < 100	< 100 < 100	< 100 < 100
	16-Sep-19	< 1.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 5.0	< 1.0	< 20	< 50	< 100	< 50	< 50	< 20	< 20	< 100	< 100	< 100	< 100	< 100
	15-Oct-19	< 1.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 5.0	< 1.0	< 20	< 50	< 100	< 50	< 50	< 20	< 20	< 100	< 100	< 100	< 100	< 100
	18-Nov-19	< 1.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 5.0	< 1.0	< 20	< 50	< 100	< 50	< 50	< 20	< 20	< 100	< 100	< 100	< 100	< 100
—	17-Dec-19 23-Apr-19	< 1.0 < 1.0	< 2.0 < 2.0	< 2.0 < 2.0	< 2.0 < 2.0	< 2.0 < 2.0	< 2.0 < 2.0	< 5.0 < 5.0	< 1.0 < 1.0	< 20 < 20	< 50 < 50	< 100 < 100	< 50 < 50	< 50 < 50	< 20 < 20	< 20 < 20	< 100 < 100	< 100 < 100	< 100 < 100	< 100 < 100	< 100 < 100
	16-May-19	< 1.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 5.0	< 1.0	< 20	< 50	< 100	< 50	< 50	< 20	< 20	< 100	< 100	< 100	< 100	< 100
	14-Jun-19	< 1.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 5.0	< 1.0	< 20	< 50	< 100	< 50	< 50	< 20	< 20	< 100	< 100	< 100	< 100	< 100
SW4	16-Jul-19	< 1.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 5.0	< 1.0	< 20	< 50	< 100	< 50	< 50	< 20	< 20	< 100	< 100	< 100	< 100	< 100
	15-Aug-19 16-Sep-19	< 1.0 < 1.0	< 2.0	< 2.0	< 2.0 < 2.0	< 2.0 < 2.0	< 2.0	< 5.0 < 5.0	< 1.0 < 1.0	< 20 < 20	< 50 < 50	< 100 < 100	< 50 < 50	< 50 < 50	< 20 < 20	< 20 < 20	< 100 < 100	< 100 < 100	< 100 < 100	< 100 < 100	< 100 < 100
	15-Oct-19	< 1.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 5.0	< 1.0	< 20	< 50	< 100	< 50	< 50	< 20	< 20	< 100	< 100	< 100	< 100	< 100
	18-Nov-19	< 1.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 5.0	< 1.0	< 20	< 50	< 100	< 50	< 50	< 20	< 20	< 100	< 100	< 100	< 100	< 100

Notes:
- Not analysed
- Less than laboratory limit of reporting

µg/L - Micrograms per litre

BTEXN - Benzene, toluene, ethylbenzene, xylenes, naphthalen

** 95% Level of protection in freshwater

20193820.001A Page 2 of 16

									Me	tals							
Ап	nalyte	Arsenic**	Barium	Beryllium	Boron**	Cadmium**	Chromium**1	Cobalt	Copper**	Iron	Lead**	Manganese**	Mercury** ²	Nickel**	Selenium**	Vanadium	Zinc**
	LOR Jnits	0.001	0.001	0.001	0.05	0.0001	0.001	0.001	0.001	0.05	0.001	0.001	0.0001	0.001	0.01	0.01	0.005
ANZECC 200	0 Trigger Values C ADWG 6	mg/L 0.013 0.01	mg/L	mg/L - 0.06	mg/L 0.37 4	mg/L 0.0002 0.002	mg/L 0.001 0.05	mg/L -	mg/L 0.0014	mg/L - 0.3 ³	mg/L 0.0034 0.01	mg/L 1.9 0.5	0.0006 0.001	mg/L 0.011 0.02	mg/L 0.011 0.01	mg/L	mg/L 0.008 3 ³
Sample Name	Sample Date 15-Mar-19	< 0.001	0.003	< 0.001	< 0.05	< 0.0001	0.004	< 0.001	< 0.001	13	< 0.001	0.014	< 0.0001	< 0.001	< 0.01	< 0.01	1.27
	23-Apr-19	< 0.001	0.003	< 0.001	< 0.05	< 0.0001	0.004	< 0.001	0.002	10	< 0.001	0.015	< 0.0001	0.002	< 0.01	< 0.01	0.363
	16-May-19	< 0.001	0.002	< 0.001	< 0.05	< 0.0001	0.003	< 0.001	< 0.001	8.33	< 0.001	0.009	< 0.0001	0.002	< 0.01	< 0.01	0.132
	14-Jun-19	< 0.001	0.001	< 0.001	< 0.05	< 0.0001	0.002	< 0.001	0.001	6.31	< 0.001	0.009	< 0.0001	< 0.001	< 0.01	< 0.01	0.074
BH1	16-Jul-19 15-Aug-19	< 0.001 < 0.001 < 0.001	0.002 0.002 0.002	< 0.001 < 0.001 < 0.001	< 0.05 < 0.05 < 0.05	< 0.0001 < 0.0001 < 0.0001	0.003 0.003 0.004	< 0.001 < 0.001 < 0.001	0.002 0.002 0.001	7.35 7.96 8.84	< 0.001 < 0.001 < 0.001	0.01 0.008 0.009	< 0.0001 < 0.0001 < 0.0001	0.001 < 0.001 < 0.001	< 0.01 < 0.01 < 0.01	< 0.01 < 0.01 < 0.01	0.116 0.023 0.034
	16-Sep-19 15-Oct-19 18-Nov-19	< 0.001 < 0.001 < 0.001	0.002 0.005 0.001	< 0.001 < 0.001 < 0.001	< 0.05 < 0.05	< 0.0001 < 0.0001 < 0.0001	0.004 0.003 0.004	< 0.001 < 0.001 < 0.001	0.001 < 0.001	4.32	< 0.001 < 0.001 < 0.001	0.009 0.007 0.008	< 0.0001 < 0.0001 < 0.0001	< 0.001 < 0.001 0.001	< 0.01 < 0.01 < 0.01	< 0.01 < 0.01 < 0.01	0.037 0.012
	17-Dec-19	<0.001	0.002	<0.001	<0.05	<0.0001	0.003	<0.001	0.001	8.48	<0.001	0.009	<0.0001	<0.001	<0.01	<0.01	0.028
	16-Jan-20	<0.001	0.003	<0.001	<0.05	<0.0001	0.002	<0.001	0.002	4.43	<0.001	0.011	<0.0001	0.002	<0.01	<0.01	0.044
	21-Feb-19	< 0.001	0.008	< 0.001	< 0.05	< 0.0001	0.002	0.001	< 0.001	0.26	< 0.001	0.003	< 0.0001	0.005	< 0.01	< 0.01	0.031
	15-Mar-19 23-Apr-19	< 0.001 < 0.001	0.005 0.006	< 0.001 < 0.001	< 0.05 < 0.05	< 0.0001 < 0.0001	0.001 0.002	< 0.001 < 0.001	< 0.001 < 0.001	1.49 0.98	< 0.001 < 0.001	0.007	< 0.0001 < 0.0001	0.037 0.07	< 0.01 < 0.01	< 0.01 < 0.01	0.016 0.04
	16-May-19	< 0.001	0.005	< 0.001	< 0.05	< 0.0001	0.002	< 0.001	< 0.001	0.97	< 0.001	0.006	< 0.0001	0.004	< 0.01	< 0.01	0.024
	14-Jun-19	< 0.001	0.004	< 0.001	< 0.05	< 0.0001	0.001	< 0.001	< 0.001	0.98	< 0.001	0.005	< 0.0001	0.001	< 0.01	< 0.01	0.005
	16-Jul-19	< 0.001	0.01	< 0.001	< 0.05	< 0.0001	0.002	< 0.001	< 0.001	0.47	< 0.001	0.003	< 0.0001	0.004	< 0.01	< 0.01	0.007
BH11	15-Aug-19 16-Sep-19 15-Oct-19	< 0.001 < 0.001 < 0.001	0.004 0.005 0.004	< 0.001 < 0.001 < 0.001	< 0.05 < 0.05 < 0.05	< 0.0001 < 0.0001 < 0.0001	0.002 0.001	< 0.001 < 0.001 < 0.001	0.001 < 0.001 0.004	0.87 0.79 0.74	< 0.001 < 0.001 < 0.001	0.007 0.008 0.006	< 0.0001 < 0.0001 < 0.0001	0.001 0.002 0.003	< 0.01 < 0.01 < 0.01	< 0.01 < 0.01 < 0.01	0.005 0.012 0.016
	18-Nov-19 17-Dec-19	< 0.001 < 0.001	0.004 0.004	< 0.001 <0.001	< 0.05 0.06	< 0.0001 <0.0001	0.002 0.002 0.002	< 0.001 <0.001	< 0.001 0.002	0.95 1	< 0.001 <0.001	0.008 0.008	< 0.0001 <0.0001	0.002 0.001	< 0.01 <0.01	< 0.01 <0.01	< 0.005 0.006
	16-Jan-20 22-Feb-19 15-Mar-19	< 0.001 < 0.001 < 0.001	0.005 0.005 0.004	< 0.001 < 0.001 < 0.001	< 0.05 < 0.05 < 0.05	<0.0001 < 0.0001 < 0.0001	< 0.001 < 0.001	< 0.001 < 0.001 < 0.001	<0.001 0.002 0.003	1.08 0.14 < 0.05	< 0.001 < 0.001 < 0.001	0.007 0.021 0.02	<0.0001 < 0.0001 < 0.0001	0.003 0.015 < 0.001	< 0.01 < 0.01 < 0.01	< 0.01 < 0.01 < 0.01	0.005 0.006 < 0.005
	23-Apr-19	< 0.001	0.005	< 0.001	< 0.05	< 0.0001	< 0.001	< 0.001	0.004	0.19	< 0.001	0.018	< 0.0001	0.001	< 0.01	< 0.01	0.008
	16-May-19	< 0.001	0.004	< 0.001	< 0.05	< 0.0001	< 0.001	< 0.001	0.001	0.06	< 0.001	0.014	< 0.0001	0.001	< 0.01	< 0.01	< 0.005
BH2	14-Jun-19	< 0.001	0.004	< 0.001	< 0.05	< 0.0001	< 0.001	< 0.001	0.004	0.08	< 0.001	0.009	< 0.0001	< 0.001	< 0.01	< 0.01	< 0.005
	16-Jul-19	< 0.001	0.004	< 0.001	< 0.05	< 0.0001	< 0.001	< 0.001	0.008	0.05	< 0.001	0.013	< 0.0001	0.001	< 0.01	< 0.01	0.006
	15-Aug-19	< 0.001	0.004	< 0.001	< 0.05	< 0.0001	< 0.001	< 0.001	0.012	0.08	< 0.001	0.011	< 0.0001	< 0.001	< 0.01	< 0.01	< 0.005
	16-Sep-19 15-Oct-19	< 0.001 < 0.001	0.004 0.004	< 0.001 < 0.001	< 0.05	< 0.0001 < 0.0001	< 0.001 < 0.001	< 0.001	0.008	0.26 0.46	< 0.001 < 0.001	0.014 0.011	< 0.0001 < 0.0001	0.001 < 0.001	< 0.01 < 0.01	< 0.01 < 0.01	0.007 0.007
	18-Nov-19	< 0.001	0.007	< 0.001	< 0.05	< 0.0001	< 0.001	< 0.001	0.013	0.08	< 0.001	0.011	< 0.0001	0.007	< 0.01	< 0.01	0.028
	17-Dec-19	<0.001	0.004	<0.001	<0.05	<0.0001	0.002	<0.001	0.006	0.1	<0.001	0.012	<0.0001	0.001	<0.01	<0.01	0.006
	16-Jan-20	<0.001	0.004	<0.001	<0.05	<0.0001	< 0.001	<0.001	0.005	0.73	<0.001	0.014	<0.0001	<0.001	<0.01	<0.01	0.01
BH3	21-Feb-19 21-Feb-19 15-Mar-19	< 0.001 < 0.001 < 0.001	0.003 0.014 0.014	< 0.001 < 0.001 < 0.001	< 0.05 < 0.05 < 0.05	< 0.0001 < 0.0001 < 0.0001	< 0.001 < 0.001	< 0.001 < 0.001 < 0.001	< 0.001 0.002 0.001	0.06 0.16 < 0.05	< 0.001 < 0.001 < 0.001	0.005 0.039 0.014	< 0.0001 < 0.0001 < 0.0001	0.053 0.018 0.022	< 0.01 < 0.01 < 0.01	< 0.01 < 0.01 < 0.01	< 0.005 0.014 0.043
	23-Apr-19 16-May-19	< 0.001 < 0.001	0.013 0.013	< 0.001 < 0.001	0.05 < 0.05	< 0.0001 < 0.0001	< 0.001 < 0.001	< 0.001 < 0.001	0.002 < 0.001	0.99 0.27	< 0.001 < 0.001	0.045 0.022	< 0.0001 < 0.0001	0.007 0.022	< 0.01 < 0.01	< 0.01 < 0.01	0.008 0.011
BH4	14-Jun-19	< 0.001	0.012	< 0.001	< 0.05	< 0.0001	< 0.001	< 0.001	0.038	< 0.05	< 0.001	0.014	< 0.0001	< 0.001	< 0.01	< 0.01	0.005
	16-Jul-19	< 0.001	0.013	< 0.001	< 0.05	< 0.0001	< 0.001	< 0.001	0.046	< 0.05	< 0.001	0.019	< 0.0001	< 0.001	< 0.01	< 0.01	0.007
	15-Aug-19	< 0.001	0.013	< 0.001	< 0.05	< 0.0001	< 0.001	< 0.001	0.026	< 0.05	< 0.001	0.018	< 0.0001	0.001	< 0.01	< 0.01	0.007
	16-Sep-19	< 0.001	0.012	< 0.001	< 0.05	< 0.0001	< 0.001	< 0.001	0.051	0.19	< 0.001	0.026	< 0.0001	0.002	< 0.01	< 0.01	0.005
	15-Oct-19	< 0.001	0.01	< 0.001	< 0.05	< 0.0001	< 0.001	< 0.001	0.011	0.31	< 0.001	0.136	< 0.0001	0.002	< 0.01	< 0.01	0.014
	18-Nov-19	< 0.001	0.011	< 0.001	< 0.05	< 0.0001	< 0.001	< 0.001	0.005	< 0.05	< 0.001	0.013	< 0.0001	0.001	< 0.01	< 0.01	< 0.005
	17-Dec-19 16-Jan-20	<0.001 <0.001 <0.001	0.011 0.012 0.014	< 0.001 < 0.001 < 0.001	0.05 0.06 <0.05	<0.0001 <0.0001 <0.0001	< 0.001 0.001 < 0.001	<0.001 <0.001 <0.001	0.008	< 0.05 < 0.05 < 0.05	<0.001 <0.001 <0.001	0.013 0.014 0.014	<0.0001 <0.0001 <0.0001	<0.001 <0.001 <0.001	<0.01 <0.01 <0.01	< 0.01 < 0.01 < 0.01	0.005 0.009
BH5	22-Feb-19	< 0.001	0.01	< 0.001	< 0.05	< 0.0001	0.001	< 0.001	< 0.001	1.4	< 0.001	0.005	< 0.0001	0.003	< 0.01	< 0.01	0.008
	22-Feb-19	< 0.001	0.03	< 0.001	< 0.05	< 0.0001	< 0.001	< 0.001	< 0.001	1.03	< 0.001	0.014	< 0.0001	0.001	< 0.01	< 0.01	0.019
	14-Mar-19	< 0.001	0.027	< 0.001	< 0.05	< 0.0001	< 0.001	< 0.001	< 0.001	1.9	< 0.001	0.01	< 0.0001	< 0.001	< 0.01	< 0.01	0.012
	23-Apr-19 16-May-19	< 0.001 < 0.001	0.03 0.029	< 0.001 < 0.001	< 0.05 < 0.05	< 0.0001 < 0.0001	< 0.001 < 0.001	< 0.001 < 0.001	0.001 < 0.001	0.96 2.57	< 0.001 < 0.001	0.01 0.009	< 0.0001 < 0.0001	< 0.001 < 0.001	< 0.01 < 0.01	< 0.01 < 0.01	0.022 < 0.005
BH6	14-Jun-19	< 0.001	0.027	< 0.001	< 0.05	< 0.0001	< 0.001	< 0.001	0.001	2.86	< 0.001	0.008	< 0.0001	< 0.001	< 0.01	< 0.01	0.008
	16-Jul-19	< 0.001	0.026	< 0.001	< 0.05	< 0.0001	< 0.001	< 0.001	0.002	2.41	< 0.001	0.008	< 0.0001	< 0.001	< 0.01	< 0.01	0.005
	15-Aug-19	< 0.001	0.026	< 0.001	< 0.05	< 0.0001	< 0.001	< 0.001	0.001	2.19	< 0.001	0.008	< 0.0001	< 0.001	< 0.01	< 0.01	0.007
	16-Sep-19 15-Oct-19	< 0.001 < 0.001	0.034 0.026	< 0.001 < 0.001	< 0.05 < 0.05	< 0.0001 < 0.0001	< 0.001 < 0.001	< 0.001 < 0.001	0.008 < 0.001	2.08 1.95 1.58	< 0.001 < 0.001	0.012 0.009	< 0.0001 < 0.0001	0.007 < 0.001 0.008	< 0.01 < 0.01	< 0.01 < 0.01	0.035 0.006 0.073
	18-Nov-19 17-Dec-19 16-Jan-20	< 0.001 <0.001 <0.001	0.03 0.026 0.032	< 0.001 <0.001 <0.001	< 0.05 0.05 <0.05	< 0.0001 <0.0001 <0.0001	< 0.001 0.001 < 0.001	< 0.001 <0.001 <0.001	< 0.001 0.003 < 0.001	1.78 2.15	< 0.001 <0.001 <0.001	0.009 0.007 0.01	< 0.0001 <0.0001 <0.0001	0.001 <0.001	< 0.01 <0.01 <0.01	< 0.01 <0.01 <0.01	0.006 <0.005
	22-Feb-19	< 0.001	0.004	< 0.001	< 0.05	< 0.0001	0.002	0.003	< 0.001	1.8	< 0.001	0.026	< 0.0001	0.004	< 0.01	< 0.01	0.019
	14-Mar-19	< 0.001	0.01	< 0.001	< 0.05	< 0.0001	0.001	0.003	< 0.001	1.8	< 0.001	0.02	< 0.0001	0.004	< 0.01	< 0.01	0.009
	23-Apr-19	< 0.001	0.012	< 0.001	< 0.05	< 0.0001	0.002	0.003	< 0.001	2.0	< 0.001	0.026	< 0.0001	0.004	< 0.01	< 0.01	0.01
	16-May-19	< 0.001	0.008	< 0.001	< 0.05	< 0.0001	0.002	0.003	< 0.001	2.32	< 0.001	0.035	< 0.0001	0.005	< 0.01	< 0.01	0.013
	14-Jun-19	< 0.001	0.005	< 0.001	< 0.05	< 0.0001	0.002	0.002	< 0.001	2.06	< 0.001	0.03	< 0.0001	0.004	< 0.01	< 0.01	0.006
BH7	16-Jul-19	< 0.001	0.005	< 0.001	< 0.05	< 0.0001	0.002	0.002	< 0.001	1.66	< 0.001	0.025	< 0.0001	0.003	< 0.01	< 0.01	< 0.005
	15-Aug-19	< 0.001	0.005	< 0.001	< 0.05	< 0.0001	0.002	0.002	< 0.001	1.54	< 0.001	0.023	< 0.0001	0.003	< 0.01	< 0.01	< 0.005
	16-Sep-19	< 0.001	0.016	< 0.001	0.06	< 0.0001	0.002	0.002	0.007	1.42	0.001	0.024	< 0.0001	0.02	< 0.01	< 0.01	0.085
	15-Oct-19	< 0.001	0.009	< 0.001	< 0.05	< 0.0001	0.002	0.002	0.003	1.32	< 0.001	0.018	< 0.0001	0.003	< 0.01	< 0.01	0.011
	18-Nov-19	< 0.001	0.016	< 0.001	< 0.05	< 0.0001	0.002	0.002	< 0.001	1.1	< 0.001	0.015	< 0.0001	0.013	< 0.01	< 0.01	0.053
	17-Dec-19	<0.001	0.009	<0.001	0.06	<0.0001	0.002	0.001	<0.001	0.98	<0.001	0.011	<0.0001	0.003	<0.01	<0.01	0.007
	16-Jan-20	<0.001	0.01	<0.001	<0.05	<0.0001	0.002	<0.001	<0.001	0.93	<0.001	0.006	<0.0001	0.003	<0.01	<0.01	0.007
	21-Feb-19	0.001 *	0.011	< 0.001	< 0.05	< 0.0001	0.001	< 0.001	< 0.001	4.1	< 0.001	0.012	< 0.0001	0.002	< 0.01	< 0.01	0.006
	14-Mar-19	< 0.001	0.006	< 0.001	< 0.05	< 0.0001	0.001	< 0.001	< 0.001	3.25	< 0.001	0.008	< 0.0001	0.002	< 0.01	< 0.01	< 0.005
	23-Apr-19	0.001	0.008	< 0.001	< 0.05	< 0.0001	0.001	< 0.001	< 0.001	3.2	< 0.001	0.009	< 0.0001	0.002	< 0.01	< 0.01	0.008
	16-May-19	0.003	0.01	< 0.001	< 0.05	< 0.0001	0.001	< 0.001	< 0.001	3.0	< 0.001	0.01	< 0.0001	0.003	< 0.01	< 0.01	< 0.005
BH8	14-Jun-19	< 0.001	0.01	< 0.001	< 0.05	< 0.0001	0.001	< 0.001	< 0.001	2.5	< 0.001	0.005	< 0.0001	0.002	< 0.01	< 0.01	0.006
	16-Jul-19	0.001	0.012	< 0.001	< 0.05	< 0.0001	0.001	< 0.001	< 0.001	2.6	< 0.001	0.004	< 0.0001	0.002	< 0.01	< 0.01	< 0.005
	15-Aug-19	0.001	0.008	< 0.001	< 0.05	< 0.0001	0.001	< 0.001	< 0.001	1.72	< 0.001	0.004	< 0.0001	0.001	< 0.01	< 0.01	< 0.005
	16-Sep-19	0.001	0.01	< 0.001	< 0.05	< 0.0001	0.002	< 0.001	< 0.001	2.06	< 0.001	0.005	< 0.0001	0.002	< 0.01	< 0.01	< 0.005
	15-Oct-19	< 0.001	0.007	< 0.001	< 0.05	< 0.0001	0.001	< 0.001	0.002	2.08	< 0.001	0.009	< 0.0001	0.002	< 0.01	< 0.01	0.011
	18-Nov-19	< 0.001	0.012	< 0.001	< 0.05	< 0.0001	0.002	< 0.001	0.002	2.49	< 0.001	0.01	< 0.0001	0.013	< 0.01	< 0.01	0.053
	17-Dec-19	< 0.001	0.007	<0.001	0.05	<0.0001	0.002	<0.001	0.003	3.02	<0.001	0.011	<0.0001	0.002	<0.01	<0.01	0.007
	16-Jan-20	< 0.001	0.007	<0.001	<0.05	<0.0001	0.002	<0.001	<0.001	2.94	<0.001	0.011	<0.0001	0.002	<0.01	<0.01	0.011
	22-Feb-19 14-Mar-19	< 0.001 < 0.001 < 0.001	0.007 0.008	< 0.001 < 0.001 < 0.001	< 0.05 < 0.05	< 0.0001 < 0.0001 < 0.0001	0.002 0.002	< 0.001 < 0.001 < 0.001	< 0.001 < 0.001 < 0.001	1.11 1.25	< 0.001 < 0.001 < 0.001	0.003 0.005	< 0.0001 < 0.0001 < 0.0001	0.001 0.005	< 0.01 < 0.01	< 0.01 < 0.01 < 0.01	0.006 0.008
	23-Apr-19	< 0.001	0.008	< 0.001	< 0.05	< 0.0001	0.002	< 0.001	< 0.001	1.01	< 0.001	0.004	< 0.0001	0.004	< 0.01	< 0.01	0.007
	16-May-19	< 0.001	0.005	< 0.001	< 0.05	< 0.0001	0.002	< 0.001	< 0.001	0.87	< 0.001	0.003	< 0.0001	0.002	< 0.01	< 0.01	< 0.005
	14-Jun-19	< 0.001	0.005	< 0.001	< 0.05	< 0.0001	0.002	< 0.001	0.002	0.8	< 0.001	0.003	< 0.0001	0.001	< 0.01	< 0.01	< 0.005
MW239S	16-Jul-19	< 0.001	0.006	< 0.001	< 0.05	< 0.0001	0.002	< 0.001	< 0.001	0.87	< 0.001	0.003	< 0.0001	0.002	< 0.01	< 0.01	< 0.005
	15-Aug-19	< 0.001	0.006	< 0.001	< 0.05	< 0.0001	0.002	< 0.001	< 0.001	1.0	< 0.001	0.004	< 0.0001	< 0.001	< 0.01	< 0.01	< 0.005
	16-Sep-19	< 0.001	0.01	< 0.001	< 0.05	< 0.0001	0.002	< 0.001	0.002	0.94	< 0.001	0.006	< 0.0001	0.006	< 0.01	< 0.01	0.032
	15-Oct-19	< 0.001	0.005	< 0.001	< 0.05	< 0.0001	0.002	< 0.001	0.003	0.68	< 0.001	0.004	< 0.0001	0.002	< 0.01	< 0.01	0.011
	18-Nov-19	< 0.001	0.01	< 0.001	< 0.05	< 0.0001	0.002	< 0.001	< 0.001	1.1	< 0.001	0.004	< 0.0001	0.008	< 0.01	< 0.01	0.03
	17-Dec-19 16-Jan-20	<0.001 <0.001	0.008	<0.001 <0.001	<0.05 <0.05	<0.0001 <0.0001	0.003 0.002	<0.001 <0.001	0.001 <0.001	1.33 1.31	<0.001 <0.001	0.003 0.004	<0.0001 <0.0001	0.002 0.002	<0.01 <0.01	<0.01 <0.01	<0.005 0.007
	23-Apr-19	< 0.001	0.043	< 0.001	0.14	< 0.0001	< 0.001	0.017	0.002	4.16	< 0.001	0.841	< 0.0001	0.02	< 0.01	< 0.01	0.356
	16-May-19	< 0.001	0.029	< 0.001	0.1	< 0.0001	< 0.001	0.01	0.003	7.25	< 0.001	0.666	< 0.0001	0.012	< 0.01	< 0.01	0.077
	14-Jun-19	< 0.001	0.029	< 0.001	0.09	0.0002	< 0.001	0.009	0.006	2.75	< 0.001	0.595	< 0.0001	0.011	< 0.01	< 0.01	0.535
SW1	16-Jul-19	< 0.001	0.032	< 0.001	0.08	0.0001	< 0.001	0.007	0.003	1.86	< 0.001	0.59	< 0.0001	0.008	< 0.01	< 0.01	0.239
	15-Aug-19	< 0.001	0.027	< 0.001	0.09	< 0.0001	< 0.001	0.005	0.003	2.15	< 0.001	0.482	< 0.0001	0.005	< 0.01	< 0.01	0.075
	16-Sep-19	< 0.001	0.056	< 0.001	0.09	0.0002	0.001	0.008	0.012	2.45	0.001	0.587	< 0.0001	0.014	< 0.01	< 0.01	0.282
	15-Oct-19	< 0.001	0.036	< 0.001	0.07	< 0.0001	< 0.001	0.005	0.003	1.61	< 0.001	0.383	< 0.0001	0.005	< 0.01	< 0.01	0.055
	18-Nov-19	< 0.001	0.042	< 0.001	0.11	< 0.0001	0.001	0.003	< 0.001	1.14	< 0.001	0.366	< 0.0001	0.003	< 0.01	< 0.01	0.026
	22-Feb-19	0.003	0.075	< 0.001	< 0.05	< 0.0001	< 0.001	< 0.001	< 0.001	4.84	< 0.001	0.033	< 0.0001	0.002	< 0.01	< 0.01	0.016
	14-Mar-19	0.006	0.08	< 0.001	< 0.05	< 0.0001	< 0.001	0.003	< 0.001	9.26	< 0.001	0.048	< 0.0001	0.002	< 0.01	< 0.01	0.009
	23-Apr-19	< 0.001	0.043	< 0.001	< 0.05	< 0.0001	< 0.001	0.003	0.001	2.01	< 0.001	0.046	< 0.0001	0.004	< 0.01	< 0.01	0.016
610	16-May-19 14-Jun-19	< 0.001 < 0.001	0.034 0.035	< 0.001 < 0.001	< 0.05 < 0.05	< 0.0001 < 0.0001	< 0.001 0.001 *	0.002 0.003	< 0.001 < 0.001	1.78 1.68	< 0.001 < 0.001	0.038	< 0.0001 < 0.0001	0.003 0.003	< 0.01 < 0.01	< 0.01 < 0.01	0.012 0.016
SW3	16-Jul-19	< 0.001	0.055	< 0.001	< 0.05	< 0.0001	< 0.001	0.007	0.002	1.25	< 0.001	0.043	< 0.0001	0.006	< 0.01	< 0.01	0.029
	15-Aug-19	< 0.001	0.035	< 0.001	< 0.05	< 0.0001	< 0.001	0.003	0.002	1.16	< 0.001	0.036	< 0.0001	0.003	< 0.01	< 0.01	0.013
	16-Sep-19	< 0.001	0.045	< 0.001	< 0.05	< 0.0001	< 0.001	0.004	0.02	0.69	0.001	0.036	< 0.0001	0.017	< 0.01	< 0.01	0.094
	15-Oct-19	< 0.001	0.034	< 0.001	< 0.05	< 0.0001	< 0.001	0.005	0.002	1.7	< 0.001	0.027	< 0.0001	0.005	< 0.01	< 0.01	0.022
	18-Nov-19	< 0.001	0.031	< 0.001	< 0.05	< 0.0001	0.001	< 0.001	< 0.001	2.6	< 0.001	0.026	< 0.0001	< 0.001	< 0.01	< 0.01	< 0.005
	17-Dec-19	<0.001	0.041	<0.001	<0.05	<0.0001	0.002	<0.001	0.003	1.42	<0.001	0.026	<0.0001	0.001	<0.01	<0.01	<0.005
	23-Apr-19	< 0.001	0.059	< 0.001	< 0.05	< 0.0001	< 0.001	0.003	0.003	2.09	< 0.001	0.037	< 0.0001	0.005	< 0.01	< 0.01	0.03
	16-May-19	< 0.001	0.047	< 0.001	< 0.05	< 0.0001	< 0.001	0.002	< 0.001	1.12	< 0.001	0.03	< 0.0001	0.003	< 0.01	< 0.01	0.019
SW4	14-Jun-19	< 0.001	0.041	< 0.001	< 0.05	< 0.0001	< 0.001	0.002	0.003	0.79	< 0.001	0.034	< 0.0001	0.003	< 0.01	< 0.01	0.014
	16-Jul-19	< 0.001	0.044	< 0.001	< 0.05	< 0.0001	< 0.001	0.002	0.002	0.96	< 0.001	0.043	< 0.0001	0.003	< 0.01	< 0.01	0.014
	15-Aug-19	< 0.001	0.04	< 0.001	< 0.05	< 0.0001	< 0.001	0.001	0.001	0.57	< 0.001	0.032	< 0.0001	0.002	< 0.01	< 0.01	0.009
	16-Sep-19	< 0.001	0.046	< 0.001	< 0.05	< 0.0001	< 0.001	0.002	0.02	0.7	0.001	0.039	< 0.0001	0.017	< 0.01	< 0.01	0.085
	15-Oct-19	< 0.001	0.037	< 0.001	< 0.05	< 0.0001	< 0.001	0.002	0.004	0.66	< 0.001	0.031	< 0.0001	0.003	< 0.01	< 0.01	0.018
L	18-Nov-19	< 0.001	0.035	< 0.001	< 0.05	< 0.0001	< 0.001	< 0.001	< 0.001	6.32	< 0.001	0.032	< 0.0001	0.002	< 0.01	< 0.01	< 0.005

** 95% Level of protection in freshwater

1 value for CR VI

2 as inorganicc

3 Aesthetic

Page 3 of 16

Table C Groundwater and Surface Water Analytical Data - PFAS Williamtown Sand Syndicate

				Perfluoroalkyl Su	Ifonic Acids							Per	fluoroalkyl Carboxylic	: Acids			
Ana	ilyte	Perfluorobutane sulfonic acid (PFBS)	Perfluoropentane sulfonic acid (PFPeS)	Perfluorohexane sulfonic acid (PFHxS)	Perfluoroheptan e sulfonate (PFHpS)	Perfluorooctane sulfonic acid (PFOS)	Perfluorodecanes ulfonic acid (PFDS)	Perfluorobutanoic acid (PFBA)	Perfluoropentano ic acid (PFPeA)	Perfluorohexanoic acid (PFHxA)	Perfluoroheptano ic acid (PFHpA)	Perfluorooctanoic acid (PFOA)	Perfluorononanoic acid (PFNA)	Perfluorodecanoic acid (PFDA)		Perfluorododecano ic acid (PFDoDA)	
L	OR .	0.02	0.02	0.02	0.02	0.01	0.02	0.1	0.02	0.02	0.02	0.01	0.02	0.02	0.02	0.02	0.02
Ur	nits	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L
	ADWG 6 IP 2018***					0.00023						0.56 19					
	MP 2018***					0.00023						5.6					
Sample Name	Sample Date																,
BH11	21-Feb-19	< 0.02	< 0.02	< 0.02	< 0.02	< 0.01	< 0.02	< 0.1	< 0.02	< 0.02	< 0.02	< 0.01	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02
BH2 BH3	22-Feb-19 21-Feb-19	< 0.02 < 0.02	< 0.02 < 0.02	< 0.02 < 0.02	< 0.02 < 0.02	< 0.01 < 0.01	< 0.02 < 0.02	< 0.1 < 0.1	< 0.02 < 0.02	< 0.02 < 0.02	< 0.02 < 0.02	< 0.01 < 0.01	< 0.02 < 0.02	< 0.02 < 0.02	< 0.02 < 0.02	< 0.02 < 0.02	< 0.02 < 0.02
BH3	21-Feb-19 21-Feb-19	< 0.02	< 0.02	< 0.02	< 0.02	< 0.01	< 0.02	< 0.1	< 0.02	< 0.02	< 0.02	< 0.01	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02
	15-Mar-19	< 0.02	< 0.02	< 0.02	< 0.02	< 0.01	< 0.02	< 0.1	< 0.02	< 0.02	< 0.02	< 0.01	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02
	23-Apr-19	< 0.02	< 0.02	< 0.02	< 0.02	< 0.01	< 0.02	< 0.1	< 0.02	< 0.02	< 0.02	< 0.01	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02
	16-May-19 14-Jun-19	< 0.02 < 0.02	< 0.02 < 0.02	< 0.02 < 0.02	< 0.02 < 0.02	< 0.01 < 0.01	< 0.02 < 0.02	< 0.1 < 0.1	< 0.02 < 0.02	< 0.02 < 0.02	< 0.02 < 0.02	< 0.01 < 0.01	< 0.02 < 0.02	< 0.02 < 0.02	< 0.02 < 0.02	< 0.02 < 0.02	< 0.02 < 0.02
	16-Jul-19	< 0.02	< 0.02	< 0.02	< 0.02	< 0.01	< 0.02	< 0.1	< 0.02	< 0.02	< 0.02	< 0.01	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02
BH4	15-Aug-19	< 0.02	< 0.02	< 0.02	< 0.02	< 0.01	< 0.02	< 0.1	< 0.02	< 0.02	< 0.02	< 0.01	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02
	16-Sep-19 25-Sep-19	< 0.02 < 0.02	< 0.02 < 0.02	< 0.02 < 0.02	< 0.02 < 0.02	< 0.01 < 0.01	0.02 <0.02	< 0.1 < 0.1	< 0.02 < 0.02	< 0.02 < 0.02	< 0.02 < 0.02	< 0.01 < 0.01	< 0.02 < 0.02	< 0.02 < 0.02	< 0.02 < 0.02	< 0.02 < 0.02	< 0.02 < 0.02
	15-Oct-19	< 0.02	< 0.02	< 0.02	< 0.02	< 0.01	< 0.02	< 0.1	< 0.02	< 0.02	< 0.02	< 0.01	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02
	18-Nov-19	< 0.02	< 0.02	< 0.02	< 0.02	< 0.01	< 0.02	< 0.1	< 0.02	< 0.02	< 0.02	< 0.01	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02
	17-Dec-19 16-Jan-20	< 0.02 < 0.02	< 0.02 < 0.02	< 0.02	< 0.02	< 0.01	< 0.02 < 0.02	< 0.1	< 0.02 < 0.02	< 0.02 < 0.02	< 0.02 < 0.02	< 0.01	< 0.02 < 0.02	< 0.02 < 0.02	< 0.02 < 0.02	< 0.02 < 0.02	< 0.02
BH5	22-Feb-19	< 0.02	< 0.02	< 0.02	< 0.02	< 0.01	< 0.02	< 0.1	< 0.02	< 0.02	< 0.02	< 0.01	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02
	22-Feb-19	< 0.02	< 0.02	< 0.02	< 0.02	< 0.01	< 0.02	< 0.1	< 0.02	< 0.02	< 0.02	< 0.01	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02
	14-Mar-19	< 0.02	< 0.02	< 0.02	< 0.02	< 0.01	< 0.02	< 0.1	< 0.02	< 0.02	< 0.02	< 0.01	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02
	23-Apr-19 16-May-19	< 0.02 < 0.02	< 0.02 < 0.02	< 0.02 < 0.02	< 0.02 < 0.02	< 0.01 < 0.01	< 0.02 < 0.02	< 0.1	< 0.02 < 0.02	< 0.02 < 0.02	< 0.02 < 0.02	< 0.01	< 0.02 < 0.02	< 0.02 < 0.02	< 0.02 < 0.02	< 0.02 < 0.02	< 0.02 < 0.02
	14-Jun-19	< 0.02	< 0.02	< 0.02	< 0.02	< 0.01	< 0.02	< 0.1	< 0.02	< 0.02	< 0.02	< 0.01	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02
BH6	16-Jul-19	< 0.02	< 0.02	< 0.02	< 0.02	< 0.01	< 0.02	< 0.1	< 0.02	< 0.02	< 0.02	< 0.01	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02
	15-Aug-19 16-Sep-19	< 0.02 < 0.02	< 0.02 < 0.02	< 0.02 < 0.02	< 0.02 < 0.02	< 0.01 < 0.01	< 0.02 < 0.02	< 0.1 < 0.1	< 0.02 < 0.02	< 0.02 < 0.02	< 0.02 < 0.02	< 0.01 < 0.01	< 0.02 < 0.02	< 0.02 < 0.02	< 0.02 < 0.02	< 0.02 < 0.02	< 0.02 < 0.02
	15-Oct-19	< 0.02	< 0.02	< 0.02	< 0.02	< 0.01	< 0.02	< 0.1	< 0.02	< 0.02	< 0.02	< 0.01	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02
	18-Nov-19	< 0.02	< 0.02	< 0.02	< 0.02	< 0.01	< 0.02	< 0.1	< 0.02	< 0.02	< 0.02	< 0.01	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02
	17-Dec-19 16-Jan-20	< 0.02 < 0.02	< 0.02 < 0.02	< 0.02 < 0.02	< 0.02 < 0.02	< 0.01 < 0.01	< 0.02 < 0.02	< 0.1 < 0.1	< 0.02 < 0.02	< 0.02 < 0.02	< 0.02 < 0.02	< 0.01 < 0.01	< 0.02 < 0.02	< 0.02 < 0.02	< 0.02 < 0.02	< 0.02 < 0.02	< 0.02 < 0.02
	22-Feb-19	< 0.02	< 0.02	< 0.02	< 0.02	< 0.01	< 0.02	< 0.1	< 0.02	< 0.02	< 0.02	< 0.01	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02
	14-Mar-19	< 0.02	< 0.02	< 0.02	< 0.02	< 0.01	< 0.02	< 0.1	< 0.02	< 0.02	< 0.02	< 0.01	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02
	23-Apr-19	< 0.02	< 0.02	< 0.02	< 0.02	< 0.01	< 0.02	< 0.1	< 0.02	< 0.02	< 0.02	< 0.01	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02
	16-May-19 14-Jun-19	< 0.02 < 0.02	< 0.02 < 0.02	< 0.02 < 0.02	< 0.02 < 0.02	< 0.01 < 0.01	< 0.02 < 0.02	< 0.1 < 0.1	< 0.02 < 0.02	< 0.02 < 0.02	< 0.02 < 0.02	< 0.01 < 0.01	< 0.02 < 0.02	< 0.02 < 0.02	< 0.02 < 0.02	< 0.02 < 0.02	< 0.02 < 0.02
BH7	16-Jul-19	< 0.02	< 0.02	< 0.02	< 0.02	< 0.01	< 0.02	< 0.1	< 0.02	< 0.02	< 0.02	< 0.01	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02
6117	15-Aug-19	< 0.02	< 0.02	< 0.02	< 0.02	< 0.01	< 0.02	< 0.1	< 0.02	< 0.02	< 0.02	< 0.01	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02
	16-Sep-19 15-Oct-19	< 0.02 < 0.02	< 0.02 < 0.02	< 0.02 < 0.02	< 0.02 < 0.02	< 0.01 < 0.01	< 0.02 < 0.02	< 0.1 < 0.1	< 0.02 < 0.02	< 0.02 < 0.02	< 0.02 < 0.02	< 0.01	< 0.02 < 0.02	< 0.02 < 0.02	< 0.02 < 0.02	< 0.02 < 0.02	< 0.02 < 0.02
	18-Nov-19	< 0.02	< 0.02	< 0.02	< 0.02	< 0.01	< 0.02	< 0.1	< 0.02	< 0.02	< 0.02	< 0.01	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02
	17-Dec-19	< 0.02	< 0.02	< 0.02	< 0.02	< 0.01	< 0.02	< 0.1	< 0.02	< 0.02	< 0.02	< 0.01	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02
	16-Jan-20 21-Feb-19	< 0.02 < 0.02	< 0.02 < 0.02	< 0.02 < 0.02	< 0.02 < 0.02	< 0.01 < 0.01	< 0.02 < 0.02	< 0.1 < 0.1	< 0.02 < 0.02	< 0.02 < 0.02	< 0.02 < 0.02	< 0.01 < 0.01	< 0.02 < 0.02	< 0.02 < 0.02	< 0.02 < 0.02	< 0.02 < 0.02	< 0.02 < 0.02
1	14-Mar-19	< 0.02	< 0.02	< 0.02	< 0.02	< 0.01	< 0.02	< 0.1	< 0.02	< 0.02	< 0.02	< 0.01	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02
	23-Apr-19	< 0.02	< 0.02	< 0.02	< 0.02	< 0.01	< 0.02	< 0.1	< 0.02	< 0.02	< 0.02	< 0.01	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02
I	16-May-19 14-Jun-19	< 0.02 < 0.02	< 0.02 < 0.02	< 0.02 < 0.02	< 0.02 < 0.02	< 0.01 < 0.01	< 0.02 < 0.02	< 0.1 < 0.1	< 0.02 < 0.02	< 0.02 < 0.02	< 0.02 < 0.02	< 0.01 < 0.01	< 0.02 < 0.02	< 0.02 < 0.02	< 0.02 < 0.02	< 0.02 < 0.02	< 0.02 < 0.02
B.10	14-Jun-19 16-Jul-19	< 0.02	< 0.02	< 0.02	< 0.02	< 0.01	< 0.02	< 0.1	< 0.02	< 0.02	< 0.02	< 0.01	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02
BH8	15-Aug-19	< 0.02	< 0.02	< 0.02	< 0.02	< 0.01	< 0.02	< 0.1	< 0.02	< 0.02	< 0.02	< 0.01	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02
1	16-Sep-19	< 0.02 < 0.02	< 0.02 < 0.02	< 0.02 < 0.02	< 0.02 < 0.02	< 0.01 < 0.01	< 0.02 < 0.02	< 0.1 < 0.1	< 0.02 < 0.02	< 0.02 < 0.02	< 0.02 < 0.02	< 0.01 < 0.01	< 0.02 < 0.02	< 0.02 < 0.02	< 0.02 < 0.02	< 0.02 < 0.02	< 0.02 < 0.02
Ì	15-Oct-19 18-Nov-19	< 0.02 < 0.02	< 0.02 < 0.02	< 0.02 < 0.02	< 0.02 < 0.02	< 0.01 < 0.01	< 0.02 < 0.02	< 0.1 < 0.1	< 0.02 < 0.02	< 0.02 < 0.02	< 0.02 < 0.02	< 0.01 < 0.01	< 0.02 < 0.02	< 0.02 < 0.02	< 0.02 < 0.02	< 0.02 < 0.02	< 0.02 < 0.02
	17-Dec-19	< 0.02	< 0.02	< 0.02	< 0.02	< 0.01	< 0.02	< 0.1	< 0.02	< 0.02	< 0.02	< 0.01	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02
NAV	16-Jan-20	< 0.02	< 0.02	< 0.02	< 0.02	< 0.01	< 0.02	< 0.1	< 0.02	< 0.02	< 0.02	< 0.01	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02
MW239S	22-Feb-19 16-May-19	< 0.02 < 0.02	< 0.02 < 0.02	< 0.02 < 0.02	< 0.02	< 0.01 < 0.01	< 0.02 < 0.02	< 0.1 < 0.1	< 0.02 < 0.02	< 0.02 < 0.02	< 0.02 < 0.02	< 0.01 < 0.01	< 0.02 < 0.02	< 0.02 < 0.02	< 0.02 < 0.02	< 0.02 < 0.02	< 0.02 < 0.02
SW1	16-May-19 16-Sep-19	< 0.02	< 0.02	< 0.02	< 0.02 < 0.02	< 0.01	< 0.02	< 0.1	< 0.02	< 0.02	< 0.02	< 0.01	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02
-	18-Nov-19	< 0.02	< 0.02	< 0.02	< 0.02	< 0.01	< 0.02	< 0.1	< 0.02	< 0.02	< 0.02	< 0.01	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02
	22-Feb-19	< 0.02	< 0.02	< 0.02	< 0.02	< 0.01	< 0.02	< 0.1	< 0.02	< 0.02	< 0.02	< 0.01	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02
SW3	16-May-19 16-Sep-19	< 0.02 < 0.02	< 0.02 < 0.02	< 0.02 < 0.02	< 0.02 < 0.02	< 0.01 < 0.01	< 0.02 < 0.02	< 0.1 < 0.1	< 0.02 < 0.02	< 0.02 < 0.02	< 0.02 < 0.02	< 0.01 < 0.01	< 0.02 < 0.02	< 0.02 < 0.02	< 0.02 < 0.02	< 0.02 < 0.02	< 0.02 < 0.02
	18-Nov-19	< 0.02	< 0.02	< 0.02	< 0.02	< 0.01	< 0.02	< 0.1	< 0.02	< 0.02	< 0.02	< 0.01	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02
	16-May-19	< 0.02	< 0.02	< 0.02	< 0.02	< 0.01	< 0.02	< 0.1	< 0.02	< 0.02	< 0.02	< 0.01	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02
SW4	16-Sep-19	< 0.02	< 0.02	< 0.02	< 0.02	0.03 *	< 0.02	< 0.1	< 0.02	< 0.02	< 0.02	< 0.01	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02
	25-Sep-19 18-Nov-19	< 0.02 < 0.02	< 0.02 < 0.02	< 0.02 < 0.02	< 0.02 < 0.02	0.05 < 0.01	< 0.02 < 0.02	< 0.1 < 0.1	< 0.02 < 0.02	< 0.02 < 0.02	< 0.02 < 0.02	< 0.01 < 0.01	< 0.02 < 0.02	< 0.02 < 0.02	< 0.02 < 0.02	< 0.02 < 0.02	< 0.02 < 0.02
L	10-1404-13	< 0.02	V 0.02	₹ 0.02	₹ 0.02	< 0.01	\ 0.02	< 0.1	\ 0.02	₹ 0.02	< 0.02	< 0.01	\ 0.02	\ 0.02	< 0.02	₹ 0.02	\ 0.02

Notes:
- Not analysed
< - Less than laboratory limit of reporting
µg/L - Micrograms per litre

*** 99% Level of protection in freshwater

⁴ Recreation water

20193820.001A Page 4 of 16

Table C Groundwater and Surface Water Analytical Data - PFAS Williamtown Sand Syndicate

Part						_Perf	luoroalkyl Sulfonan	nides				(n:2) Fluorotelomer S	ulfonic Acids			Sum of PFAS
Part			ic acid (PFTeDA)	sulfonamide (FOSA)	perfluorooctane sulfonamide (MeFOSA)	N-Ethyl perfluorooctane sulfonamide (EtFOSA)	N-Methyl perfluorooctane sulfonamidoethan ol (MeFOSE)	N-Ethyl perfluorooctane sulfonamidoethan ol (EtFOSE)	perfluorooctane sulfonamidoacetic acid (MeFOSAA)	perfluorooctane sulfonamidoacetic acid (EtFOSAA)	acid (4:2 FTS)	6:2 Fluorotelomer sulfonic acid (6:2 FTS)	8:2 Fluorotelomer sulfonic acid (8:2 FTS)	Fluorotelomer sulfonic acid (10:2 FTS)	and PFOS	
Second S																
The color The			μg/L	μg/L	µg/ L	μg/L	μg/L	µg/L	μg/L	μg/ L	µg/L	μ9/L	µg/L	μg/L		µg/L
Sept																
The column The															0.7	
## 1-0-13			< 0.05	< 0.02	< 0.05	< 0.05	< 0.05	< 0.05	< 0.02	< 0.02	< 0.05	< 0.05	< 0.05	< 0.05	< 0.01	< 0.01
## 1960 1.00																
Part	BH3															
### PAPER 1																
Help (1) (1) (1) (1) (1) (1) (1) (1) (1) (1)																
## Propries 1-00 1-																
## 1													< 0.05			
Part	BH4															
Heat		25-Sep-19		< 0.02		< 0.05		< 0.05	< 0.02	< 0.02		< 0.05	< 0.05	< 0.05	< 0.01	
Process Proc																
Page																
## 1976 229 2.00		16-Jan-20	< 0.05			< 0.05	< 0.05	< 0.05				< 0.05	< 0.05	< 0.05	< 0.01	
## PAPER \$\ \cdots \cdot \cdots \cdot \cdot \cdots \cdot \cd	BH5															
## Property 1-19/1-19 1-19																
## 1997 C.																
## 15-9-19 ## 15-9-19																
1.500 1.00	RH6	16-Jul-19	< 0.05	< 0.02	< 0.05	< 0.05	< 0.05	< 0.05	< 0.02	< 0.02	< 0.05	< 0.05	< 0.05	< 0.05	< 0.01	< 0.01
150c19	5110															
18/00-19																
16-jan-20		18-Nov-19	< 0.05	< 0.02	< 0.05	< 0.05	< 0.05	< 0.05	< 0.02	< 0.02	< 0.05	< 0.05	< 0.05	< 0.05	< 0.01	< 0.01
Part Cop																
Property		22-Feb-19	< 0.05	< 0.02	< 0.05	< 0.05	< 0.05	< 0.05	< 0.02	< 0.02	< 0.05	< 0.05	< 0.05	< 0.05	< 0.01	< 0.01
PATE 16-May 19 0.055 0.002 0.005 0.0																
BH																
15/49/19																
16-9p-19	BH7															
18-Nov-19 < 0.05 < 0.02 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.01 < 0.01 < 0.01		16-Sep-19	< 0.05	< 0.02	< 0.05	< 0.05	< 0.05	< 0.05	< 0.02	< 0.02	< 0.05	< 0.05	< 0.05	< 0.05	< 0.01	< 0.01
17-Dec:9																
16-Jan-20																
144M-19 < 0.05		16-Jan-20	< 0.05					< 0.05				< 0.05	< 0.05	< 0.05	< 0.01	
BHS HB																
Hard																
BHB 16-Jul-19 < 0.05 < 0.02 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 <		16-May-19														
Shap	Buo															
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	BH8	15-Aug-19	< 0.05	< 0.02	< 0.05	< 0.05	< 0.05	< 0.05	< 0.02	< 0.02	< 0.05	< 0.05	< 0.05	< 0.05	< 0.01	< 0.01
18-No-19 < 0.05 < 0.02 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05																
16-Jan-20																
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$																
SM 16-May-19 < 0.05 < 0.02 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 <	MW239S															
18-No-19 < 0.05 < 0.02 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05		16-May-19	< 0.05	< 0.02	< 0.05	< 0.05	< 0.05	< 0.05	< 0.02	< 0.02	< 0.05	< 0.05	< 0.05	< 0.05	< 0.01	< 0.01
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	SW1	16-Sep-19														
SW3 16-May-19 < 0.05 < 0.02 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0																
15-869-19	SW3	16-May-19	< 0.05	< 0.02	< 0.05	< 0.05	< 0.05	< 0.05	< 0.02	< 0.02	< 0.05	< 0.05	< 0.05	< 0.05	< 0.01	< 0.01
16-May-19 < 0.05 < 0.02 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05	55	16-Sep-19 18-Nov-19	< 0.05			< 0.05	< 0.05	< 0.05	< 0.02	< 0.02	< 0.05	< 0.05	< 0.05	< 0.05	< 0.01	< 0.01
SW4																
25-Sep-19 < 0.05 < 0.02 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05	SW4	16-Sep-19	< 0.05	< 0.02	< 0.05	< 0.05	< 0.05	< 0.05	< 0.02	< 0.02	< 0.05	< 0.05	< 0.05	< 0.05	0.03 *	0.01
		25-Sep-19 18-Nov-19	< 0.05 < 0.05	< 0.02 < 0.02	< 0.05 < 0.05	< 0.05 < 0.05	< 0.05 < 0.05	< 0.05 < 0.05	< 0.02 < 0.02	< 0.02 < 0.02	< 0.05 < 0.05	< 0.05 < 0.05	< 0.05 < 0.05	< 0.05 < 0.05	0.05 < 0.01	0.05 < 0.01

Notes:
- - Not analysed
< - Less than laboratory limit of reporting/L - Micrograms per litre

*** 99% Level of protection in freshwa

⁴ Recreation water

20193820.001A Page 5 of 16

Ana	alyte	Sum of PFAS
U	OR	0.01
Uı	nits	μg/L
NHMRC	ADWG 6 IP 2018***	
HEPA NEN	MP 2018*** EMP 2018 ⁴	
Sample Name	Sample Date	
BH11	21-Feb-19	< 0.01
BH2	22-Feb-19	< 0.01
BH3	21-Feb-19	< 0.01
	21-Feb-19 15-Mar-19	< 0.01 < 0.01
	23-Apr-19	< 0.01
	16-May-19	< 0.01
	14-Jun-19 16-Jul-19	< 0.01 < 0.01
BH4	15-Aug-19	< 0.01
	16-Sep-19	0.02
	25-Sep-19	0.02
	15-Oct-19 18-Nov-19	< 0.01 < 0.01
	17-Dec-19	< 0.01
	16-Jan-20	< 0.01
BH5	22-Feb-19 22-Feb-19	< 0.01
	14-Mar-19	< 0.01
	23-Apr-19	< 0.01
	16-May-19	< 0.01
	14-Jun-19 16-Jul-19	< 0.01 < 0.01
BH6	15-Aug-19	< 0.01
	16-Sep-19	< 0.01
	15-Oct-19	< 0.01
	18-Nov-19	< 0.01
	17-Dec-19 16-Jan-20	0.19 < 0.01
	22-Feb-19	< 0.01
	14-Mar-19	< 0.01
	23-Apr-19 16-May-19	< 0.01 < 0.01
	14-Jun-19	< 0.01
BH7	16-Jul-19	< 0.01
5.17	15-Aug-19 16-Sep-19	< 0.01 < 0.01
	15-Sep-19 15-Oct-19	< 0.01
	18-Nov-19	< 0.01
	17-Dec-19	< 0.01
	16-Jan-20 21-Feb-19	< 0.01 < 0.01
	14-Mar-19	< 0.01
	23-Apr-19	< 0.01
	16-May-19	< 0.01
	14-Jun-19 16-Jul-19	< 0.01 < 0.01
BH8	15-Aug-19	< 0.01
	16-Sep-19	< 0.01
	15-Oct-19 18-Nov-19	< 0.01 < 0.01
	18-NOV-19 17-Dec-19	< 0.01
	16-Jan-20	< 0.01
MW239S	22-Feb-19	< 0.01
SW1	16-May-19	< 0.01
DAAT	16-Sep-19 18-Nov-19	< 0.01 < 0.01
	22-Feb-19	< 0.01
SW3	16-May-19	< 0.01
55	16-Sep-19	< 0.01
	18-Nov-19 16-May-19	< 0.01 < 0.01
SW4	16-Sep-19	0.01
JVVT	25-Sep-19	0.05
	18-Nov-19	< 0.01

Notes:
- - Not analysed
< - Less than laboratory limit of reportii
μg/L - Micrograms per litre

*** 99% Level of protection in freshwa

⁴ Recreation water

20193820.001A Page 6 of 16

Table D Groundwater and Surface Water Analytical Data - Inorganics Williamtown Sand Syndicate

Ana	alyte	Sodium	Calcium	Magnesium	Potassium	Sulphate	Chloride	Fluoride	Anions and Reactive phosphorus as	Total	Nitrite as N	Nitrate as N				Total Kjeldahl Nitrogen	Total Cations	Total Anions	Ionic Balance
L	.OR	1	1	1	1	1	1	0.1	P 0.01	Phosphorus 0.01	0.01	0.01	0.01	N 0.01	N 0.1	as N 0.1	0.01	0.01	
	nits	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	meq/L	meq/L	%
ANZECC 2000 NHMRC	O Trigger Values C ADWG 6	180 ³				250 ³	250 ³	1.5	0.02*	0.05*	3	0.7** 50		0.9** 0.5 ³	0.35*				
Sample Name	Sample Date	11	2.0	1.0	< 1.0	< 1.0	25	< 0.1								1	0.66	0.88	
1	15-Mar-19 23-Apr-19	11	1.0	2.0	< 1.0 < 1.0	< 1.0 4.0	25	< 0.1	-	-	-	-	-	-	-	-	0.66	0.88	-
1	16-May-19 14-Jun-19	12 10	< 1.0 < 1.0	2.0 2.0	< 1.0 < 1.0	5.0 3.0	25 24	< 0.1 < 0.1	0.03	< 0.01	< 0.01	< 0.01	< 0.01	0.11	0.3	0.3	0.69 0.6	1.01 0.94	-
1	16-Jul-19	15	< 1.0	2.0	< 1.0	4.0	23	< 0.1	-	-		-	-	-	-	-	0.82	0.94	-
BH1	15-Aug-19 16-Sep-19	14 13	< 1.0 < 1.0	2.0	< 1.0 < 1.0	2.0	21 20	< 0.1	< 0.01	0.06	< 0.01	< 0.01	< 0.01	0.12	0.3	0.3	0.77 0.73	0.91	-
1	15-Oct-19	13	< 1.0	2.0	< 1.0	2.0	21	< 0.1	-	-	-	-	-	-	-	-	0.73	0.71	-
1	18-Nov-19 17-Dec-19	16 14	< 1.0 <1	2.0	< 1.0 <1	3.0 5	23 23	0.1 <0.1	< 0.01	< 0.01	< 0.01	0.01	0.01	0.13	0.3	0.3	0.86 0.77	1.19 1.05	-
	16-Jan-20	16	<1	3	<1	3	25	<0.1	-		-					-	0.94	1.21	-
1	21-Feb-19 15-Mar-19	48 26	< 1.0 < 1.0	10 2.0	< 1.0 < 1.0	24 2.0	80 52	0.1 < 0.1	< 0.01	0.03	< 0.01	0.04	0.04	0.06	1.8	1.8	2.91 1.3	2.76 1.51	-
1	23-Apr-19	32 29	< 1.0 < 1.0	5.0 4.0	< 1.0 < 1.0	2.0 2.0	57	< 0.1		0.01	- 0.01	- 0.01	- 0.01		0.4		1.8	1.65 1.59	-
İ	16-May-19 14-Jun-19	26	< 1.0	3.0	< 1.0	< 1.0	55 53	< 0.1	< 0.01	-	< 0.01	< 0.01	< 0.01	0.12	-	0.4	1.59 1.38	1.5	-
BH11	16-Jul-19 15-Aug-19	49 28	< 1.0 < 1.0	8.0 3.0	< 1.0 < 1.0	8.0 4.0	73 47	0.2 < 0.1	-	-	-	-	-	-	-	-	2.79 1.46	2.22 1.41	-
İ	16-Sep-19	27	< 1.0	3.0	< 1.0	5.0	46	< 0.1	< 0.01	0.12	< 0.01	< 0.01	< 0.01	0.15	0.7	0.7	1.42	1.4	-
1	15-Oct-19 18-Nov-19	28 28	< 1.0 < 1.0	3.0 3.0	< 1.0 < 1.0	3.0 < 1.0	44 53	< 0.1 < 0.1	< 0.01	2.11	< 0.01	0.06	0.06	0.18	5.9	5.8	1.46 1.46	1.3 1.5	-
1	17-Dec-19	26	<1	4	<1	<1	48	< 0.1	-	-	-	-	-	-	-	-	1.46	1.39	-
	16-Jan-20 22-Feb-19	25 12	<1 2.0	2.0	<1 < 1.0	<1 6.0	46 22	<0.1 0.1	< 0.01	0.28	< 0.01	2.76	2.76	0.05	4.0	1.2	1.33 0.79	1.34 0.74	-
1	15-Mar-19 23-Apr-19	10 14	3.0 2.0	2.0	< 1.0	7.0 6.0	23 23	< 0.1 < 0.1	-	-	-	-	-	-	-	-	0.75 0.87	0.79 0.77	-
1	16-May-19	12	2.0	2.0	< 1.0 < 1.0	21	22	< 0.1	< 0.01	0.26	< 0.01	0.38	0.38	0.01	1.3	0.9	0.79	1.06	-
1	14-Jun-19 16-Jul-19	11 13	1.0 2.0	2.0	< 1.0 < 1.0	5.0 9.0	23 20	< 0.1	-	-	-	-	-	-	-	-	0.69 0.83	0.75 0.75	-
BH2	15-Aug-19	12	1.0	2.0	< 1.0	8.0	20	< 0.1	-	-	-	-	-	-	-	-	0.74	0.73	-
1	16-Sep-19 15-Oct-19	11 12	2.0	2.0	< 1.0 < 1.0	8.0 5.0	18 20	< 0.1 < 0.1	< 0.01	0.28	< 0.01	1.07	1.07	0.04	2.7	1.6	0.74 0.79	0.67 0.67	
1	18-Nov-19	14	2.0	1.0	< 1.0	7.0	19 17	< 0.1	< 0.01	0.21	< 0.01	1.01	1.01	0.05	2.1	1.1	0.79 0.83	0.68	-
	17-Dec-19 16-Jan-20	13 13	2	2	<1 <1	8 6	17	<0.1 <0.1	-	-	-	-	-	-	-	-	0.83	0.69 0.72	-
BH3	21-Feb-19 21-Feb-19	4.0 8.0	4.0 2.0	1.0	< 1.0 1.0	4.0 5.0	10 17	< 0.1	< 0.01 < 0.01	2.76 0.19	< 0.01 < 0.01	0.78 0.35	0.78 0.35	0.3 0.04	5.9 0.6	5.1 0.3	0.46 0.56	0.54 0.7	-
1	15-Mar-19	9.0	2.0	< 1.0	< 1.0	5.0	18	< 0.1	- 0.01	-		-	-	-	-	-	0.49	0.61	-
1	23-Apr-19 16-May-19	10 9.0	2.0	1.0	1.0 1.0	3.0 22	19 19	< 0.1	< 0.01	0.97	< 0.01	0.29	0.29	< 0.01	1.0	0.7	0.64 0.6	0.6 0.99	-
1	14-Jun-19	6.0	1.0	1.0	< 1.0	4.0	18	< 0.1		-	-	-	-	-	-	-	0.39	0.59	-
BH4	16-Jul-19 15-Aug-19	10 8.0	2.0	2.0 1.0	1.0 1.0	6.0 5.0	18 16	< 0.1 < 0.1	-	-	-	-	-	-	-	-	0.72 0.56	0.63 0.56	-
1	16-Sep-19 15-Oct-19	11 10	2.0 1.0	2.0 1.0	< 1.0 < 1.0	8.0 4.0	19 18	< 0.1	< 0.01	0.4	< 0.01	0.24	0.24	0.02	0.6	0.4	0.74 0.57	0.7 0.59	-
1	18-Nov-19	11	1.0	1.0	< 1.0	6.0	18	< 0.1	< 0.01	0.08	< 0.01	0.29	0.29	< 0.01	0.3	< 0.1	0.61	0.63	-
1	17-Dec-19 16-Jan-20	9 13	2	2	2	6	16 18	<0.1 <0.1	-	-	-	-	-	-	-	-	0.55 0.88	0.64 0.71	-
BH5	22-Feb-19	42	< 1.0	6.0	1.0	19	69	0.2	< 0.01	0.34	< 0.01	< 0.01	< 0.01	0.09	3.0	3.0	2.35	2.34	-
1	22-Feb-19 14-Mar-19	28 23	3.0 2.0	4.0 4.0	1.0 1.0	28 17	42 37	< 0.1 < 0.1	< 0.01	0.05	< 0.01	0.09	0.09	0.14	0.5	0.4	1.72 1.46	1.77 1.44	-
İ	23-Apr-19	25 23	3.0	4.0	1.0	18 18	42 45	< 0.1	-	0.13	- < 0.01	< 0.01	< 0.01	0.14	0.6	- 0.6	1.59	1.56 1.64	-
İ	16-May-19 14-Jun-19	20	2.0	4.0	1.0	16	42	< 0.1	< 0.01	0.13	< 0.01	< 0.01	< 0.01	U.14 -	-	- 0.6	1.5 1.32	1.52	-
BH6	16-Jul-19 15-Aug-19	23 23	2.0 2.0	4.0 3.0	1.0 1.0	20 21	35 38	< 0.1 < 0.1	-		-	-	-	-	-	-	1.46 1.37	1.4 1.51	-
İ	16-Sep-19	25	3.0	3.0	1.0	21	38	< 0.1	< 0.01	0.15	< 0.01	0.07	0.07	0.19	0.8	0.7	1.51	1.55	-
İ	15-Oct-19 18-Nov-19	25 27	2.0 3.0	4.0 3.0	1.0 1.0	13 18	41 45	< 0.1 < 0.1	< 0.01	0.06	< 0.01	< 0.01	< 0.01	0.23	0.4	0.4	1.54 1.6	1.43 1.64	-
İ	17-Dec-19	26 30	2 3	4	1 2	16 15	42 50	<0.1	-	-	-	-	-	-	-	-	1.58 1.83	1.62 1.86	-
	16-Jan-20 22-Feb-19	30	< 1.0	5.0	2.0	15	50 64	0.2	< 0.01	0.13	< 0.01	0.02	0.02	0.34	2.2	2.2	1.83	2.06	_ -
İ	14-Mar-19 23-Apr-19	36 38	< 1.0 < 1.0	6.0 6.0	2.0 2.0	16 17	61 62	< 0.1 < 0.1	-	-	-	-	-	-	-	-	2.11 2.2	2.05 2.1	1.37
İ	16-May-19	35	< 1.0	5.0	2.0	15	68	0.2	< 0.01	0.06	< 0.01	< 0.01	< 0.01	0.27	0.9	0.9	1.98	2.23	-
i	14-Jun-19 16-Jul-19	31 36	< 1.0 < 1.0	4.0 5.0	2.0	11 12	56 46	0.1 < 0.1	-	-	-	-	-	-	-	-	1.73 2.03	1.81	-
BH7	15-Aug-19	32	< 1.0	4.0	2.0	15	49	0.1	-	-	-	-		-	-	-	1.77	1.85	-
İ	16-Sep-19 15-Oct-19	27 34	< 1.0 < 1.0	4.0 5.0	1.0 2.0	13 12	53 53	< 0.1 < 0.1	< 0.01	0.09	< 0.01	0.06	0.06	0.2	1.2	1.1	1.53 1.94	1.86 1.74	-
İ	18-Nov-19 17-Dec-19	31 26	< 1.0 <1	5.0 5	1.0	15 15	56 44	0.1 <0.1	< 0.01	0.02	< 0.01	< 0.01	< 0.01	0.17	0.5	0.5	1.78 1.57	1.89 1.59	-
i	16-lan-20	27	<1	4	1	13	46	0.2	+		-	-	-	-	-	-	1.53	1.63	+ -

20193820.001A Page 7 of 16

			Alkalinity				Inorganics		
Sodium Isorption Ratio	Bicarbonate Alkalinity as CaCO3	Carbonate Alkalinity as CaCO3		Total Alkalinity as CaCO3	Total Hardness as CaCO3	Electrical Conductivity @ 25°C*	Total Dissolved Solids	Total Dissolved Solids	pН
0.01	1	1	1	1	1	1	1	10	0.01
-	mg/L	mg/L	mg/L	mg/L	mg/L	μS/cm	mg/L	mg/L	pH units
	3	3,	3,	j		125-2200		3,	6.5 - 8.0*
					200 ³		600 ³		6.5-8.5 ³
-	9.0	< 1.0	< 1.0	9.0	9.0	104	68	129	5.67
	10	< 1.0	< 1.0	10	11	84	55	97	5.83
1.7	10 10	< 1.0 < 1.0	< 1.0 < 1.0	10 10	8.0 8.0	105 99	68 64	164 72	5.82 5.52
-	11	< 1.0	< 1.0	11	8.0	102	66	84	5.62
-	14	< 1.0	< 1.0	14	8.0	128	83	82	6.22
1.84	8.0	< 1.0	< 1.0	8.0	8.0	102	66	88	5.44
-	4.0	< 1.0	< 1.0	4.0	8.0	98	64	-	5.5
2.26	24 15	< 1.0 <1	< 1.0 <1	24 15	8.0 8	126 118	82 77	-	6.29 6.05
-	22	<1	<1	22	12	112	73	-	6.23
3.21	< 1.0	< 1.0	< 1.0	< 1.0	41	346	278	-	4.67
-	< 1.0	< 1.0	< 1.0	< 1.0	8.0	186	121	144	4.82
-	< 1.0	< 1.0	< 1.0	< 1.0	20	150	98	135	4.99
3.0	< 1.0	< 1.0	< 1.0	< 1.0	16	188	122	216	4.91
-	< 1.0 < 1.0	< 1.0 < 1.0	< 1.0 < 1.0	< 1.0 < 1.0	12 33	175 318	114 207	107 192	4.84 4.68
-	< 1.0	< 1.0	< 1.0	< 1.0	12	197	128	135	4.88
3.18	< 1.0	< 1.0	< 1.0	< 1.0	12	195	127	140	4.66
-	< 1.0	< 1.0	< 1.0	< 1.0	12	194	126	-	4.92
3.3	< 1.0	< 1.0 <1	< 1.0 <1	< 1.0 2	12 16	193 196	125 127	-	5.12 5.03
-	2	<1	<1	2	12	168	109	-	5.09
1.44	< 1.0	< 1.0	< 1.0	< 1.0	13	91	128	-	4.87
-	< 1.0	< 1.0	< 1.0	< 1.0	16	101	66	90	4.71
-	< 1.0	< 1.0	< 1.0	< 1.0	13	70	46	84	4.82
1.44	< 1.0 < 1.0	< 1.0 < 1.0	< 1.0 < 1.0	< 1.0 < 1.0	13 11	94 91	61 59	144 51	4.85 4.76
-	< 1.0	< 1.0	< 1.0	< 1.0	13	90	58	63	4.76
-	< 1.0	< 1.0	< 1.0	< 1.0	11	110	72	61	5.2
1.32	< 1.0	< 1.0	< 1.0	< 1.0	13	96	62	60	4.72
-	< 1.0	< 1.0	< 1.0	< 1.0	13	102	66	-	5.06
2.02	< 1.0 2	< 1.0	< 1.0 <1	< 1.0 2	9.0 13	102 106	66 69	-	5.47 5.43
-	6	<1 <1	<1	6	13	106	66	-	5.43
0.46	9.0	< 1.0	< 1.0	9.0	14	60	438	-	5.55
1.15	6.0	< 1.0	< 1.0	6.0	9.0	73	96	-	5.4
-	< 1.0	< 1.0	< 1.0	< 1.0	5.0	77	50	70	5.12
-	< 1.0	< 1.0	< 1.0	< 1.0	9.0	54	35	61	5.05
1.3	< 1.0 < 1.0	< 1.0 < 1.0	< 1.0 < 1.0	< 1.0 < 1.0	9.0 7.0	73 69	47 45	100 36	4.99 4.84
-	< 1.0	< 1.0	< 1.0	< 1.0	13	75	49	42	4.96
-	< 1.0	< 1.0	< 1.0	< 1.0	9.0	85	55	49	5.01
1.32	< 1.0	< 1.0	< 1.0	< 1.0	13	95	62	58	4.83
	< 1.0	< 1.0	< 1.0	< 1.0	7.0	85	55	-	4.93
1.86	< 1.0 3	< 1.0 <1	< 1.0	< 1.0 3	7.0	86 85	56 55	-	5.34 5.44
-	4	<1	<1 <1	4	13	85	55	-	5.5
3.59	< 1.0	< 1.0	< 1.0	< 1.0	25	250	211	-	4.87
2.49	< 1.0	< 1.0	< 1.0	< 1.0	24	177	144	-	4.37
-	2.0	< 1.0	< 1.0	2.0	21	179	116	146	4.95
2.04	< 1.0 < 1.0	< 1.0 < 1.0	< 1.0 < 1.0	< 1.0 < 1.0	24 24	136 175	88 114	115 214	4.64 4.88
2.04	< 1.0	< 1.0	< 1.0	< 1.0	24	174	113	90	4.88
-	< 1.0	< 1.0	< 1.0	< 1.0	21	161	105	82	4.73
-	< 1.0	< 1.0	< 1.0	< 1.0	17	201	131	104	4.87
2.44	2.0	< 1.0	< 1.0	2.0	20	197	128	124	4.68
2.64	< 1.0 < 1.0	< 1.0 < 1.0	< 1.0 < 1.0	< 1.0 < 1.0	21 20	202 204	131 133	-	5.17 5.32
-	5	<1.0	<1.0	5	21	207	134	-	5.58
-	7	<1	<1	7	24	218	142	-	5.51
3.16	< 1.0	< 1.0	< 1.0	< 1.0	20	213	196	-	4.76
-	< 1.0	< 1.0	< 1.0	< 1.0	25	271	176	212	4.73
3.26	< 1.0 < 1.0	< 1.0 < 1.0	< 1.0 < 1.0	< 1.0 < 1.0	25 20	205 235	133 153	185 310	4.51 4.87
3.20	< 1.0	< 1.0	< 1.0	< 1.0	16	213	138	145	4.87
-	< 1.0	< 1.0	< 1.0	< 1.0	20	202	131	164	5.0
	8.0	< 1.0	< 1.0	8.0	16	232	151	168	5.53
2.79	5.0	< 1.0	< 1.0	5.0	16	222	144	181	5.07
-	< 1.0	< 1.0	< 1.0	< 1.0	20	252	164	-	4.95
2.89	< 1.0	< 1.0 <1	< 1.0 <1	< 1.0 2.0	20 20	239 210	155 136	-	4.97 5.14
_	2.0								

20193820.001A Page 8 of 16

Anions and Cations																			
Ana	alyte	Sodium	Calcium	Magnesium	Potassium	Sulphate	Chloride	Fluoride	Reactive phosphorus as P	Total Phosphorus	Nitrite as N	Nitrate as N	Nitrite + Nitrate as N	Ammonia as	Total Nitrogen as N	Total Kjeldahl Nitrogen as N	Total Cations	Total Anions	Ionic Balance
Lo	OR	1	1	1	1	1	1	0.1	0.01	0.01	0.01	0.01	0.01	0.01	0.1	0.1	0.01	0.01	
Ur	nits	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	meq/L	meq/L	%
	Trigger Values								0.02*	0.05*		0.7**		0.9**	0.35*				
NHMRC	ADWG 6	180 ³				250 ³	250 ³	1.5			3	50		0.5 ³					
	21-Feb-19	52	< 1.0	6.0	< 1.0	11	90	< 0.1	< 0.01	1.97	< 0.01	< 0.01	< 0.01	0.5	2.4	2.4	2.76	2.77	-
	14-Mar-19 23-Apr-19	45 53	< 1.0 < 1.0	6.0 7.0	< 1.0 < 1.0	6.0 8.0	76 89	< 0.1	-	-	-	-	-	-	-	-	2.45 2.88	2.27 2.68	-
	16-May-19	47	< 1.0	4.0	< 1.0	6.0	81	< 0.1	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	0.12	0.4	0.4	2.37	2.43	-
	14-Jun-19	47	< 1.0	5.0	< 1.0	4.0	89	< 0.1	- 0.01	- 0.01	- 0.01	- 0.01	- 0.01	-		-	2.46	2.59	-
	16-Jul-19	57	< 1.0	5.0	< 1.0	70	121	0.1	-	-	-	-	-	-	-	-	2.89	4.87	26
BH8	15-Aug-19	42	< 1.0	3.0	< 1.0	4.0	63	< 0.1	-	-	-	-	-	-	-	-	2.07	1.86	-
	16-Sep-19	46	< 1.0	3.0	< 1.0	4.0	70	< 0.1	< 0.01	0.43	< 0.01	< 0.01	< 0.01	0.13	1.1	1.1	2.25	2.06	-
	15-Oct-19	45	< 1.0	4.0	< 1.0	4.0	70	< 0.1	-	-	-	-	-	-	-	-	2.29	2.06	-
	18-Nov-19	49	< 1.0	4.0	< 1.0	8.0	80	< 0.1	< 0.01	0.58	< 0.01	0.01	0.01	0.17	1.3	1.3	2.46	2.42	-
	17-Dec-19 16-Jan-20	50 49	<1 <1	4	<1 <1	10 13	75 78	<0.1 <0.1	-	-	-	-	-	-	-	-	2.5 2.46	2.36 6.61	-
-	22-Feb-19	61	< 1.0	6.0	< 1.0	6.0	104	< 0.1	< 0.01	0.56	< 0.01	< 0.01	< 0.01	0.18	3.9	3.9	3.15	3.06	1.43
	14-Mar-19	64	< 1.0	6.0	< 1.0	2.0	126	< 0.1	- 0.01	- 0.30	- 0.01	- 0.01	- 0.01		-	-	3.28	3.64	5.18
	23-Apr-19	64	< 1.0	7.0	1.0	9.0	97	< 0.1	-	-	-	-	-	-	-	-	3.38	2.92	7.32
	16-May-19	52	< 1.0	6.0	< 1.0	13	88	< 0.1	< 0.01	0.43	< 0.01	< 0.01	< 0.01	0.09	1.7	1.7	2.76	2.75	
	14-Jun-19	50	< 1.0	6.0	< 1.0	13	87	< 0.1	-	-	-	-	-	-	-	-	2.67	2.86	-
MW239S	16-Jul-19	52	< 1.0	7.0	1.0	16	73	< 0.1	-	-	-	-	-	-	-	-	2.86	2.39	-
11112555	15-Aug-19	54	< 1.0	7.0	< 1.0	11	88	< 0.1	-		-					-	2.92	2.71	-
	16-Sep-19	55	< 1.0	6.0	1.0	14	85	< 0.1	< 0.01	0.32	< 0.01	< 0.01	< 0.01	0.1	1.4	1.4	2.91	2.69	
	15-Oct-19 18-Nov-19	58 63	< 1.0 < 1.0	6.0	< 1.0 1.0	8.0 8.0	108 118	< 0.1 < 0.1	< 0.01	0.23	< 0.01	< 0.01	< 0.01	0.17	1.2	1.2	3.02 3.26	3.21 3.5	3.15 3.48
	17-Dec-19	65	<1.0	8	<1.0 <1	6	127	< 0.1	< 0.01	-	< 0.01	< 0.01	- 0.01	0.17	-	-	3.48	3.75	3.62
	16-Jan-20	67	<1	8	<1	7	120	<0.1	-	-	-	-	-	-	-	_	3.57	3.57	0.03
	23-Apr-19	94	34	52	6.0	310	95	0.5	-	-	-	-	-	-	-	-	10	9.13	5.6
	16-May-19	86	24	42	6.0	324	112	0.3	< 0.01	0.13	< 0.01	< 0.01	< 0.01	< 0.01	1.8	1.8	8.94	9.9	5.13
	14-Jun-19	77	20	34	5.0	182	112	0.4	-	-	-	-	-	-	-	-	7.27	6.95	2.28
SW1	16-Jul-19	90	20	35	4.0	240	130	0.4	-	-	-	-	-	-	-	-	7.9	8.66	4.64
	15-Aug-19	97	18	32	4.0	212	134	0.4 0.7	- 0.01	-	-	-	-	- 0.01	-	1.2	7.85	8.19	2.12
	16-Sep-19 15-Oct-19	117 124	21 16	39 31	4.0 3.0	244 127	193 191	0.7	< 0.01	0.05	< 0.01	0.02	0.02	< 0.01	1.2	- 1.2	9.45 8.82	8.03	5.38 4.68
	18-Nov-19	142	14	30	4.0	165	234	0.5	< 0.01	0.02	< 0.01	< 0.01	< 0.01	0.03	1.1	1.1	9.45	10	3.03
	22-Feb-19	40	4.0	4.0	1.0	16	82	< 0.1	< 0.01	0.06	< 0.01	< 0.01	< 0.01	0.16	1.0	1.0	2.55	2.87	-
1	14-Mar-19	45	6.0	6.0	2.0	44	64	< 0.1	-	-	-	-	-	-	-	-	2.8	2.8	-
1	23-Apr-19	37	8.0	6.0	1.0	42	53	< 0.1	-	-	-	-	-	-	-	-	2.53	2.37	-
1	16-May-19	35	7.0	5.0	< 1.0	34	54	< 0.1	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	0.1	0.1	2.28	2.25	-
CHO	14-Jun-19	32	7.0	6.0	< 1.0	41	55	< 0.1	-	-	-	-	-	-	-	-	2.24	2.4	
SW3	16-Jul-19 15-Aug-19	46 38	8.0 6.0	7.0	< 1.0 < 1.0	104 54	57 56	0.2 0.1	-		-	-	-	-	-	-	3.39 2.53	3.77 2.7	5.38
1	15-Aug-19 16-Sep-19	38 42	7.0	7.0 8.0	< 1.0	48	50 57	0.1	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	0.01	0.1	0.1	2.53	2.7	-
1	15-Oct-19	40	5.0	7.0	< 1.0	42	57	0.1	< 0.01	- 0.01	< 0.01	- 0.01	< 0.01	- 0.01	- 0.1	- 0.1	2.56	2.48	-
1	18-Nov-19	36	5.0	5.0	< 1.0	29	56	< 0.1	< 0.01	0.04	< 0.01	0.01	0.01	0.03	0.6	0.6	2.23	2.18	-
1	17-Dec-19	40	4	7	1	25	57	<0.1	-	-	-	-	-	-	-	-	2.54	2.25	
	23-Apr-19	39	5.0	5.0	< 1.0	60	64	0.1	-	-	-	-	-	-	-	-	2.36	3.05	13
1	16-May-19	41	5.0	5.0	< 1.0	41	59	< 0.1	0.01	< 0.01	< 0.01	0.05	0.05	< 0.01	0.2	0.2	2.44	2.52	-
1	14-Jun-19	40	5.0	5.0	< 1.0	39	60	< 0.1	-	-	-	-	-	-	-	-	2.4	2.5	-
SW4	16-Jul-19	46	7.0	7.0	< 1.0	67	56	0.2	-	-	-	-	-	-	-	-	2.93	2.97	-
1	15-Aug-19 16-Sep-19	40 45	5.0 7.0	5.0 6.0	< 1.0 < 1.0	43 45	55 58	0.1 0.1	< 0.01	0.01	< 0.01	< 0.01	< 0.01	< 0.01	0.1	0.1	2.4	2.45 2.57	-
1	15-Oct-19	44	6.0	6.0	< 1.0	38	57	0.1	< 0.01	0.01	\ 0.01 -	< 0.01	V 0.01	< 0.01	J.1	- 0.1	2.71	2.4	-
1	18-Nov-19	41	4.0	5.0	< 1.0	41	64	0.2	< 0.01	< 0.01	< 0.01	0.02	0.02	< 0.01	0.2	0.2	2.76	2.66	-
	10 13				1 2.0		· ·		7 0101	1 0.01					· •••				

Notes:
- Not analysed
- Less than laboratory limit of reporting
LOR - Laboratory limit of reporting
mg/L - Milligrams per libre
JS/cm - Microsiemens per centimeter
Bold indicates a detection above the laboratory limit of reporting

* Default trigger values for physical and chemical stressors, for slightly disturbed ecosystems in lowland rivers, Southeast Australia (value is for base flow and not storm event)

** 95% Level of protection in freshwater

3 Aesthetic

20193820.001A Page 9 of 16

Table D Groundwater and Surface Water Analytical Data - Inorganics Williamtown Sand Syndicate

			Alkalinity				Inorganics		
Sodium Adsorption Ratio		Carbonate Alkalinity as CaCO3	Hydroxide Alkalinity as CaCO3	Total Alkalinity as CaCO3	Total Hardness as CaCO3	Electrical Conductivity @ 25°C*	Total Dissolved Solids	Total Dissolved Solids	рН
0.01	1	1	1	1	1	1	1	10	0.01
	mg/L	mg/L	mg/L	mg/L	mg/L	μS/cm	mg/L	mg/L	pH units
						125-2200			6.5 - 8.0*
					200 ³		600 ³		6.5-8.5 ³
4.44	< 1.0	< 1.0	< 1.0	< 1.0	25	352	258	-	4.46
-	< 1.0	< 1.0	< 1.0	< 1.0	25	319	207	253	4.77
-	< 1.0	< 1.0	< 1.0	< 1.0	29	264	172	223	4.76
4.86	1.0	< 1.0	< 1.0	1.0	16	302	196	354	4.9
-	< 1.0	< 1.0	< 1.0	< 1.0	20	315	205	194	4.82
-	< 1.0	< 1.0	< 1.0	< 1.0	20	353	229	226	4.78
	< 1.0	< 1.0	< 1.0	< 1.0	12	260	169	140	5.0
5.43	< 1.0	< 1.0	< 1.0	< 1.0	12	293	190	206	4.85
-	< 1.0	< 1.0	< 1.0	< 1.0	16	303	197 205	-	5.02
5.06	< 1.0	< 1.0 <1	< 1.0	< 1.0 2	16 16	316 328	205	-	5.12
-	7	<1	<1 <1	7	16	328 318	213	-	5.02 5.55
5.21	< 1.0	< 1.0	< 1.0	< 1.0	25	329	234	-	4.89
	2.0	< 1.0	< 1.0	2.0	25	410	266	232	5.02
-	< 1.0	< 1.0	< 1.0	< 1.0	29	294	191	208	4.92
4.44	< 1.0	< 1.0	< 1.0	< 1.0	25	327	212	320	4.87
-	7.0	< 1.0	< 1.0	7.0	25	334	217	220	5.39
-	< 1.0	< 1.0	< 1.0	< 1.0	29	353	229	188	4.85
-	< 1.0	< 1.0	< 1.0	< 1.0	29	359	233	195	4.83
4.7	< 1.0	< 1.0	< 1.0	< 1.0	25	373	242	224	4.66
-	< 1.0	< 1.0	< 1.0	< 1.0	25	404	263	-	4.86
5.38	< 1.0	< 1.0	< 1.0	< 1.0	25	419	272	-	4.76
	2	<1	<1	2	33	439	285	-	5.01
-	2	<1	<1	2	33	423	275	-	5.02
-	< 1.0	< 1.0	< 1.0	< 1.0	299	893	580	707	4.01
2.45	< 1.0	< 1.0	< 1.0	< 1.0	233	947	616	715	4.6
-	< 1.0	< 1.0	< 1.0	< 1.0	190	847	550	512	4.5
-	< 1.0	< 1.0	< 1.0	< 1.0	194	876	569	568	4.42
-	< 1.0	< 1.0	< 1.0	< 1.0	177	813	528	548	4.53
3.49	< 1.0	< 1.0	< 1.0	< 1.0	213	1,080	702	689	4.32
-	< 1.0	< 1.0	< 1.0	< 1.0	168	1,050	682	-	5.32
4.91	< 1.0	< 1.0	< 1.0	< 1.0	158	1,090	708	-	5.06
3.38	11	< 1.0	< 1.0	11	26	262	228		6.21
-	4.0	< 1.0	< 1.0	4.0	40	344	224	279	5.42
	< 1.0	< 1.0	< 1.0	< 1.0	45	220	143	190	5.2
2.47	1.0	< 1.0	< 1.0	1.0	38 42	271	176	300 170	5.24
-	< 1.0 < 1.0	< 1.0 < 1.0	< 1.0 < 1.0	< 1.0 < 1.0	42 69	300 451	195 293	170 246	4.58 4.47
	< 1.0 < 1.0	< 1.0 < 1.0	< 1.0 < 1.0	< 1.0 < 1.0	69 44	451 338	293	246 192	4.47
2.57	< 1.0	< 1.0	< 1.0	< 1.0	50	374	243	201	4.47
- 2.37	< 1.0	< 1.0	< 1.0	< 1.0	41	383	249	- 201	4.75
2.72	< 1.0	< 1.0	< 1.0	< 1.0	33	278	181	-	5.39
2.72	6	<1	<1	6	39	301	196		5.75
	< 1.0	< 1.0	< 1.0	< 1.0	33	293	190	198	4.0
3.1	< 1.0	< 1.0	< 1.0	< 1.0	33	331	215	288	4.08
-	< 1.0	< 1.0	< 1.0	< 1.0	33	316	205	163	4.31
-	< 1.0	< 1.0	< 1.0	< 1.0	46	367	238	207	4.46
-	< 1.0	< 1.0	< 1.0	< 1.0	33	308	200	160	4.48
3.01	< 1.0	< 1.0	< 1.0	< 1.0	42	360	234	208	4.35
-	< 1.0	< 1.0	< 1.0	< 1.0	40	365	237	-	4.48
3.22	< 1.0	< 1.0	< 1.0	< 1.0	30	348	226	-	4.48

20193820.001A Page 10 of 16

Table E Quality Control Sample Analysis - BTEXN Williamtown Sand Syndicate

						ВТЕХ	N					Total Pe	etroleum Hydro	ocarbons		Tot	al Petroleum Hydroca
	Analyte		Benzene	Toluene	Ethylbenzene	meta- & para- Xylene	ortho-Xylene	Total Xylenes	Naphthalene	Sum of BTEX	C ₆ - C ₉	C ₁₀ - C ₁₄	C ₁₅ - C ₂₈	C ₂₉ - C ₃₆	C ₁₀ - C ₃₆ sum	C ₁₀ -C ₁₄ - Silica Cleanup	C ₁₅ -C ₂₈ - Silica Cleanup
	Units		μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L
Sample Name	Sample Date	Sample Type	P9/-	P9/ -	P9/ -	µ9/ -	P9/-	P9/-	P9/ -	P9/-	P9/-	P9/-	P9/-	P9/-	P9/-	P9/ -	P9/ -
TRIP BLANK 13022019		Trip Blank	< 1.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 5.0	< 1.0	< 20	-	-	-	-	< 50	< 100
RINSATE01 21022019	21-Feb-19	Rinsate	< 1.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 5.0	< 1.0	< 20	-	-	-	-	< 50	< 100
BH8_21022019	21-Feb-19	Primary	< 1.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 5.0	< 1.0	< 20	-	-	-	-	< 50	< 100
DUP01_21022019	21-Feb-19	Duplicate	< 1.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 5.0	< 1.0	< 20	-	-	-	-	< 50	< 100
	ercentage Differe	nce	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC
BH8_21022019	21-Feb-19	Primary	< 1.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 5.0	< 1.0	< 20	-	-	-	-	< 50	< 100
TRIP01_21022019	21-Feb-19	Triplicate	< 1.0	< 1.0	< 1.0	< 2.0	< 1.0	< 3.0	< 10	-	< 20	< 50	< 100	< 100	< 100	< 50	< 100
	ercentage Differe		NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC
TRIP BLANK_130319	13-Mar-19	Trip Blank	< 1.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 5.0	< 1.0	< 20	-	-	-	-	-	-
RINSATE02_140319	14-Mar-19 14-Mar-19	Rinsate	< 1.0 < 1.0	< 2.0	< 2.0 < 2.0	< 2.0	< 2.0	< 2.0	< 5.0	< 1.0 < 1.0	< 20	-	-	-		< 50 < 50	< 100 < 100
BH7_140319 DUP02 140319	14-Mar-19 14-Mar-19	Primary Duplicate	< 1.0	< 2.0 < 2.0	< 2.0	< 2.0 < 2.0	< 2.0 < 2.0	< 2.0 < 2.0	< 5.0 < 5.0	< 1.0 < 1.0	< 20 < 20	-	-		-	< 50 < 50	< 100 < 100
	ercentage Differe		< 1.0 NC	< 2.0 NC	< 2.0 NC	NC	NC	NC	< 5.0 NC	< 1.0 NC	NC NC	NC	NC	NC	NC NC	NC	< 100 NC
TRIP BLANK 03	23-Apr-19	Trip Blank	< 1.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 5.0	< 1.0	< 20	INC	INC -	INC	INC	INC -	INC -
RINSATE 03	23-Apr-19 23-Apr-19	Rinsate	< 1.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 5.0	< 1.0	< 20	-	-	-	+	< 50	< 100
TRIP BLANK 04	16-May-19	Trip Blank	< 1.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 5.0	< 1.0	< 20	-	-	-	-		- 100
RINSATE 04	16-May-19	Rinsate	< 1.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 5.0	< 1.0	< 20	<u> </u>	-	-	1 - 1	< 50	< 100
TRIP BLANK 05 14062019		Trip Blank	< 1.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 5.0	< 1.0	< 20	-	-	-	-	< 50	< 100
RINSATE 05 14062019	14-Jun-19	Rinsate	< 1.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 5.0	< 1.0	< 20	-	-	-	-	< 50	< 100
SW3 14062019	14-Jun-19	Primary	< 1.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 5.0	< 1.0	< 20	-	-	-	-	< 50	< 100
DUP05 14062019	14-Jun-19	Duplicate	< 1.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 5.0	< 1.0	< 20	-	-	-	-	< 50	< 100
	ercentage Differe		NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC
SW3_14062019	14-Jun-19	Primary	< 1.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 5.0	< 1.0	< 20	-	-	-	-	< 50	< 100
TRIP05_140619	14-Jun-19	Triplicate	< 1.0	< 1.0	< 1.0	< 2.0	< 1.0	< 3.0	< 10	-	< 20	-	-	-	-	< 50	< 100
Relative P	ercentage Differe	nce	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC
TRIP BLANK 06_16072019		Trip Blank	< 1.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 5.0	< 1.0	< 20	-	-	-	-	< 50	< 100
RINSATE06_16072019	16-Jul-19	Rinsate	< 1.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 5.0	< 1.0	< 20	-	-	-	-	< 50	< 100
RINSATE07	15-Aug-19	Rinsate	< 1.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 5.0	< 1.0	< 20	< 50	< 100	< 50	< 50	-	-
TRIP BLANK 08_16092019		Trip Blank	< 1.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 5.0	< 1.0	< 20	-	-	-	-	< 50	< 100
RINSATE 08_16092019		Rinsate	< 1.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 5.0	< 1.0	< 20	-	-	-	-	< 50	< 100
SW4_16092019	16-Sep-19	Primary	< 1.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 5.0	< 1.0	< 20	-	-	-	-	< 50	< 100
DUP08_16092019	16-Sep-19	Duplicate	< 1.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 5.0	< 1.0	< 20	-	- NC	-	- NC	< 50	< 100
SW4 16092019	Percentage Differe 16-Sep-19	nce Primary	NC < 1.0	NC < 2.0	NC < 2.0	NC < 2.0	NC < 2.0	NC < 2.0	NC < 5.0	NC < 1.0	NC < 20	NC	NC	NC	NC	NC < 50	NC < 100
TRIP08 16092019	16-Sep-19	Triplicate	< 1.0	< 1.0	< 1.0	< 2.0	< 1.0	< 3.0	< 10	- 1.0	< 20	200	400	200	800	< 50	< 100
	ercentage Differe		NC NC	NC	NC NC	NC NC	NC NC	NC	NC NC	NC.	NC.	NC NC	NC	NC	NC.	NC NC	NC NC
TRIP BLANK 15102019	15-Oct-19	Trip Blank	< 1.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 5.0	< 1.0	< 20	-	-	-	-	< 50	< 100
RINSATE 15102019	15-Oct-19	Rinsate	< 1.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 5.0	< 1.0	< 20	-	-	-	-	< 50	< 100
TRIPBLANK09_181119	18-Nov-19	Trip Blank	< 1.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 5.0	< 1.0	< 20	-	-	-	- 1	< 50	< 100
RINSATE09_181119	18-Nov-19	Rinsate	< 1.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 5.0	< 1.0	< 20	-	-	-	-	< 50	< 100
SW4_181119	18-Nov-19	Primary	< 1.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 5.0	< 1.0	< 20	-	-	-	-	< 50	< 100
DUP09_181119	18-Nov-19	Duplicate	< 1.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 5.0	< 1.0	< 20	-	-	-	-	< 50	< 100
	ercentage Differe		NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC
SW4_181119	18-Nov-19	Primary	< 1.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 5.0	< 1.0	< 20	-	-	-	-	< 50	< 100
TRIP09_18112019	18-Nov-19	Triplicate	< 1.0	< 1.0	< 1.0	< 2.0	< 1.0	< 3.0	< 10	-	< 20	< 50	< 100	< 100	< 100	< 50	< 100
	ercentage Differe		NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC
TRIPBLANK10_171219	17-Dec-19	Trip Blank	< 1.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 5.0	< 1.0	< 20	-	-	-	-	< 50	< 100
RINSATE10_171219	17-Dec-19	Rinsate	< 1.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 5.0	< 1.0	< 20	-	-	-	-	< 50	< 100
RIP BLANK 13_200133300	16-Jan-20	Trip Blank	< 1.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 5.0	< 1.0	< 20	-	-	-	-	< 50	< 100
RINSATE 13_2001333009	16-Jan-20	Rinsate	< 1.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 5.0	< 1.0	< 20	-	-	-	-	< 50	< 100
BH6_2001333004	16-Jan-20	Primary	< 1.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 5.0	< 1.0	< 20	-	-	-	-	< 50	< 100
QW12_2001333012	16-Jan-20	Duplicate	< 1.0 NC	< 2.0 NC	< 2.0 NC	< 2.0 NC	< 2.0 NC	< 2.0 NC	< 5.0 NC	< 1.0 NC	< 20 NC	- NC	- NC	NC.	- NC	< 50 NC	< 100 NC
Relative P BH6 2001333004	ercentage Differe 16-Jan-20	nce Primary	NC < 1.0	< 2.0	NC < 2.0	NC < 2.0	< 2.0	< 2.0	< 5.0	NC < 1.0	< 20	NC -	NC	NC	NC	NC < 50	NC < 100
OW13 14392	16-Jan-20 16-Jan-20	Triplicate	< 1.0	< 1.0	< 2.0 < 1.0	< 2.0 < 2.0	< 1.0	< 3.0	< 5.0 < 10	< 1.0	< 20	250	300	100	650	< 50 < 50	< 100 < 100
	ercentage Differe		× 1.0	NC	NC NC	× 2.0	NC	NC	NC	NC .	NC NC	NC	NC	NC	NC	NC	< 100 NC
Neidtive F	Crecinage Differe	IICC	IVC	INC	INC	INC	INC	INC	INC	INC	INC	INC	INC	INC	INC	INC	INC

Notes: - - Not analysed

< - Less than laboratory limit of reporting NC - Not calculated

μg/L - Micrograms per litre BTEXN - Benzene, toluene, ethylbenzene, xylenes, naphthalene

20193820.001A Page 11 of 16

Table E Quality Control Sample Analysis - BTEXN Williamtown Sand Syndicate

	bons - Silcia Clean u	D		To	tal Recoverab	le Hydrocarbons			1 1	otal Recoverabl	e Hydrocarbons	- Silcia Clean u	D
Cleanp Silica Cleanp Sil													
4.50			C ₆ - C ₁₀		>C ₁₀ - C ₁₆		>C ₁₆ - C ₃₄	>C ₃₄ - C ₄₀					
\$\begin{array}{c c c c c c c c c c c c c c c c c c c	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L
\$\begin{array}{c c c c c c c c c c c c c c c c c c c													
C S C S C S C C C C													
C S0													
NC													
\$59													
C 100							INC	INC					
NC							< 100	< 100					
Color													
\$\leq \(\frac{\cup 0}{\cup 0} \rightarrow \frac{\cup 0}{\cup 0} \right					II.C	NC NC	140	· · · · ·					
\$ 50													< 100
\$ 50													
NC													
Section Sect						İ							
< 50			< 20						-	-	-	-	
C C C C C C C C C C	< 50	< 50							< 100	< 100	< 100	< 100	< 100
 ≤50 ≤50 ≤50 ≤50 ≤50 ≤50 ≤50 ≤50 ≤50 ≤50 ≤50 ≤50 ≤50 ≤50 ≤50 ≤50 ≤50 ≤50 ≤50 ≤50 ≤50 ≤50 ≤50 ≤50 ≤50 ≤50 ≤50 ≤20 ≥20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20<	-	-	< 20	< 20					-	-	-	-	-
< 50	< 50	< 50	< 20	< 20					< 100	< 100	< 100	< 100	< 100
 ≤50 ≤50 ≤50 ≤50 ≤50 ≤50 ≤50 ≤50 ≤50 ≤50 ≤20 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 	< 50			< 20	-	-	-	-					< 100
C S S S S S S S S S					-	-	-	-					
NC					-	-	-	-					
< 50													
C 100													
NC													
< 50													
S S S S S S S S S S													
-					-	-	-	-					
< 50					-	-	-	-					
< 50						< 100		< 100					
						-		-					
S													
NC													
< 50													
<100													
NC					180			100		- 100			
< 50										NC			NC
< 50													
< 50					-	-		-					
< 50					-	-	-	-					
< 50					-	-	-	-					
NC					-	-	-	-					
< 50													
<100													
NC													
< 50													
< 50													
< 50													
< 50													
< 50													
< 50													
NC NC<													
<50													
< 100					- IVC	-	- 140	-					
					210	210	400	<100					
	NC NC	NC NC	NC	NC NC	NC NC	NC NC	NC NC	NC	NC NC	NC	NC NC	NC NC	NC

20193820.001A Page 12 of 16

			Metals .															
										Met	ais							
	Analyte		Arsenic	Barium	Beryllium	Boron	Cadmium	Chromium	Cobalt	Copper	Iron	Lead	Manganese	Mercury	Nickel	Selenium	Vanadium	Zinc
			Arsenic	Dariuiii	berymum	DOTOIT	Caumum	Cironium	CODAIL	Соррег	11011	Ledu	Manganese	Mercury	Nickei	Selelliulli	Vallaululli	ZIIIC
	Units		mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L
Sample Name	Sample Date	Sample Type	IIIg/L	mg/L	IIIg/L	IIIg/L	mg/L	IIIg/L	mg/L	IIIg/L	mg/L	mg/L	mg/L	IIIg/L	IIIg/L	IIIg/L	mg/L	mg/L
TRIP BLANK_13022019	13-Feb-19	Trip Blank	< 0.001	< 0.001	< 0.001	< 0.05	< 0.0001	< 0.001	< 0.001	< 0.001	< 0.05	< 0.001	< 0.001	< 0.0001	< 0.001	< 0.01	< 0.01	< 0.005
RINSATE01_21022019 BH8 21022019	21-Feb-19 21-Feb-19	Rinsate Primary	< 0.001 < 0.001	< 0.001 0.011	< 0.001 < 0.001	< 0.05 < 0.05	< 0.0001 < 0.0001	< 0.001 0.001	< 0.001 < 0.001	< 0.001 < 0.001	< 0.05 4.1	< 0.001 < 0.001	< 0.001 0.012	< 0.0001 < 0.0001	< 0.001 0.002	< 0.01 < 0.01	< 0.01 < 0.01	< 0.005 0.005
DUP01 21022019	21-Feb-19 21-Feb-19	Duplicate	0.001	0.011	< 0.001	< 0.05	< 0.0001	0.001	< 0.001	< 0.001	4.09	< 0.001	0.012	< 0.0001	0.002	< 0.01	< 0.01	0.005
Relative P	ercentage Differenc	e	67%	24%	NC	NC	NC	0%	NC	NC	0%	NC	0%	NC	40%	NC	NC	100%
BH8_21022019	21-Feb-19	Primary	< 0.001	0.011	< 0.001	< 0.05	< 0.0001	0.001	< 0.001	< 0.001	4.1	< 0.001	0.012	< 0.0001	0.002	< 0.01	< 0.01	0.005
TRIP01_21022019	21-Feb-19 Percentage Difference	Triplicate	0.001 67%	< 0.02 10%	< 0.001 NC	< 0.05 NC	< 0.0002 NC	< 0.005 86%	< 0.001 NC	< 0.001 NC	4.5 9%	< 0.001 NC	0.012 0%	< 0.0001 NC	0.003 40%	NC	< 0.005 NC	0.006 18%
TRIP BLANK 130319	13-Mar-19	Trip Blank	< 0.001	< 0.001	< 0.001	< 0.05	< 0.0001	< 0.001	< 0.001	< 0.001	-	< 0.001	< 0.001	< 0.0001	< 0.001	< 0.01	< 0.01	< 0.005
TRIP BLANK02_150319	15-Mar-19	Trip Blank	< 0.001	0.002	< 0.001	< 0.05	< 0.0001	< 0.001	< 0.001	< 0.001	< 0.05	< 0.001	< 0.001	< 0.0001	< 0.001	< 0.01	< 0.01	< 0.005
RINSATE02_140319	14-Mar-19	Rinsate	< 0.001	< 0.001	< 0.001	< 0.05	< 0.0001	< 0.001	< 0.001	< 0.001	< 0.05	< 0.001	< 0.001	< 0.0001	< 0.001	< 0.01	< 0.01	< 0.005
BH7_140319 DUP02 140319	14-Mar-19 14-Mar-19	Primary Duplicate	< 0.001 < 0.001	0.01 0.01	< 0.001 < 0.001	< 0.05 < 0.05	< 0.0001 < 0.0001	0.001 0.001	0.003 0.002	< 0.001 < 0.001	1.8 2.51	< 0.001 < 0.001	0.02 0.021	< 0.0001 < 0.0001	0.004 0.004	< 0.01 < 0.01	< 0.01 < 0.01	0.009 0.007
	ercentage Difference		< 0.001 NC	0.01	NC	NC	NC	0.001	40%	NC	33%	NC	5%	NC	0.004	NC NC	NC NC	25%
BH7_140319	14-Mar-19	Primary	< 0.001	0.01	< 0.001	< 0.05	< 0.0001	0.001	0.003	< 0.001	1.8	< 0.001	0.02	< 0.0001	0.004	< 0.01	< 0.01	0.009
TRIP02_14032019	14-Mar-19	Triplicate	< 0.001	< 0.02	< 0.001	< 0.05	< 0.0002	0.001	0.002	< 0.001	1.7	< 0.001	0.019	< 0.0001	< 0.001	-	< 0.005	< 0.005
TRIP BLANK 03	ercentage Difference 23-Apr-19	ce Trip Blank	NC < 0.001	0% < 0.001	NC < 0.001	NC < 0.05	NC < 0.0001	0% < 0.001	40% < 0.001	NC < 0.001	6% < 0.05	NC < 0.001	5% < 0.001	NC < 0.0001	156% < 0.001	NC < 0.01	NC < 0.01	113% < 0.005
RINSATE 03	23-Apr-19	Rinsate	< 0.001	< 0.001	< 0.001	< 0.05	< 0.0001	< 0.001	< 0.001	< 0.001	< 0.05	< 0.001	< 0.001	< 0.0001	< 0.001	< 0.01	< 0.01	< 0.005
TRIP BLANK_04	16-May-19	Trip Blank	< 0.001	< 0.001	< 0.001	< 0.05	< 0.0001	< 0.001	< 0.001	< 0.001	< 0.05	< 0.001	< 0.001	< 0.0001	< 0.001	< 0.01	< 0.01	< 0.005
RINSATE_04	16-May-19	Rinsate	< 0.001	< 0.001	< 0.001	< 0.05	< 0.0001	< 0.001	< 0.001	< 0.001	< 0.05	< 0.001	< 0.001	< 0.0001	< 0.001	< 0.01	< 0.01	< 0.005
TRIP BLANK 05_14062019		Trip Blank	< 0.001	< 0.001	< 0.001	< 0.05	< 0.0001	< 0.001	< 0.001	< 0.001	< 0.05	< 0.001	< 0.001	< 0.0001	< 0.001	< 0.01	< 0.01	< 0.005
RINSATE 05_14062019	14-Jun-19	Rinsate	< 0.001	< 0.001	< 0.001	< 0.05 < 0.05	< 0.0001 < 0.0001	< 0.001	< 0.001 0.003	< 0.001	< 0.05	< 0.001 < 0.001	< 0.001 0.038	< 0.0001 < 0.0001	< 0.001 0.003	< 0.01 < 0.01	< 0.01	< 0.005
SW3_14062019 DUP05_14062019	14-Jun-19 14-Jun-19	Primary Duplicate	< 0.001 < 0.001	0.035 0.036	< 0.001 < 0.001	< 0.05	< 0.0001	< 0.001 < 0.001	0.003	< 0.001 < 0.001	1.68	< 0.001	0.038	< 0.0001	0.003	< 0.01	< 0.01 < 0.01	0.016 0.013
	ercentage Difference		NC	3%	NC	NC	NC	NC	0%	NC	3%	NC	3%	NC	0%	NC	NC	21%
SW3_14062019	14-Jun-19	Primary	< 0.001	0.035	< 0.001	< 0.05	< 0.0001	< 0.001	0.003	< 0.001	1.68	< 0.001	0.038	< 0.0001	0.003	< 0.01	< 0.01	0.016
TRIP05_140619	14-Jun-19 Percentage Difference	Triplicate	< 0.001 NC	- NC	- NC	- NC	< 0.0002 NC	0.001 67%	- NC	< 0.001 NC	1.6 5%	< 0.001 NC	- NC	< 0.0001 NC	0.003	- NC	- NC	0.01 46%
TRIP BLANK 06 16072019	16-Jul-19	Trip Blank	< 0.001	< 0.001	< 0.001	< 0.05	< 0.0001	< 0.001	< 0.001	< 0.001	< 0.05	< 0.001	< 0.001	< 0.0001	< 0.001	< 0.01	< 0.01	< 0.005
RINSATE06_16072019	16-Jul-19	Rinsate	< 0.001	< 0.001	< 0.001	< 0.05	< 0.0001	< 0.001	< 0.001	< 0.001	< 0.05	< 0.001	< 0.001	< 0.0001	< 0.001	< 0.01	< 0.01	< 0.005
RINSATE07	15-Aug-19	Rinsate	< 0.001	< 0.001	< 0.001	< 0.05	< 0.0001	< 0.001	< 0.001	< 0.001	< 0.05	< 0.001	< 0.001	< 0.0001	< 0.001	< 0.01	< 0.01	< 0.005
TRIP BLANK 08_16092019		Trip Blank	< 0.001	< 0.001	< 0.001	< 0.05	< 0.0001	< 0.001	< 0.001	< 0.001	< 0.05	< 0.001	< 0.001	< 0.0001	< 0.001	< 0.01	< 0.01	< 0.005
RINSATE 08_16092019 SW4_16092019	16-Sep-19 16-Sep-19	Rinsate Primary	< 0.001 < 0.001	< 0.001 0.046	< 0.001 < 0.001	< 0.05 < 0.05	< 0.0001 < 0.0001	< 0.001 < 0.001	< 0.001	< 0.001 0.02	< 0.05 0.7	< 0.001 0.001	< 0.001 0.039	< 0.0001 < 0.0001	< 0.001 0.017	< 0.01 < 0.01	< 0.01 < 0.01	< 0.005 0.085
DUP08 16092019	16-Sep-19	Duplicate	< 0.001	0.041	< 0.001	< 0.05	< 0.0001	< 0.001	0.002	< 0.001	0.76	< 0.001	0.039	< 0.0001	0.003	< 0.01	< 0.01	0.012
Relative P	ercentage Differenc		NC	11%	NC	NC	NC	NC	0%	190%	8%	67%	8%	NC	140%	NC	NC	151%
SW4_16092019	16-Sep-19	Primary	< 0.001	0.046	< 0.001	< 0.05	< 0.0001	< 0.001	0.002	0.02	0.7	0.001	0.039	< 0.0001	0.017	< 0.01	< 0.01	0.085
TRIP08_16092019	16-Sep-19 Percentage Difference	Triplicate	< 0.001 NC	0.04	< 0.001 NC	< 0.05 NC	< 0.0002 NC	< 0.001 NC	0.002	< 0.001 190%	0.69 1%	< 0.001 67%	0.037 5%	< 0.0001 NC	0.003 140%	- NC	< 0.005 NC	0.012 151%
TRIP BLANK 15102019	15-Oct-19	Trip Blank	< 0.001	< 0.001	< 0.001	< 0.05	< 0.0001	< 0.001	< 0.001	< 0.001	-	< 0.001	< 0.001	< 0.0001	< 0.001	< 0.01	< 0.01	< 0.005
RINSATE_15102019	15-Oct-19	Rinsate	< 0.001	< 0.001	< 0.001	< 0.05	< 0.0001	< 0.001	< 0.001	< 0.001	-	< 0.001	< 0.001	< 0.0001	< 0.001	< 0.01	< 0.01	< 0.005
TRIPBLANK09_181119	18-Nov-19	Trip Blank	< 0.001	< 0.001	< 0.001	< 0.05	< 0.0001	< 0.001	< 0.001	< 0.001	< 0.05	< 0.001	< 0.001	< 0.0001	< 0.001	< 0.01	< 0.01	< 0.005
RINSATE09_181119 SW4_181119	18-Nov-19 18-Nov-19	Rinsate Primary	< 0.001 < 0.001	< 0.001 0.035	< 0.001 < 0.001	< 0.05 < 0.05	< 0.0001 < 0.0001	< 0.001 < 0.001	< 0.001 < 0.001	< 0.001 < 0.001	< 0.05 6.32	< 0.001 < 0.001	< 0.001 0.032	< 0.0001 < 0.0001	< 0.001 0.002	< 0.01 < 0.01	< 0.01 < 0.01	< 0.005 < 0.005
DUP09 181119	18-Nov-19	Duplicate	< 0.001	0.033	< 0.001	< 0.05	< 0.0001	< 0.001	< 0.001	< 0.001	5.9	< 0.001	0.032	< 0.0001	0.002	< 0.01	< 0.01	< 0.005
	ercentage Difference		NC	3%	NC	NC	NC	NC	NC	NC	7%	NC	12%	NC	0%	NC	NC	NC
SW4_181119	18-Nov-19	Primary	< 0.001	0.035	< 0.001	< 0.05	< 0.0001	< 0.001	< 0.001	0.001	6.32	< 0.001	0.032	< 0.0001	0.002	< 0.01	< 0.01	< 0.005
TRIP09_18112019	18-Nov-19 Percentage Difference	Triplicate	< 0.001 NC	0.04 13%	< 0.001 NC	< 0.05 NC	< 0.0002 NC	< 0.001 NC	< 0.001 NC	0.01 2%	- NC	< 0.001 NC	0.035 9%	< 0.0001 NC	0.007 111%	- NC	< 0.005 NC	0.033 172%
TRIPBLANK10 171219	17-Dec-19	Trip Blank	< 0.001	< 0.001	< 0.001	< 0.05	< 0.0001	< 0.001	< 0.001	< 0.001	< 0.05	< 0.001	< 0.001	< 0.0001	< 0.001	< 0.01	< 0.01	< 0.005
RINSATE10_171219	17-Dec-19	Rinsate	< 0.001	< 0.001	< 0.001	< 0.05	< 0.0001	< 0.001	< 0.001	< 0.001	< 0.05	< 0.001	< 0.001	< 0.0001	< 0.001	< 0.01	< 0.01	< 0.005
RIP BLANK 13_200133300		Trip Blank	< 0.001	< 0.001	< 0.001	< 0.05	< 0.0001	< 0.001	< 0.001	< 0.001	< 0.05	< 0.001	< 0.001	< 0.0001	< 0.001	< 0.01	< 0.01	< 0.005
RINSATE 13_2001333009		Rinsate	< 0.001	< 0.001	< 0.001	< 0.05	< 0.0001	< 0.001	< 0.001	< 0.001	< 0.05	< 0.001	< 0.001	< 0.0001	< 0.001	< 0.01	< 0.01	< 0.005
BH6_2001333004 QW12_2001333012	16-Jan-20 16-Jan-20	Primary Duplicate	<0.001 <0.001	0.032 0.035	<0.001 <0.001	<0.05 <0.05	<0.0001 <0.0001	<0.001 <0.001	<0.001 <0.001	<0.001 <0.001	2.15	<0.001 <0.001	0.01	<0.0001 <0.0001	<0.001 0.001	<0.01 <0.01	<0.01 <0.01	<0.005 <0.005
	ercentage Difference		NC	9%	NC NC	NC	NC	NC NC	NC	NC	1%	NC	11%	NC	67%	NC NC	NC	NC
BH6_2001333004	16-Jan-20	Primary	< 0.001	0.032	< 0.001	<0.05	< 0.0001	< 0.001	< 0.001	< 0.001	2.15	< 0.001	0.01	< 0.0001	< 0.001	< 0.01	< 0.01	<0.005
QW13_14392	16-Jan-20	Triplicate	< 0.001	0.03	< 0.001	< 0.05	< 0.0002	< 0.001	< 0.001	0.004	1.6	< 0.001	0.009	< 0.0001	< 0.001	- NC	< 0.005	0.012
Relative P	ercentage Differenc	e	NC	6%	NC	NC	NC	NC	NC	156%	29%	NC	11%	NC	NC	NC	NC	131%

Relative Percentage Difference

Notes:
- Not analysed
< - Less than laboratory limit of reporting
NC - Not calculated
mg/L - Milligrams per litre
Half the laboratory limit of reporting used when calculating RPD
RPD - Relative Percentage Difference

20193820.001A Page 13 of 16

Table G Quality Control Sample Analysis - PFAS Williamtown Sand Syndicate

					Perfluoroalkyl Su	Ilfonic Acids							Perf
A	Analyte		Perfluorobutane sulfonic acid (PFBS)	Perfluoropentane sulfonic acid (PFPeS)	Perfluorohexane sulfonic acid (PFHxS)	Perfluoroheptan e sulfonate (PFHpS)	Perfluorooctane sulfonic acid (PFOS)	Perfluorodecanes ulfonic acid (PFDS)	Perfluorobutanoic acid (PFBA)	Perfluoropentan oic acid (PFPeA)	Perfluorohexanoic acid (PFHxA)	Perfluoroheptan oic acid (PFHpA)	
	Units		μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L
Sample Name	Sample Date	Sample Type											
TRIP BLANK_13022019	13-Feb-19	Trip Blank	< 0.02	< 0.02	< 0.02	< 0.02	< 0.01	< 0.02	< 0.1	< 0.02	< 0.02	< 0.02	< 0.01
RINSATE01_21022019	21-Feb-19	Rinsate	< 0.02	< 0.02	< 0.02	< 0.02	< 0.01	< 0.02	< 0.1	< 0.02	< 0.02	< 0.02	< 0.01
BH8_21022019	21-Feb-19	Primary	< 0.02	< 0.02	< 0.02	< 0.02	< 0.01	< 0.02	< 0.1	< 0.02	< 0.02	< 0.02	< 0.01
DUP01_21022019	21-Feb-19	Duplicate	< 0.02	< 0.02	< 0.02	< 0.02	< 0.01	< 0.02	< 0.1	< 0.02	< 0.02	< 0.02	< 0.01
	centage Difference	- ·	NC 0.02	NC 0.02	NC 0.02	NC 0.02	NC	NC 0.02	NC	NC	NC 0.02	NC 0.03	NC
BH8_21022019	21-Feb-19	Primary	< 0.02	< 0.02	< 0.02	< 0.02	< 0.01	< 0.02	< 0.1	< 0.02	< 0.02	< 0.02	< 0.01
TRIP01_21022019	21-Feb-19 Triplicate centage Difference		< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.02	< 0.05	< 0.01	< 0.01	< 0.01	< 0.01
TRIP BLANK 130319		Trin Diani.	NC < 0.02	NC + 0.02	NC - 0.03	NC < 0.02	NC < 0.01	NC < 0.02	NC	NC < 0.02	NC < 0.02	NC < 0.02	NC < 0.01
TRIP BLANK_130319 TRIP BLANK02 150319	13-Mar-19 15-Mar-19	Trip Blank Trip Blank	< 0.02	< 0.02 < 0.02	< 0.02 < 0.02	< 0.02	< 0.01	< 0.02	< 0.1 < 0.1	< 0.02	< 0.02	< 0.02	< 0.01
RINSATE02 140319	14-Mar-19	Rinsate	< 0.02	< 0.02	< 0.02	< 0.02	< 0.01	< 0.02	< 0.1	< 0.02	< 0.02	< 0.02	< 0.01
BH7 140319	14-Mar-19 14-Mar-19	Primary	< 0.02	< 0.02	< 0.02	< 0.02	< 0.01	< 0.02	< 0.1	< 0.02	< 0.02	< 0.02	< 0.01
DUP02 140319	14-Mar-19 14-Mar-19	Duplicate	< 0.02	< 0.02	< 0.02	< 0.02	< 0.01	< 0.02	< 0.1	< 0.02	< 0.02	< 0.02	< 0.01
	centage Difference	Duplicate	NC	NC	NC	NC	NC NC	NC	NC NC	NC	NC	NC	NC
BH7 140319	14-Mar-19	Primary	< 0.02	< 0.02	< 0.02	< 0.02	< 0.01	< 0.02	< 0.1	< 0.02	< 0.02	< 0.02	< 0.01
TRIP02 14032019	14-Mar-19	Triplicate	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.02	< 0.05	< 0.01	< 0.01	< 0.01	< 0.01
	centage Difference	TTIPHEGEC	NC NC	NC	NC	NC NC	NC NC	NC NC	NC	NC	NC	NC NC	NC NC
TRIP BLANK 03	23-Apr-19	Trip Blank	< 0.02	< 0.02	< 0.02	< 0.02	< 0.01	< 0.02	< 0.1	< 0.02	< 0.02	< 0.02	< 0.01
RINSATE 03	23-Apr-19	Rinsate	< 0.02	< 0.02	< 0.02	< 0.02	< 0.01	< 0.02	< 0.1	< 0.02	< 0.02	< 0.02	< 0.01
TRIP BLANK 04	16-May-19	Trip Blank	< 0.02	< 0.02	< 0.02	< 0.02	< 0.01	< 0.02	< 0.1	< 0.02	< 0.02	< 0.02	< 0.01
RINSATE 04	16-May-19	Rinsate	< 0.02	< 0.02	< 0.02	< 0.02	< 0.01	< 0.02	< 0.1	< 0.02	< 0.02	< 0.02	< 0.01
TRIP BLANK 05_14062019	14-Jun-19	Trip Blank	< 0.02	< 0.02	< 0.02	< 0.02	< 0.01	< 0.02	< 0.1	< 0.02	< 0.02	< 0.02	< 0.01
RINSATE 05_14062019	14-Jun-19	Rinsate	< 0.02	< 0.02	< 0.02	< 0.02	< 0.01	< 0.02	< 0.1	< 0.02	< 0.02	< 0.02	< 0.01
TRIP BLANK 06_16072019	16-Jul-19	Trip Blank	< 0.02	< 0.02	< 0.02	< 0.02	< 0.01	< 0.02	< 0.1	< 0.02	< 0.02	< 0.02	< 0.01
RINSATE06_16072019	16-Jul-19	Rinsate	< 0.02	< 0.02	< 0.02	< 0.02	< 0.01	< 0.02	< 0.1	< 0.02	< 0.02	< 0.02	< 0.01
RINSATE07	15-Aug-19	Rinsate	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.1	< 0.02	< 0.02	< 0.02	< 0.01
TRIP BLANK 08_16092019	16-Sep-19	Trip Blank	< 0.02	< 0.02	< 0.02	< 0.02	< 0.01	< 0.02	< 0.1	< 0.02	< 0.02	< 0.02	< 0.01
RINSATE 08_16092019	16-Sep-19	Rinsate	< 0.02	< 0.02	< 0.02	< 0.02	< 0.01	< 0.02	< 0.1	< 0.02	< 0.02	< 0.02	< 0.01
SW4_16092019	16-Sep-19	Primary	< 0.02	< 0.02	< 0.02	< 0.02	0.01	< 0.02	< 0.1	< 0.02	< 0.02	< 0.02	< 0.01
DUP08_16092019	16-Sep-19	Duplicate	< 0.02	< 0.02	< 0.02	< 0.02	0.01	< 0.02	< 0.1	< 0.02	< 0.02	< 0.02	< 0.01
	centage Difference		NC	NC	NC	NC	0%	NC	NC .	NC	NC	NC	NC
SW4_16092019	16-Sep-19	Primary	< 0.02	< 0.02	< 0.02	< 0.02	0.01	< 0.02	< 0.1	< 0.02	< 0.02	< 0.02	< 0.01
TRIP08_16092019	16-Sep-19	Triplicate	< 0.01	< 0.01	< 0.01	< 0.01	0.03	< 0.01	< 0.05	< 0.01	< 0.01	< 0.01	< 0.01
	centage Difference	T: N I	NC 0.02	NC 0.03	NC 0.02	NC 0.02	100%	NC 0.02	NC .	NC	NC 0.02	NC 0.02	NC
TRIP BLANK 09_1931069	25-Sep-19	Trip Blank	< 0.02 < 0.02	< 0.02	< 0.02 < 0.02	< 0.02	< 0.01	< 0.02 < 0.02	< 0.1	< 0.02	< 0.02 < 0.02	< 0.02 < 0.02	< 0.01 < 0.01
RINSATE 09_1931069 TRIPBLANK09 181119	25-Sep-19 18-Nov-19	Rinsate Trip Blank	< 0.02 < 0.02	< 0.02 < 0.02	< 0.02 < 0.02	< 0.02 < 0.02	< 0.01 < 0.01	< 0.02 < 0.02	< 0.1 < 0.1	< 0.02 < 0.02	< 0.02 < 0.02	< 0.02 < 0.02	< 0.01 < 0.01
RINSATE09 181119	18-Nov-19	Rinsate	< 0.02	< 0.02	< 0.02	< 0.02	< 0.01	< 0.02	< 0.1	< 0.02	< 0.02	< 0.02	< 0.01
SW4 181119	18-Nov-19	Primary	< 0.02	< 0.02	< 0.02	< 0.02	< 0.01	< 0.02	< 0.1	< 0.02	< 0.02	< 0.02	< 0.01
DUP09 181119	18-Nov-19	Duplicate	< 0.02	< 0.02	< 0.02	< 0.02	< 0.01	< 0.02	< 0.1	< 0.02	< 0.02	< 0.02	< 0.01
	centage Difference	Duplicate	NC.	NC.	NC.	NC.	NC.	NC.	NC.	NC.	NC.	NC.	NC.
SW4 181119	18-Nov-19	Primary	< 0.02	< 0.02	< 0.02	< 0.02	< 0.01	< 0.02	< 0.1	< 0.02	< 0.02	< 0.02	< 0.01
TRIP09 18112019	18-Nov-19	Triplicate	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.05	< 0.01	< 0.01	< 0.01	< 0.01
	centage Difference		NC NC	NC	NC	NC NC	NC	NC	NC	NC NC	NC NC	NC NC	NC NC
TRIPBLANK10 171219	17-Dec-19	Trip Blank	< 0.02	< 0.02	< 0.02	< 0.02	< 0.01	< 0.02	< 0.1	< 0.02	< 0.02	< 0.02	< 0.01
RINSATE10 171219	17-Dec-19	Rinsate	< 0.02	< 0.02	< 0.02	< 0.02	< 0.01	< 0.02	< 0.1	< 0.02	< 0.02	< 0.02	< 0.01
TRIP BLANK 13 2001333008	16-Jan-20	Trip Blank	< 0.02	< 0.02	< 0.02	< 0.02	< 0.01	< 0.02	< 0.1	< 0.02	< 0.02	< 0.02	< 0.01
RINSATE 13 2001333009	16-Jan-20	Rinsate	< 0.02	< 0.02	< 0.02	< 0.02	< 0.01	< 0.02	< 0.1	< 0.02	< 0.02	< 0.02	< 0.01
BH6_2001333004	16-Jan-20	Primary	< 0.02	< 0.02	< 0.02	< 0.02	< 0.01	< 0.02	< 0.1	< 0.02	< 0.02	< 0.02	< 0.01
QW12_2001333012	16-Jan-20	Duplicate	< 0.02	< 0.02	< 0.02	< 0.02	< 0.01	< 0.02	< 0.1	< 0.02	< 0.02	< 0.02	< 0.01
Relative Per	centage Difference		NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC
BH6_2001333004	16-Jan-20	Primary	< 0.02	< 0.02	< 0.02	< 0.02	< 0.01	< 0.02	< 0.1	< 0.02	< 0.02	< 0.02	< 0.01
QW13_14392	16-Jan-20	Triplicate	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.05	< 0.01	< 0.01	< 0.01	< 0.01
Relative Per	centage Difference	-	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC

Notes:

< - Less than laboratory limit of reporting

NC - Not calculated

μg/L - Micrograms per litre

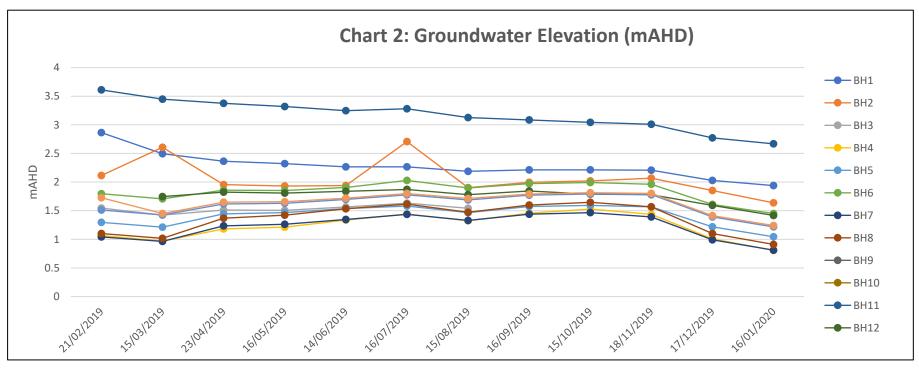
20193820.001A Page 14 of 16

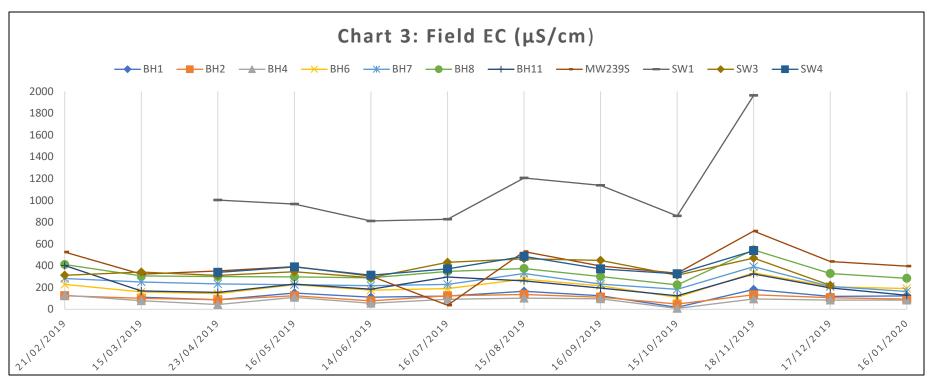
Table G Quality Control Sample Analysis - PFAS Williamtown Sand Syndicate

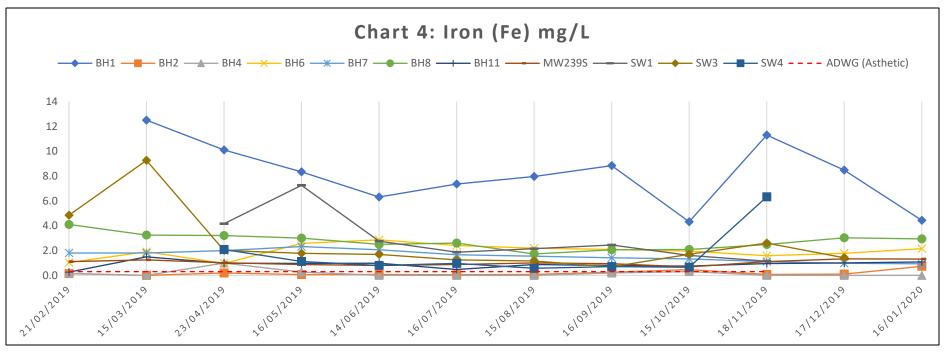
uoroalkvl Carboxvlic	Acids							Per	fluoroalkvi Sulfonan	nides		
dorodikyi carboxyiic	Acido							N-Ethyl	N-Methyl	N-Ethyl	N-Methyl	N-Ethyl
Perfluorononanoic acid (PFNA)	Perfluorodecanoic acid (PFDA)		Perfluorododecan oic acid (PFDoDA)		Perfluorotetradecan oic acid (PFTeDA)	Perfluorooctane sulfonamide (FOSA)	N-Methyl- perfluorooctane sulfonamide (MeFOSA)	perfluorooctane sulfonamide (EtFOSA)		perfluorooctane	perfluorooctane sulfonamidoacetic acid (MeFOSAA)	perfluorooctane sulfonamidoacetic acid (EtFOSAA)
μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L
< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.05	< 0.02	< 0.05	< 0.05	< 0.05	< 0.05	< 0.02	< 0.02
< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.05	< 0.02	< 0.05	< 0.05	< 0.05	< 0.05	< 0.02	< 0.02
< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.05	< 0.02	< 0.05	< 0.05	< 0.05	< 0.05	< 0.02	< 0.02
< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.05	< 0.02	< 0.05	< 0.05	< 0.05	< 0.05	< 0.02	< 0.02
NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC
< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.05	< 0.02	< 0.05	< 0.05	< 0.05	< 0.05	< 0.02	< 0.02
< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC
< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.05	< 0.02	< 0.05	< 0.05	< 0.05	< 0.05	< 0.02	< 0.02
< 0.02 < 0.02	< 0.02 < 0.02	< 0.02 < 0.02	< 0.02 < 0.02	< 0.02 < 0.02	< 0.05 < 0.05	< 0.02 < 0.02	< 0.05 < 0.05	< 0.05 < 0.05	< 0.05 < 0.05	< 0.05 < 0.05	< 0.02 < 0.02	< 0.02 < 0.02
< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.05	< 0.02	< 0.05	< 0.05	< 0.05	< 0.05	< 0.02	< 0.02
< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.05	< 0.02	< 0.05	< 0.05	< 0.05	< 0.05	< 0.02	< 0.02
NC	NC	NC	NC	NC	NC	NC	NC NC	NC	NC	NC	NC NC	NC
< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.05	< 0.02	< 0.05	< 0.05	< 0.05	< 0.05	< 0.02	< 0.02
< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC
< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.05	< 0.02	< 0.05	< 0.05	< 0.05	< 0.05	< 0.02	< 0.02
< 0.02 < 0.02	< 0.02 < 0.02	< 0.02 < 0.02	< 0.02 < 0.02	< 0.02 < 0.02	< 0.05 < 0.05	< 0.02 < 0.02	< 0.05 < 0.05	< 0.05 < 0.05	< 0.05 < 0.05	< 0.05 < 0.05	< 0.02 < 0.02	< 0.02 < 0.02
< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.05	< 0.02	< 0.05	< 0.05	< 0.05	< 0.05	< 0.02	< 0.02
< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.05	< 0.02	< 0.05	< 0.05	< 0.05	< 0.05	< 0.02	< 0.02
< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.05	< 0.02	< 0.05	< 0.05	< 0.05	< 0.05	< 0.02	< 0.02
< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.05	< 0.02	< 0.05	< 0.05	< 0.05	< 0.05	< 0.02	< 0.02
< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.05	< 0.02	< 0.05	< 0.05	< 0.05	< 0.05	< 0.02	< 0.02
< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.05	< 0.02	< 0.05	< 0.05	< 0.05	< 0.05	< 0.02	< 0.02
< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.05	< 0.02	< 0.05	< 0.05	< 0.05	< 0.05	< 0.02	< 0.02
< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.05	< 0.02	< 0.05	< 0.05	< 0.05	< 0.05	< 0.02	< 0.02
< 0.02 < 0.02	< 0.02 < 0.02	< 0.02 < 0.02	< 0.02 < 0.02	< 0.02 < 0.02	< 0.05 < 0.05	< 0.02 < 0.02	< 0.05 < 0.05	< 0.05 < 0.05	< 0.05 < 0.05	< 0.05 < 0.05	< 0.02 < 0.02	< 0.02 < 0.02
< 0.02 NC	< 0.02 NC	< 0.02 NC	< 0.02 NC	< 0.02 NC	< 0.05 NC	< 0.02 NC	< 0.05 NC	< 0.05 NC	NC	< 0.05 NC	< 0.02 NC	< 0.02 NC
< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.05	< 0.02	< 0.05	< 0.05	< 0.05	< 0.05	< 0.02	< 0.02
< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC
< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.05	< 0.02	< 0.05	< 0.05	< 0.05	< 0.05	< 0.02	< 0.02
< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.05	< 0.02	< 0.05	< 0.05	< 0.05	< 0.05	< 0.02	< 0.02
< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.05	< 0.02	< 0.05	< 0.05	< 0.05	< 0.05	< 0.02	< 0.02
< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.05	< 0.02	< 0.05	< 0.05	< 0.05	< 0.05	< 0.02	< 0.02
< 0.02 < 0.02	< 0.02 < 0.02	< 0.02 < 0.02	< 0.02 < 0.02	< 0.02 < 0.02	< 0.05 < 0.05	< 0.02 < 0.02	< 0.05 < 0.05	< 0.05 < 0.05	< 0.05 < 0.05	< 0.05 < 0.05	< 0.02 < 0.02	< 0.02 < 0.02
< 0.02 NC	< 0.02 NC	< 0.02 NC	< 0.02 NC	< 0.02 NC	< 0.05 NC	< 0.02 NC	< 0.05 NC	< 0.05 NC	< 0.05 NC	< 0.05 NC	< 0.02 NC	< 0.02 NC
< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.05	< 0.02	< 0.05	< 0.05	< 0.05	< 0.05	< 0.02	< 0.02
< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC
< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.05	< 0.02	< 0.05	< 0.05	< 0.05	< 0.05	< 0.02	< 0.02
< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.05	< 0.02	< 0.05	< 0.05	< 0.05	< 0.05	< 0.02	< 0.02
< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.05	< 0.02	< 0.05	< 0.05	< 0.05	< 0.05	< 0.02	< 0.02
< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.05	< 0.02	< 0.05	< 0.05	< 0.05	< 0.05	< 0.02	< 0.02
< 0.02 < 0.02	< 0.02 < 0.02	< 0.02 < 0.02	< 0.02 < 0.02	< 0.02 < 0.02	< 0.05 < 0.05	< 0.02 < 0.02	< 0.05 < 0.05	< 0.05 < 0.05	< 0.05 < 0.05	< 0.05 < 0.05	< 0.02 < 0.02	< 0.02 < 0.02
< 0.02 NC	NC	NC	< 0.02 NC	NC	NC	NC	NC	NC	VC	NC	NC	NC
< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.05	< 0.02	< 0.05	< 0.05	< 0.05	< 0.05	< 0.02	< 0.02
< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
NC.	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC

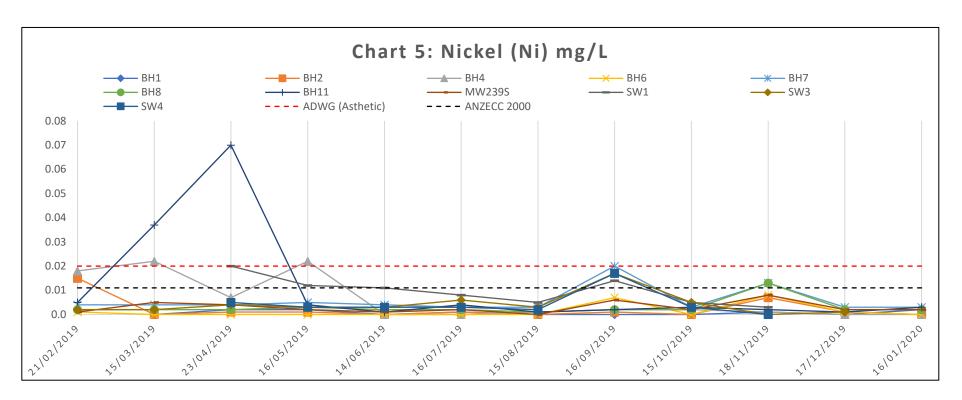
20193820.001A Page 15 of 16

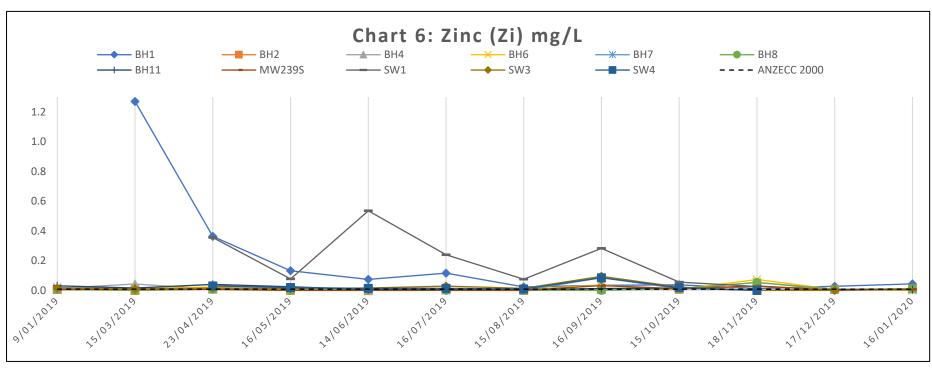
Table G Quality Control Sample Analysis - PFAS Williamtown Sand Syndicate

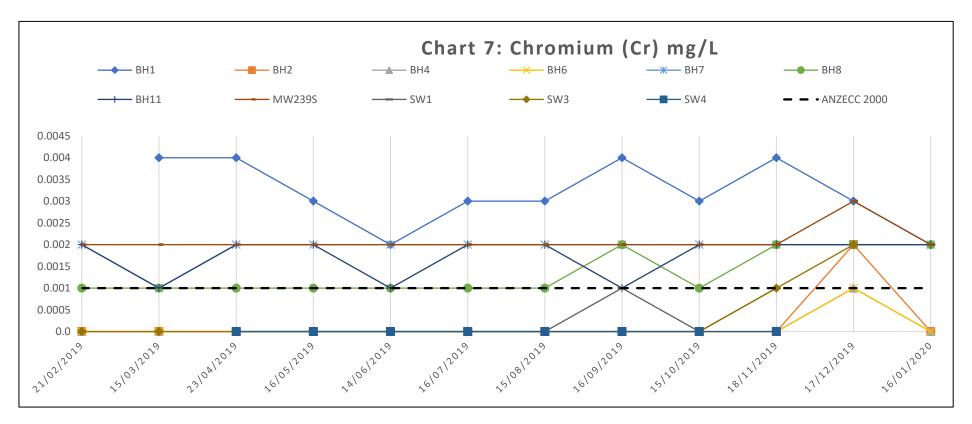

	(n:2) Fluorotelomer Su	ulfonic Acids			Sum of PFAS	
1:2 Fluorotelomer sulfonic acid (4:2 FTS)	6:2 Fluorotelomer sulfonic acid (6:2 FTS)	8:2 Fluorotelomer sulfonic acid (8:2 FTS)	10:2 Fluorotelomer sulfonic acid (10:2 FTS)	Sum of PFHxS and PFOS	Sum of PFAS (WA DER List)	Sum of PFAS
μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L
< 0.05	< 0.05	< 0.05	< 0.05	< 0.01	< 0.01	< 0.01
< 0.05	< 0.05	< 0.05	< 0.05	< 0.01	< 0.01	< 0.01
< 0.05	< 0.05	< 0.05	< 0.05	< 0.01	< 0.01	< 0.01
< 0.05	< 0.05	< 0.05	< 0.05	< 0.01	< 0.01	< 0.01
NC	NC	NC	NC	NC	NC	NC
< 0.05	< 0.05	< 0.05	< 0.05	< 0.01	< 0.01	< 0.01
< 0.01	< 0.05	< 0.01	< 0.01	< 0.01	< 0.05	< 0.1
NC	NC	NC	NC	NC	NC	NC
< 0.05	< 0.05	< 0.05	< 0.05	< 0.01	< 0.01	< 0.01
< 0.05	< 0.05	< 0.05	< 0.05	< 0.01	< 0.01	< 0.01
< 0.05	< 0.05	< 0.05	< 0.05	< 0.01	< 0.01	< 0.01
< 0.05	< 0.05	< 0.05	< 0.05	< 0.01	< 0.01	< 0.01
< 0.05 NC	< 0.05 NC	< 0.05 NC	< 0.05 NC	< 0.01 NC	< 0.01 NC	< 0.01 NC
< 0.05	< 0.05	< 0.05	< 0.05	< 0.01	< 0.01	< 0.01
< 0.05	< 0.05	< 0.05	< 0.03	< 0.01	< 0.01	< 0.01
NC	< 0.05 NC	NC	< 0.01 NC	< 0.01 NC	NC	NC
< 0.05	< 0.05	< 0.05	< 0.05	< 0.01	< 0.01	< 0.01
< 0.05	< 0.05	< 0.05	< 0.05	< 0.01	< 0.01	< 0.01
< 0.05	< 0.05	< 0.05	< 0.05	< 0.01	< 0.01	< 0.01
< 0.05	< 0.05	< 0.05	< 0.05	< 0.01	< 0.01	< 0.01
< 0.05	< 0.05	< 0.05	< 0.05	< 0.01	< 0.01	< 0.01
< 0.05	< 0.05	< 0.05	< 0.05	< 0.01	< 0.01	< 0.01
< 0.05	< 0.05	< 0.05	< 0.05	< 0.01	< 0.01	< 0.01
< 0.05	< 0.05	< 0.05	< 0.05	< 0.01	< 0.01	< 0.01
< 0.05	< 0.05	< 0.05	< 0.05	< 0.01	< 0.01	< 0.01
< 0.05	< 0.05	< 0.05	< 0.05	< 0.01	< 0.01	< 0.01
< 0.05	< 0.05	< 0.05	< 0.05	< 0.01	< 0.01	< 0.01
< 0.05	< 0.05	< 0.05	< 0.05	0.01	0.01	0.01
< 0.05	< 0.05	< 0.05	< 0.05	0.01	0.01	0.01
NC	NC .	NC	NC	0%	0%	0%
< 0.05	< 0.05	< 0.05	< 0.05	0.01	0.01	0.01
< 0.01 NC	< 0.05	< 0.01	< 0.01	0.03 100%	< 0.05 86%	< 0.1
	NC - 0.05	NC < 0.05	NC . O.O.F	< 0.01	< 0.01	133% < 0.01
< 0.05 < 0.05	< 0.05 < 0.05	< 0.05	< 0.05 < 0.05	< 0.01 < 0.01	< 0.01	< 0.01
< 0.05	< 0.05	< 0.05	< 0.05	< 0.01	< 0.01	< 0.01
< 0.05	< 0.05	< 0.05	< 0.05	< 0.01	< 0.01	< 0.01
< 0.05	< 0.05	< 0.05	< 0.05	< 0.01	< 0.01	< 0.01
< 0.05	< 0.05	< 0.05	< 0.05	< 0.01	< 0.01	< 0.01
NC	NC	NC	NC	NC	NC	NC
< 0.05	< 0.05	< 0.05	< 0.05	< 0.01	< 0.01	< 0.01
< 0.01	< 0.05	< 0.01	< 0.01	< 0.01	< 0.05	< 0.1
NC	NC	NC	NC	NC	NC	NC
< 0.05	< 0.05	< 0.05	< 0.05	< 0.01	< 0.01	< 0.01
< 0.05	< 0.05	< 0.05	< 0.05	< 0.01	< 0.01	< 0.01
< 0.05	< 0.05	< 0.05	< 0.05	< 0.01	< 0.01	< 0.01
< 0.05	< 0.05	< 0.05	< 0.05	< 0.01	< 0.01	< 0.01
< 0.05	< 0.05	< 0.05	< 0.05	< 0.01	< 0.01	< 0.01
< 0.05	< 0.05	< 0.05	< 0.05	< 0.01	< 0.01	< 0.01
NC NC	NC NC	NC NC	NC	NC	NC	NC
< 0.05	< 0.05	< 0.05	< 0.05	< 0.01	< 0.01	< 0.01
< 0.01	< 0.05	< 0.01	< 0.01	< 0.01	< 0.05	< 0.1

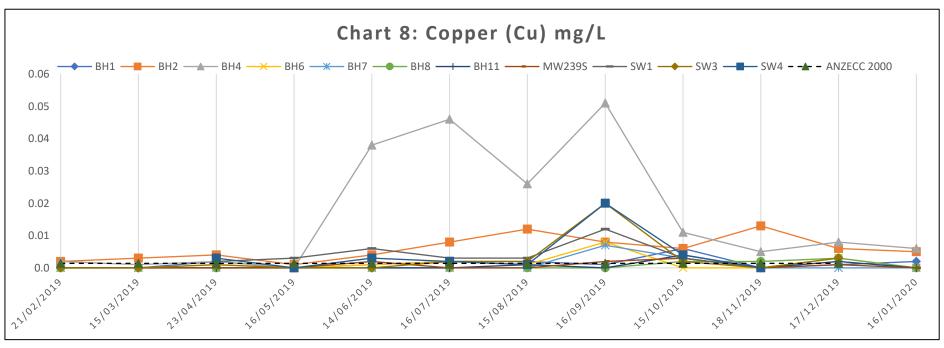

20193820.001A Page 16 of 16

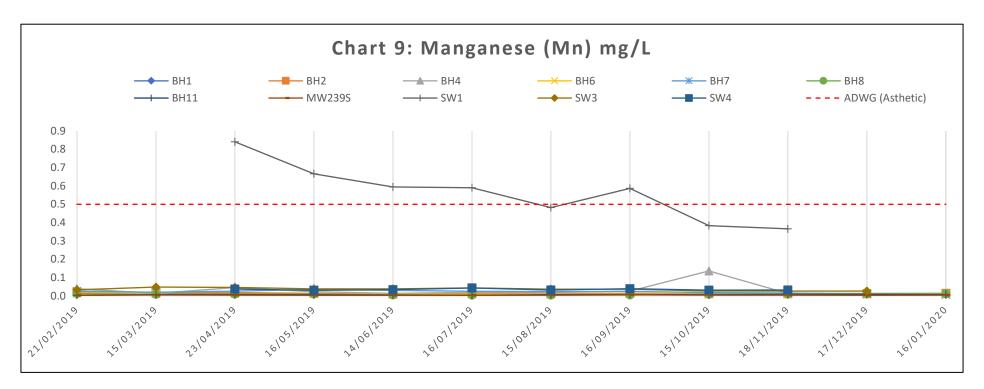


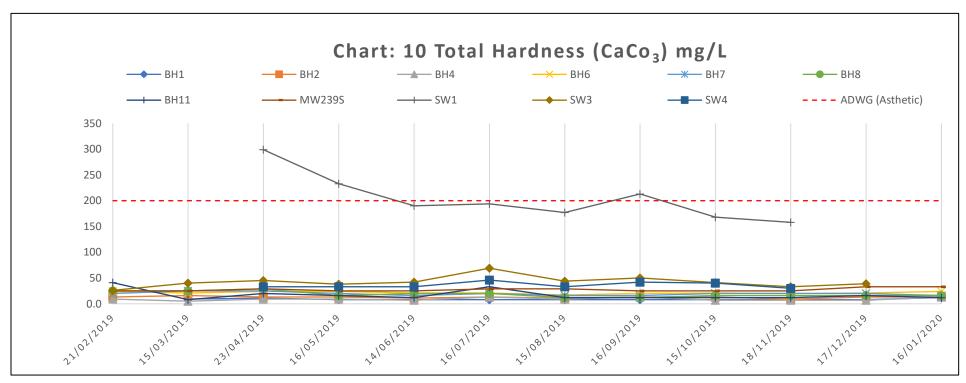

TREND CHARTS

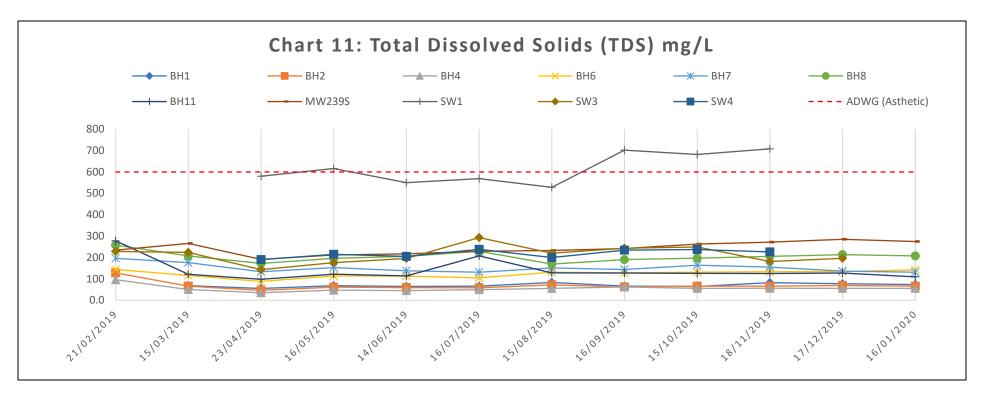


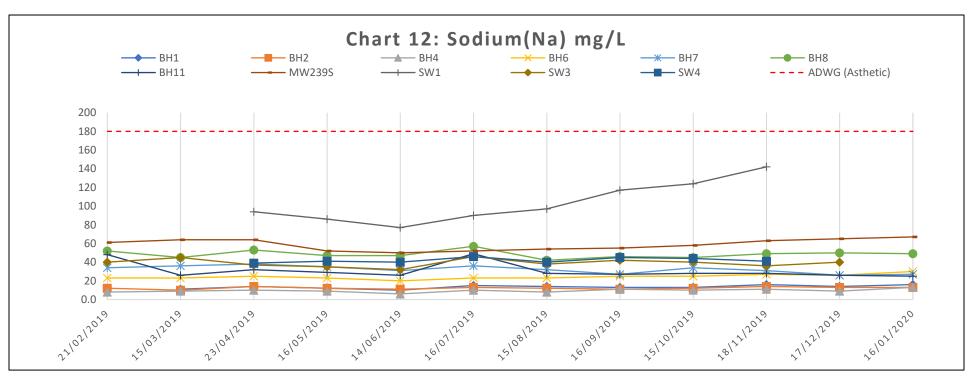


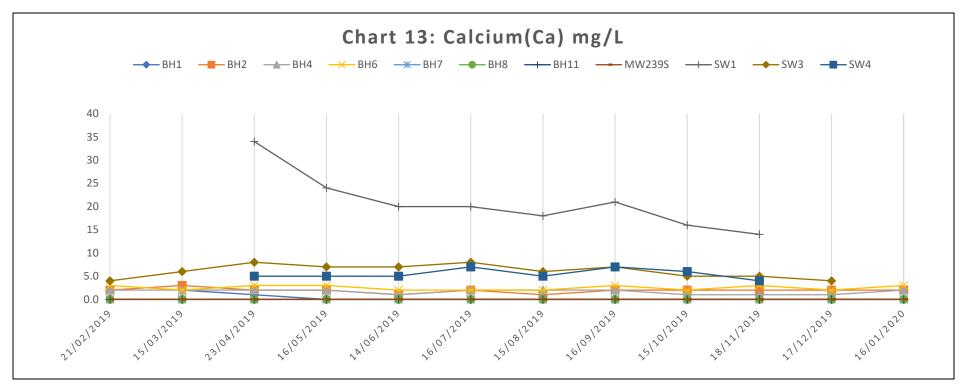


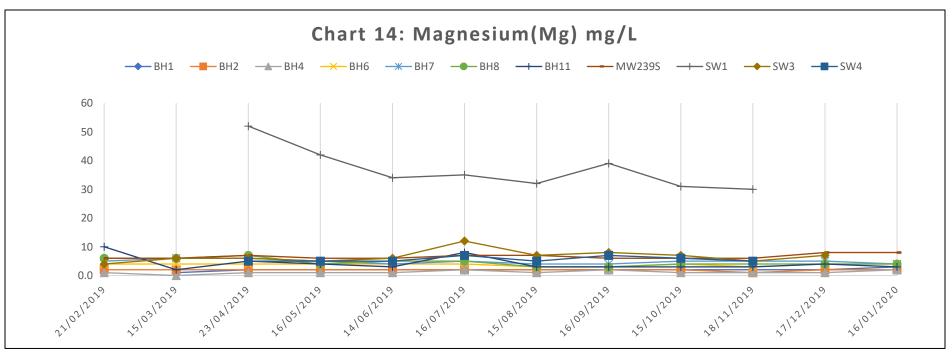


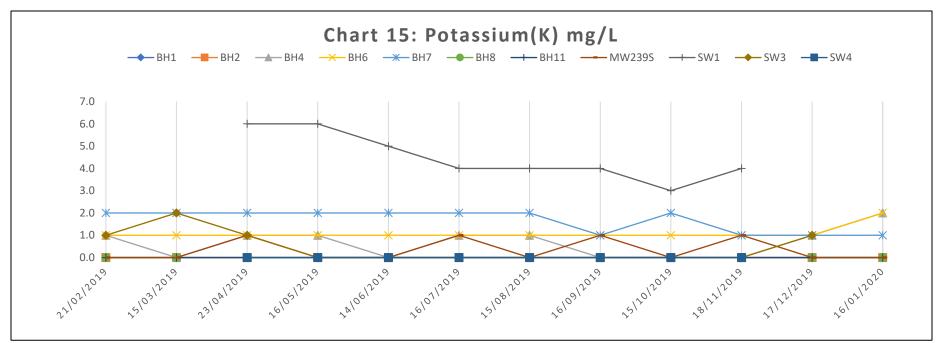


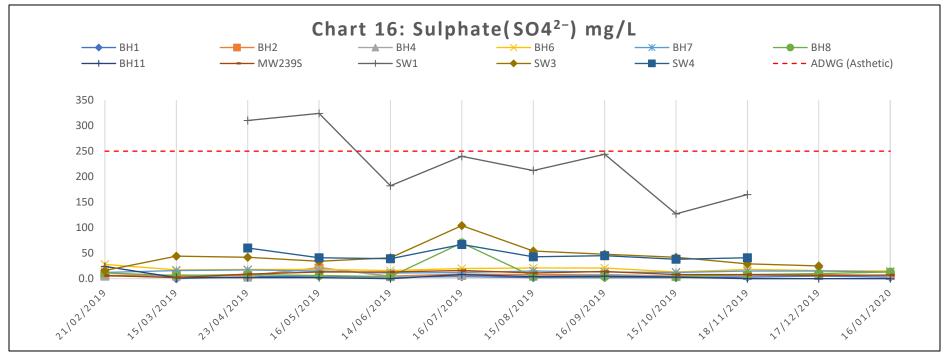


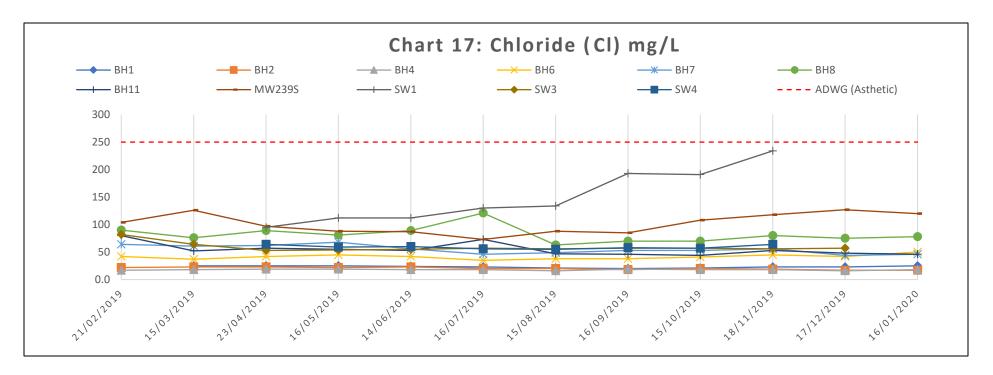


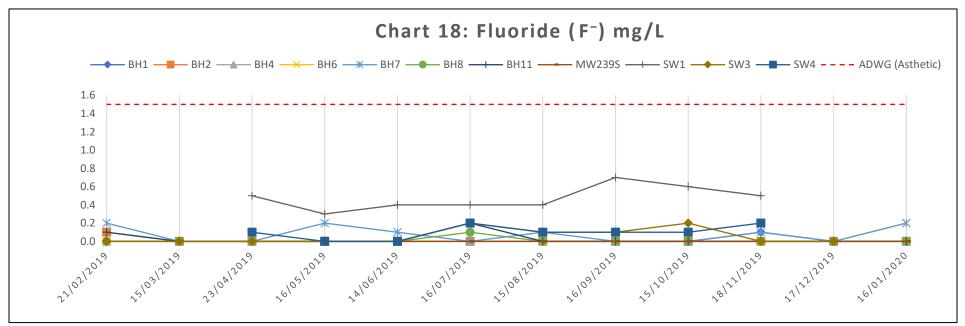


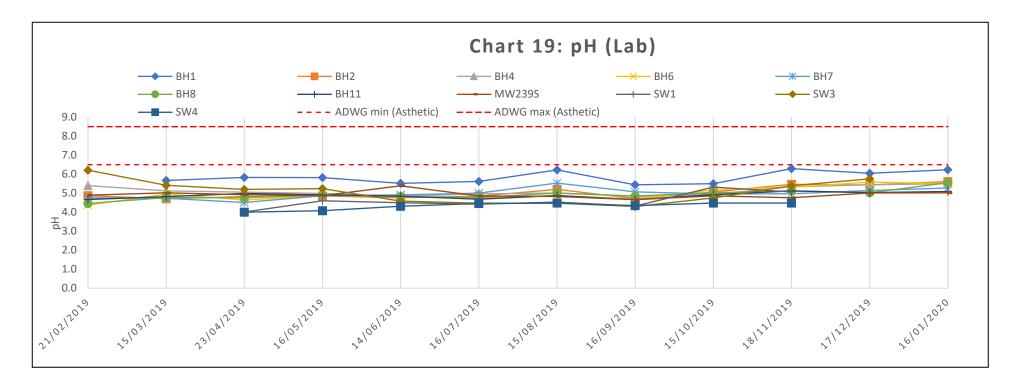


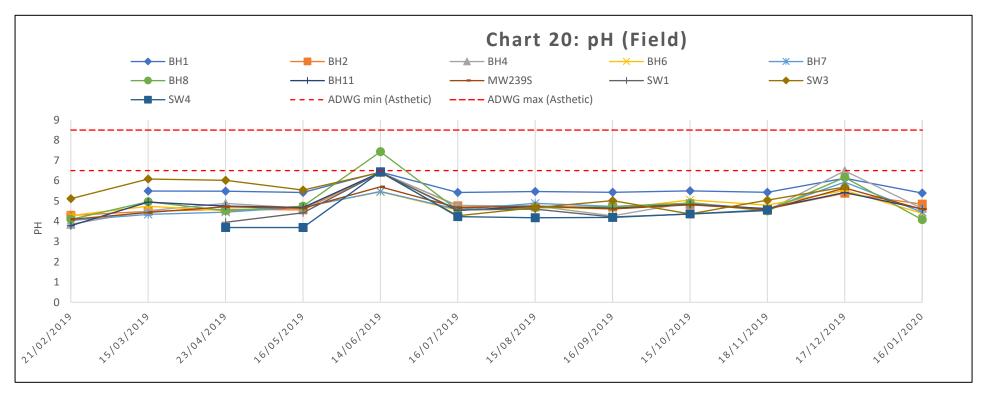


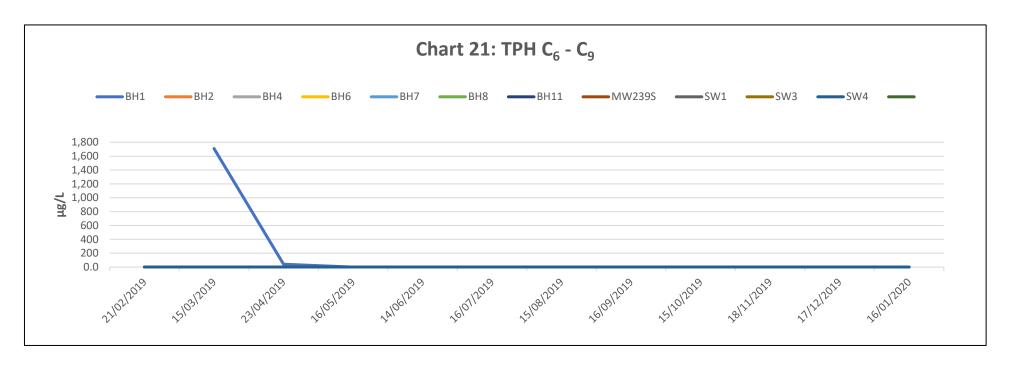


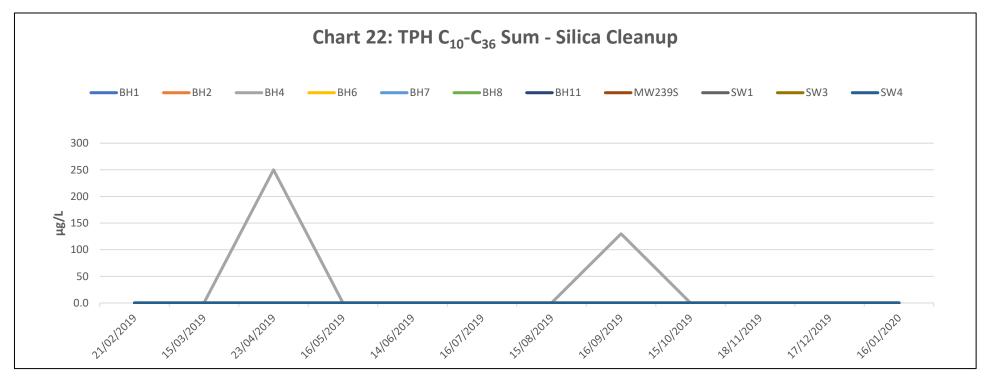


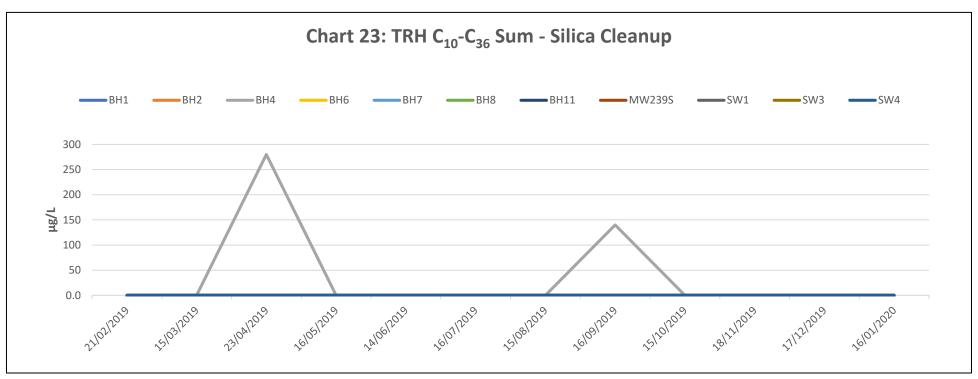


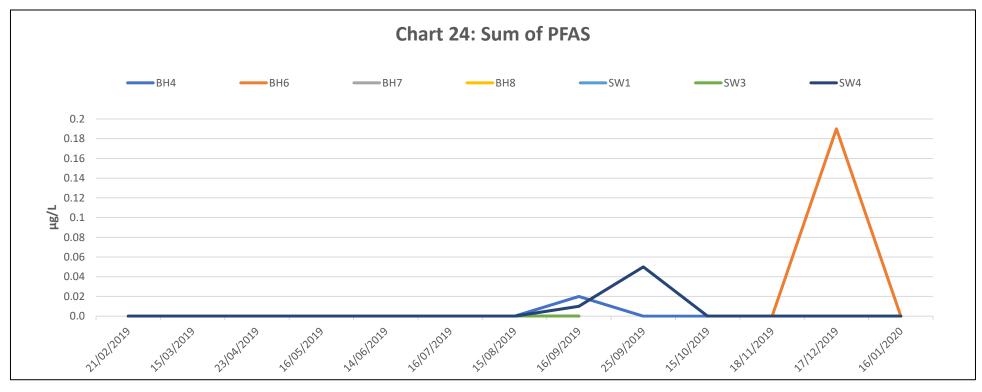


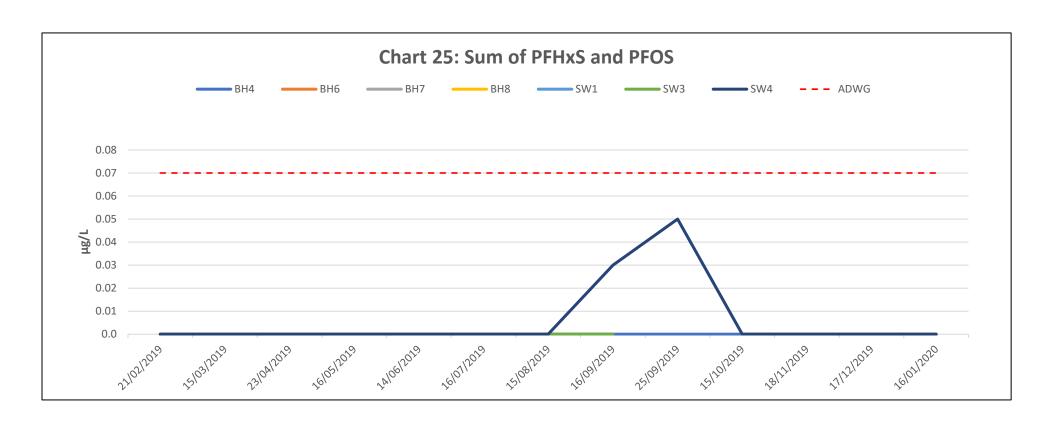












APPENDIX A: RCA AUSTRALIA 2015

(BORELOGS AND LABORATORY

ANALYSES)

SHEET 1 OF 2

DATE COMMENCED: 24/11/2014 DATE COMPLETED: 24/11/2014 SURFACE RL: 8.21 m AHD

COORDS: 387741.17 m E 6369495.82 m N MGA94 56

DRILL MODEL: 4WD Mounted Drill Rig DRILLER NAME: Port Stephens Drilling Pty Ltd

		Borehole Ir	formatio	n				Field Material Infor			
METHOD	WATER	FIELD	SAMPLE	RL (m AHD)	DEPTH (m)	GRAPHIC LOG	CLASSIFICATION SYMBOL	DESCRIPTION (SOIL NAME; plasticity/grain size, colour, particle shape, secondary components, minor constituents) (ROCK NAME; grain size, colour, minor constituents)	MOISTURE/ WEATHERING	CONSISTENCY/ RELATIVE DENSITY/ STRENGTH	BORE CONSTRUCTION
				8.0-	0.25 -		SP	TOPSOIL, SAND, medium grained, yellow-grey, trace of fine gravel, trace of organics, TOPSOIL/AEOLIAN	D-M	₹ .	Concrete - Bentonite
		0.50m	0.50m	-	-0.5		SP X	SAND, medium grained, brown, indurated (weakly cemented), AEOLIAN	D	D - VD	
		SPT 7, 11, 14	D	7.5-	0.3		المراج				
		N=25 0.95m	0.95m	-	- 0.80 - - 1.0		SP	SAND, medium grained, pale grey, AEOLIAN		VD - MD	
				7.0-	-		راد زیر در زیراد زیراد زیراد زیراد زیراد زیراد زیراد زیراد زیراد زیراد زیراد زیراد زیراد زیراد زیراد زیراد زیراد زیراد				[<u>.</u>]
		1.50m	1.50m	-	-1.5			Becoming grey with a trace of carbonaceous material	D-M	MD	
0		SPT 2, 2, 4 N=6	D	6.5	<u>-</u>		1. 2. 2.	at 1.5m			
oped by Datg		1.95m	1.95m	-	-2.0		ر را را				
AD/T				6.0 -	† - -						∵
by gINT Profe				-	-2.5		(<u>)</u>				Sand Backiiii
1:48 Produced				5.5 -	-		X				
19/05/2015 09		3.00m	3.00m	-	-3.0 -3.10 -		X X SP	SAND, medium grained, very dark brown, trace of silt,	-		
LOGS.GPJ < <drawingfile>> 19/05/2015 09:48 Produced by gINT Professional, Developed by Datgel AD/T</drawingfile>		SPT 3, 6, 5 N=11 3.45m	D 3.45m	5.0 -	<u>-</u>		\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	lightly indurated (weakly cemented), AEOLIAN			
3S.GPJ < <d< td=""><td></td><td>0.1011</td><td>0.1011</td><td>-</td><td>-3.5</td><td></td><td><u>ا</u> ا</td><td></td><td></td><td></td><td></td></d<>		0.1011	0.1011	-	-3.5		<u>ا</u> ا				
				4.5 -	† -		2 2 2 2 2 3				
ON CORED LC				4.0-			SP	SAND, medium to coarse grained, brown, trace of silt, AEOLIAN	M		
RCA_LB_08_RCA_STANDARD.GLB_Log_RCA NON CORED LOG_10059		4.50m	4.50m		-4.5		(1. / (2. / (3. /				-
NDARD.GLB		SPT	D	3.5 -	4.65		SP	SAND, medium grained, white, AEOLIAN	M - W		
8 RCA STAI		4, 7, 7 N=14 4.95m	4.95m	-	<u>-</u>					Ä	- ∴- Sand (cave in)
RCA_LIB_U	LOGO	GED: TH					CH	IECKED: CJM	DA ⁻	TE: 18/02/2	2015

SHEET 2 OF 2

DATE COMMENCED: 24/11/2014 DATE COMPLETED: 24/11/2014 SURFACE RL: 8.21 m AHD

COORDS: 387741.17 m E 6369495.82 m N MGA94 56

DRILL MODEL: 4WD Mounted Drill Rig DRILLER NAME: Port Stephens Drilling Pty Ltd

<u> </u>	JCAI	Borehole In			vviilla	IIILOWII		Field Material Infor		prieris D	Tilling Fty Ltu
		Borenole II	Tormatic		Ι.		Z			⊱	
METHOD	WATER	FIELD	SAMPLE	RL (m AHD)	DEPTH (m)	GRAPHIC LOG	CLASSIFICATION SYMBOL	DESCRIPTION (SOIL NAME; plasticity/grain size, colour, particle shape, secondary components, minor constituents) (ROCK NAME; grain size, colour, minor constituents)	MOISTURE/ WEATHERING	CONSISTENCY/ RELATIVE DENSITY/ STRENGTH	BORE CONSTRUCTION
RCA_LIB_08_RCA_STANDARD.GLB_Log_RCA NON CORRD_LOG 10089-LOGS.GPJ <-DrawingFile>> 19062/2015 09:48 Produced by gNT Professional Developed by Datgel Hollow Flight Auger	24/11/14	6.00m SPT 7, 10, 15 N=25 6.45m 7.50m SPT 14, 12, 14 N=26 7.95m 9.00m SPT 3, 10, 21 N=31 9.45m	6.00m D 6.45m 7.50m D 7.95m 9.00m D 9.45m	3.0	-5.546.5 6.5 7.0 7.5 8.0		00 00 00 00 00 00 00 00 00 00 00 00 00	SAND, medium grained, pale grey-brown, trace of silt, AEOLIAN SAND, as above SAND, as above BOREHOLE BH1 TERMINATED AT 9.45 m	W-W	D D	Screen (encapsulated in filter sock)
LOGGED: TH							Cŀ	HECKED: CJM	DA	TE: 18/0	02/2015

PROJECT: Proposed Sand Extraction

LOCATION: Cabbage Tree Road, Williamtown

PROJECT No: 10059 CLIENT: Benelli Equity Pty Ltd GEOTECHNICAL BOREHOLE LOG

SHEET 1 OF 2

DATE COMMENCED: 25/11/2014 DATE COMPLETED: 25/11/2014 SURFACE RL: 7.40 m AHD

COORDS: 387704.72 m E 6369175.14 m N MGA94 56

-	LU	CAI	ION: Cabbag			vviillali	itowii				phens Drilling Pty Ltd		
L	_		Borehole In	formatio	n			- 1	Field Material Infor		L I		
1	METHOD	WATER	FIELD	SAMPLE	RL (m AHD)	DEPTH (m)	GRAPHIC LOG	CLASSIFICATION SYMBOL	DESCRIPTION (SOIL NAME; plasticity/grain size, colour, particle shape, secondary components, minor constituents) (ROCK NAME; grain size, colour, minor constituents)		CONSISTENCY/ RELATIVE DENSITY/ STRENGTH/ STRENGTH OO OO	NSTRUCTION	
					-	- -		SP	FILL, Gravelly SAND, fine to medium grained, brown, sub rounded gravel and cobbles, up to 80-100mm size	D	♥ ♥ Concr	ete -	
			0.50m	0.50m	7.0-	- 0.30 - - 0.5		SP	SAND, fine to medium grained, dark brown, trace of organic matter (roots), and fine to medium sub rounded-rounded gravel, AEOLIAN	D-M	MD - D ← Bentor	- nite - - -	
			SPT 2, 4, 6 N=10 0.95m	D 0.95m	6.5	0.80		SP	SAND, fine to medium grained, pale brown, AEOLIAN	_		- - -	
			1.50m	1.50m	6.0 -	-1.0 - - - -1.5						- - - - - -	
Developed by Datgel			3, 4, 5 N=9 1.95m	1.95m	5.5 - -	- 1.80 - 2.0		SP	SAND, fine to medium grained, brown with some dark brown mottles, AEOLIAN			- - - -	
9 Produced by gINT Professional, I	AD/I				5.0	- - -2.5		4.84.84.84.84.84			Sand I		
ile>> 19/05/2015 09:4			3.00m SPT 6, 8, 11 N=19	3.00m D	4.5	-3.0		, <u> </u>	SAND, as above, brown/dark brown			- - - -	
RCA_LIB_08_RCA_STANDARD.GLB_Log_RCA NON CORED LOG_10089-LOGS.GPJ_< <drawningfile>> 19/05/2015 09:49 Produced by gINT Professional, Developed by Datget</drawningfile>			3.45m	3.45m	4.0	-3.5		SP	SAND, fine to medium grained, very dark brown, with a trace to some silt, AEOLIAN	М	D (2007)	- - - - - -	
og RCA NON CORED			4.5000	4.50	3.0-			SP	SAND, medium grained, very pale brown, with a trace of silt, AEOLIAN		≪ Bento	 - nite 	
STANDARD.GLB Lo			4.50m SPT 5, 10, 11 N=21	4.50m D	- - -	-4.5 -		*******					
RCA			4.95m	4.95m	2.5 -	†]				-	
RCA LIB 08	LOGGED: CJM					· '		CH	HECKED: CJM	DATE: 18/02/2015			

LOGGED: CJM

PROJECT: Proposed Sand Extraction

GEOTECHNICAL BOREHOLE LOG

SHEET 2 OF 2

DATE COMMENCED: 25/11/2014 DATE COMPLETED: 25/11/2014 SURFACE RL: 7.40 m AHD

COORDS: 387704.72 m E 6369175.14 m N MGA94 56

DATE: 18/02/2015

DRILL MODEL: 4WD Mounted Drill Rig
DRILLER NAME: Port Stephens Drilling Pty Ltd

			ION: Cabbag				mtown	DRILLE MODEL: 4WD Mounted Drill Rig DRILLER NAME: Port Stephens Drilling Pty Ltd
Ì			Borehole In	formatio	n			Field Material Information
	METHOD	WATER	FIELD	SAMPLE	RL (m AHD)	DEPTH (m)	GRAPHIC LOG CLASSIFICATION SYMBOL	DESCRIPTION (SOIL NAME; plasticity/grain size, colour, particle shape, secondary components, minor constituents) (ROCK NAME; grain size, colour, minor constituents)
FRA_STANDARD.GLB Log RCA NON CORED LOG 10069-LOGS.GPJ < <drawingfile> 19105/2015 09:49 Produced by gNT Professional, Developed by Datgel</drawingfile>	Hollow Flight Auger	25/11/14	6.00m SPT 6, 10, 17 N=27 6.45m 7.50m SPT 8, 23, 29 N=52 7.95m 9.00m SPT 12, 23, 36 N=59 9.45m	6.00m D 6.45m D 7.50m D 7.95m D 9.00m D 9.45m	2.0		10 18 18 18 18 18 18 18	
3 RCA S					-2.5			

CHECKED: CJM

PROJECT: Proposed Sand Extraction

PROJECT No: 10059 CLIENT: Benelli Equity Pty Ltd GEOTECHNICAL BOREHOLE LOG

SHEET 1 OF 2

DATE COMMENCED: 25/11/2014 DATE COMPLETED: 25/11/2014 SURFACE RL: 7.03 m AHD

COORDS: 387751.72 m E 6368964.39 m N MGA94 56

LOCATION: Cabbage Tree Road, Williamtow		ort Stephens Drilling Pty Ltd
Borehole Information	Field Material Inform	
METHOD WATER FIELD TEST SAMPLE RL (m AHD) DEPTH (m) GRAPHIC LOG COMMETER REST	DESCRIPTION (SOIL NAME; plasticity/grain size, colour, particle shape, secondary components, minor constituents) (ROCK NAME; grain size, colour, minor constituents)	MOISTURE/ WEATHERING CONSISTENCY/ RELATIVE BENEATH/ STRENGTH/ STRENGTH/ STRENGTH/ STRENGTH/ STRENGTH/ COO OO OO OO OO OO OO OO OO OO OO OO OO
LIAM New LIA	shape, secondary components, minor constituents) (ROCK NAME: grain size, colour, minor constituents) SP SAND, medium grained, pale brown-brown, AEOLIAN Some rock fragments, up to ~100m size encountered at 0.3m-0.4m SAND, as above, becoming pale brown at 0.4m Becoming grey-brown at 2.0m SP SAND, fine to medium grained, very dark brown, with a trace to some silt, AEOLIAN Becoming yellow-brown with depth Becoming yellow-brown with depth	M MD M MD Sand Backfill Sand Backfill
SPT D - 4.70 V V V V V V V V V V V V V V V V V V V	SP SAND, fine to medium grained, very pale brown, AEOLIAN	Eentonite -
E LOGGED: CJM	CHECKED: CJM	DATE: 18/02/2015

PROJECT: Proposed Sand Extraction

PROJECT No: 10059 CLIENT: Benelli Equity Pty Ltd

LOGGED: CJM

GEOTECHNICAL BOREHOLE LOG

SHEET 2 OF 2

DATE COMMENCED: 25/11/2014 DATE COMPLETED: 25/11/2014 SURFACE RL: 7.03 m AHD

COORDS: 387751.72 m E 6368964.39 m N MGA94 56

DATE: 18/02/2015

DRILL MODEL: 4WD Mounted Drill Rig DRILLER NAME: Port Stephens Drilling Ptv Ltd

	JECT: Propose ATION: Cabba			ntown	DRILL MODEL: 4V DRILLER NAME: F			
	Borehole Ir	_			Field Material Infor			
METHOD	FIELD	SAMPLE	RL (m AHD)	GRAPHIC LOG CLASSIFICATION SYMBOL	DESCRIPTION (SOIL NAME; plasticity/grain size, colour, particle shape, secondary components, minor constituents) (ROCK NAME; grain size, colour, minor constituents)	MOISTURE/ WEATHERING	CONSISTENCY/ RELATIVE DENSITY/ STRENGTH	BORE CONSTRUCTION
LIB_OB_RCA_STANDARD.GLB Log RCA NON CORED LOG 10059-LOGS.GPJ <-DrawingFile>> 19/05/2015 09:49 Produced by gINT Professional, Developed by Datgel Hollow Flinht Auner	6.00m SPT 4, 12, 24 N=36 6.45m 7.50m SPT 5, 23, 27 N=50 7,95m 9.00m SPT 8, 19, 37 N=56 9.45m	6.00m D 6.45m 7.50m D 7.95m 9.00m D 9.45m	2.0 = -1.5 = -2.	 B B	SAND, fine to medium grained, brown-dark brown, AEOLIAN SAND, as above, brown SAND, as above, brown BOREHOLE BH3 TERMINATED AT 9.45 m	M	MD D - VD	Screen (encapsulated in filter sock)
B B								

CHECKED: CJM

SHEET 1 OF 2

DATE COMMENCED: 26/11/2014 DATE COMPLETED: 26/11/2014 SURFACE RL: 2.81 m AHD

COORDS: 387854.96 m E 6368742.80 m N MGA94 56

DRILL MODEL: 4WD Mounted Drill Rig DRILLER NAME: Port Stephens Drilling Pty Ltd

	5/ (1)	Borebole In						Field Material Infor			
Т		Borehole In	lornalio				Z	Field Material Infor		\bar{\bar{\bar{\bar{\bar{\bar{\bar{	
METHOD	WATER	FIELD TEST	SAMPLE	RL (m AHD)	DEPTH (m)	GRAPHIC LOG	CLASSIFICATION SYMBOL	DESCRIPTION (SOIL NAME; plasticity/grain size, colour, particle shape, secondary components, minor constituents) (ROCK NAME; grain size, colour, minor constituents)	>	CONSISTENCY RELATIVE DENSITY/ STRENGTH	BORE CONSTRUCTION
				2.5 -	- 0.30 -		SP	TOPSOIL, SAND, medium grained, brown, with silt and fine rounded-sub rounded gravel, rootlets abundant SAND, fine to medium grained, pale brown, trace of silt, AEOLIAN	D	L	Concrete Bentonite
		0.50m SPT	0.50m D	-	-0.5		7.	Sin, Pedel W			
AD/T		2, 1, 1 N=2 0.95m	0.95m	2.0 -	-1.0						Sand Backfill
	1/14			- - 1.5	- 1.10 - - 1.30 -		OL	Organic Sandy SILT, low plasticity, very dark grey, fine to medium grained sand, AEOLIAN	M	- !!	
	1 26/11/14	1.50m	1.50m	-	1.5 1.5		SM	Silty SAND, fine to medium grained, dark brown-grey, trace of organics, AEOLIAN	W - W	L - MD	Bentonite
		SPT 1, 2, 2 N=4 1.95m	D 1.95m	1.0 - -	 - -		0. N. N. N. N. N. N. N. N. N. N. N. N. N.	Becoming with clay at 1.8m			
				0.5	-2.0 -		. X. X. X. X. X. X. X. X. X. X. X. X. X.				Sand (cave in)
				- - -	-2.50 -		SP	SAND, fine to medium grained, brown, trace of silt, AEOLIAN			Fine Gravel Backfill
jer	_	3.00m	3.00m	0.0 -	-3.0					MD - D	
Hollow Flight Auger		SPT 5, 8, 13 N=21	D	-0.5	3.30 -		SP	SAND, fine to medium grained, pale yellow-grey,		D - VD	
Holic		3.45m	3.45m	-	3.5		04.X4.X4	AEOLIAN			
				-1.0 - -	-4.0						Screen (encapsulated in filter sock)
				-1.5	 - -						
		4.50m SPT	4.50m	-	4.5		07.747.747.747.747.747.747.747.747.747.7			VD (
		13, 23, 28 N=51 4.95m	D 4.95m	-2.0 -	[-			SAND, as above			

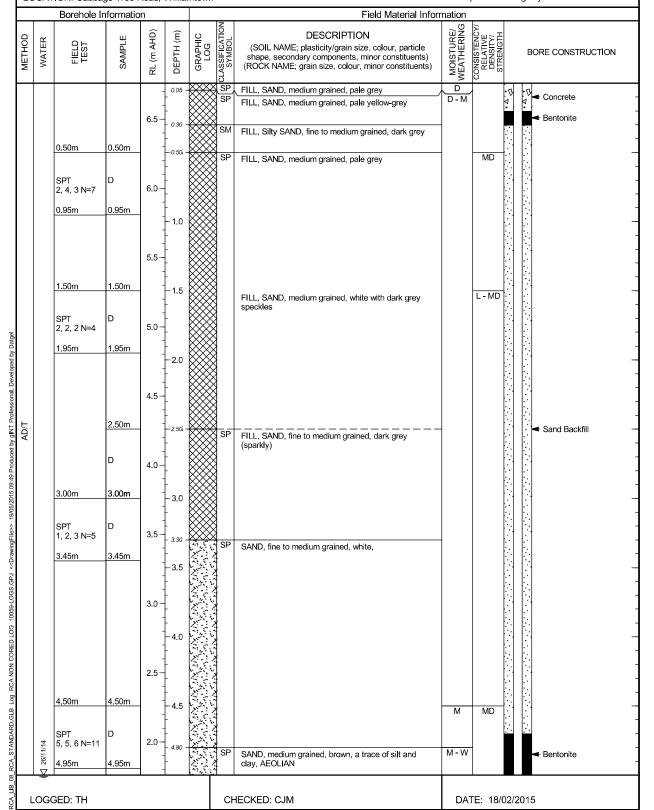
SHEET 2 OF 2

DATE COMMENCED: 26/11/2014 DATE COMPLETED: 26/11/2014 SURFACE RL: 2.81 m AHD

COORDS: 387854.96 m E 6368742.80 m N MGA94 56

DRILL MODEL: 4WD Mounted Drill Rig DRILLER NAME: Port Stephens Drilling Pty Ltd

			Borehole In	formatio	n				Field Material Infor	mation			
	METHOD	WATER	FIELD TEST	SAMPLE	RL (m AHD)	DEPTH (m)	GRAPHIC LOG	CLASSIFICATION SYMBOL	DESCRIPTION (SOIL NAME; plasticity/grain size, colour, particle shape, secondary components, minor constituents) (ROCK NAME; grain size, colour, minor constituents)	MOISTURE/ WEATHERING	CONSISTENCY/ RELATIVE DENSITY/ STRENGTH	В	ORE CONSTRUCTION
	Hollow Flight Auger				-2.5 — 	- - - - 5.5		SP	SAND, fine to medium grained, pale yellow-grey, AEOLIAN	W	VD		Screen (encapsulated - in filter sock) -
	OH HO			6.00m	-3.0 — -	- - -6.0							
			N=41	D 6.45m	-3.5	- - 6.45 6.5			BOREHOLE BH4 TERMINATED AT 6.45 m				-
loped by Datgel					-4.0 —				BORENOLE BY TERMINATED AT 0.43 III				
LOGS.GPJ < <drawingfile>> 19/05/2015 09:49 Produced by gINT Professional, Developed by Datgel</drawingfile>					-4.5 — - - -	- - -7.5							-
e>> 19/05/2015 09:49 Produα					-5.0 — 	- - -8.0							- - - - -
					-5.5 — - - - -6.0 —	- - 8.5 -							-
RCA_LIB_08_RCA_STANDARD.GLB_Log_RCA_NON_CORED_LOG_10059-					-6.5 —	- -9.0 - -							- - - - - - -
RCA_STANDARD.GLB_Log					-7.0 —	-9.5 - -							
RCA LIB 08	L	ogo	GED: TH					CH	HECKED: CJM	DA	ΓE: 18/0	02/2015	5



SHEET 1 OF 2

DATE COMMENCED: 26/11/2014 DATE COMPLETED: 26/11/2014 SURFACE RL: 6.76 m AHD

COORDS: 388768.52 m E 6369334.74 m N MGA94 56

DRILL MODEL: 4WD Mounted Drill Rig DRILLER NAME: Port Stephens Drilling Pty Ltd

PROJECT: Proposed Sand Extraction

LOCATION: Cabbage Tree Road, Williamtown

GEOTECHNICAL BOREHOLE LOG

SHEET 2 OF 2

DATE COMMENCED: 26/11/2014 DATE COMPLETED: 26/11/2014 SURFACE RL: 6.76 m AHD

COORDS: 388768.52 m E 6369334.74 m N MGA94 56

F	LU	CAI	ION: Cabba			vvilliai	IILOWII		DRILLER NAME: F		priciis D	ining i ty Ltd
F	_		Borehole In	formatio	n			 	Field Material Infor		L	Г
	METHOD	WATER	FIELD TEST	SAMPLE	RL (m AHD)	DEPTH (m)	GRAPHIC LOG	CLASSIFICATION SYMBOL	DESCRIPTION (SOIL NAME; plasticity/grain size, colour, particle shape, secondary components, minor constituents) (ROCK NAME; grain size, colour, minor constituents)	MOISTURE/ WEATHERING	CONSISTENCY/ RELATIVE DENSITY/ STRENGTH	BORE CONSTRUCTION
RCA_LIB_08_RCA_STANDARD.GLB_Log_RCA_NON_CORED_LOG_10089-LOGS.GPJ_< <drawningfile>> 19105/2015 09:49 Produced by gINT Professional, Developed by Datgel</drawningfile>	Hollow Flight Auger		6.00m SPT 4, 6, 11 N=17 6.45m 7.50m SPT 10, 18, 20 N=38 7.95m 9.00m SPT 13, 130mm N=R 13, 22/130mm N=R 9.28m	6.00m D 6.45m 7.50m D 7.95m 9.00m D 9.28m	-1.5	-5.54 - -6.0 -6.5 -7.0 -7.5			SAND, fine to medium grained, brown, a trace of silt and clay, AEOLIAN SAND, fine to medium grained, brown, a trace of silt, AEOLIAN BOREHOLE BH5 TERMINATED AT 9.28 m	W	MD - D	Screen (encapsulated in filter sock)
RCA LIB (LOGGED: TH						CHECKED: CJM				TE: 18/0	02/2015

LOGGED: TH

PROJECT: Proposed Sand Extraction

GEOTECHNICAL BOREHOLE LOG

SHEET 1 OF 1

DATE COMMENCED: 27/11/2014 DATE COMPLETED: 27/11/2014 SURFACE RL: 3.01 m AHD

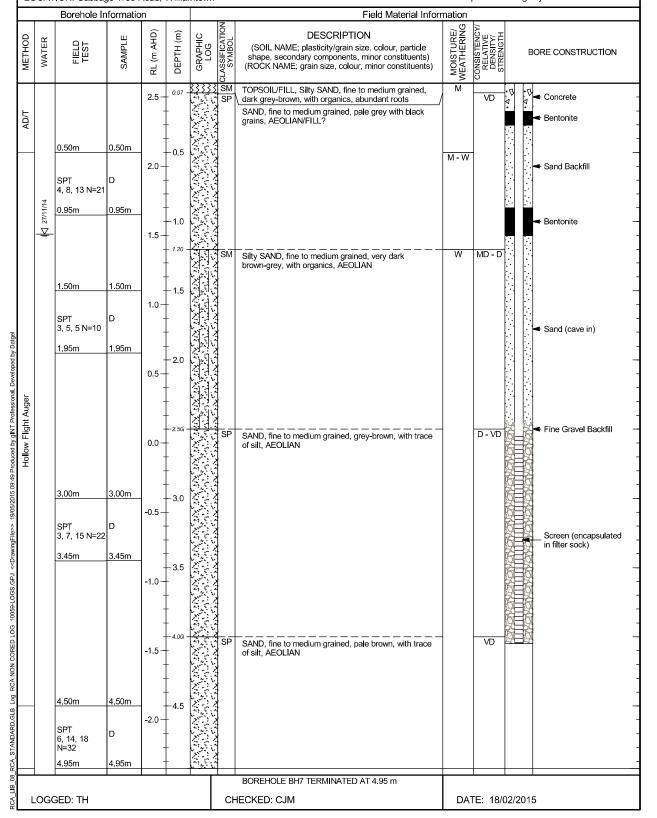
COORDS: 388729.78 m E 6369582.26 m N MGA94 56

DATE: 18/02/2015

DRILL MODEL: 4WD Mounted Drill Rig DRILLER NAME: Port Stephens Drilling Ptv Ltd

		CT: Propose ON: Cabbag				ntowr	1	DRILL MODEL: 4' DRILLER NAME:			-
		Borehole In	formatio	n				Field Material Info			
METHOD	WATER	FIELD	SAMPLE	RL (m AHD)	DEPTH (m)	GRAPHIC LOG	CLASSIFICATION	DESCRIPTION (SOIL NAME; plasticity/grain size, colour, particle shape, secondary components, minor constituents) (ROCK NAME; grain size, colour, minor constituents)	MOISTURE/ WEATHERING	CONSISTENCY/ RELATIVE DENSITY/ STRENGTH	BORE CONSTRUCTION
AD/T	1	0.50m SPT 3, 3, 3 N=6 0.95m 1.50m SPT 2, 2, 3 N=5 1.95m 3.00m SPT 5, 9, 12 N=21 3.45m	0.50m D 0.95m 1.50m J.95m 3.00m D 3.45m	E			INSTRUCTION OF THE PARTY OF THE	shape, secondary components, minor constituents) (ROCK NAME; grain size, colour, minor constituents) FILL, Gravelly SAND, fine to medium grained, pale brown, fine to medium gravel Silty SAND, fine to medium grained, dark grey-brown, a trace of clay, with organics, AEOLIAN SAND, medium grained, grey-brown, with a trace to some silt, a trace of clay, AEOLIAN SAND, fine to medium grained, grey-brown, with a trace to some silt, AEOLIAN SAND, fine to medium grained, pale yellow-brown, AEOLIAN SAND, fine to medium grained, pale yellow-brown, AEOLIAN	A MOIST A WEATH	CONSIS PELA PELA DENS STREN	Concrete Bentonite Sand Backfill Sand (cave in) Fine Gravel Backfill Screen (encapsulated in filter sock)
יייייי פייי פייייייייייייייייייייייייי	S 7	4.50m SPT 7, 10, 14 N=24		-1.5 — -1.5 —	- - 4.5 - -		***************************************	SAND, as above			
		4.95m				,	4_	BOREHOLE BH6 TERMINATED AT 4.95 m			

CHECKED: CJM



SHEET 1 OF 1

DATE COMMENCED: 27/11/2014 DATE COMPLETED: 27/11/2014 SURFACE RL: 2.60 m AHD

COORDS: 388827.76 m E 6369245.32 m N MGA94 56

DRILL MODEL: 4WD Mounted Drill Rig
DRILLER NAME: Port Stephens Drilling Pty Ltd

PROJECT: Proposed Sand Extraction

LOCATION: Cabbage Tree Road, Williamtown

GEOTECHNICAL BOREHOLE LOG

SHEET 1 OF 2

DATE COMMENCED: 28/11/2014 DATE COMPLETED: 28/11/2014 SURFACE RL: 3.28 m AHD

COORDS: 389178.27 m E 6369271.68 m N MGA94 56

F	Borehole Information							Field Material Information						
								N O						
1	MEIHOD	WATER	FIELD TEST	SAMPLE	RL (m AHD)	DEPTH (m)	GRAPHIC LOG	CLASSIFICATION SYMBOL	DESCRIPTION (SOIL NAME; plasticity/grain size, colour, particle shape, secondary components, minor constituents) (ROCK NAME; grain size, colour, minor constituents)	MOISTURE/ WEATHERING	CONSISTENCY/ RELATIVE DENSITY/ STRENGTH	BORE CONSTRUCTION		
					-	-		SP	SAND, medium grained, grey, a trace of vegetation, AEOLIAN	D	□	Concrete		
					3.0 -	-						■ Bentonite		
					-	0.35 -		SP	SAND, medium grained, white-pale grey, AEOLIAN	1	MD :			
			0.50m	0.50m	-	-0.5						-		
١.			CDT	D	-	-								
	AD/		SPT 2, 2, 5 N=7		2.5 –	[
			0.95m	0.95m	-	}						Sand Backfill		
					-	- 1.0] []		
					-	-								
					2.0 -	- 1.30 -		SP	SAND, medium grained, dark brown, a trace of silt,	М	D-VD			
		1/14	1.50m	1.50m	-	_ _ 1.5			AEOLIAN					
		28/11/14	SPT		-	-						→ Bentonite		
_		_ <u></u>	11, 9, 11 N=20	D	1.5-	ļ				W				
y Datge			1.95m	1.95m	-	-					[.:			
q pado					-	-2.0								
, Deve					-	-		<u> </u>						
essiona					1.0 —	-		*				. Sand (cave in)		
< <drawingfile>> 19/05/2015 09:49 Produced by gINT Professional, Developed by Datgel</drawingfile>					-	250 -								
l by g∥					-	-		SP	SAND, medium grained, grey-brown, with a trace of silt, AEOLIAN		VD :			
roduce					0.5	-								
09:49 P					-	-								
5/2015	_ 		3.00m	3.00m	-	-3.0		*				Fine Gravel Backfill		
× 19/0	Hollow Flight Auger		SPT	D	_			1						
gFile>.	<u> </u>		9, 15, 17 N=32		0.0	-					X			
<drawii< td=""><td><u> </u></td><td></td><td>3.45m</td><td>3.45m</td><td>-</td><td>-</td><td></td><td></td><td></td><td></td><td></td><td></td></drawii<>	<u> </u>		3.45m	3.45m	-	-								
GPJ .	-				-	-3.5 -								
LOGS					-	-								
10059					-0.5	1								
9070					-	4.0						Screen (encapsulated		
CORE					-	-	X (2)					HTIME SOCK)		
NON Y					-1.0	ļ		*						
g RC∤			4.50	. 50	-	-								
SLB LC			4.50m	4.50m	-	-4.5						-		
DARD.(SPT 19, 19,	D	-	[
STANI			20/70mm N=R 4.87m	4.87m	-1.5	-			SAND, as above					
3 RCA			,			-								
RCA_LIB_08_RCA_STANDARD.GLB_Log_RCA_NON_CORED_LOG_10059-LOGS.GPJ		000						۵.	HEOVED ON		TE 40/0	2/0045		
ਟੂ LOGGED: TH								CHECKED: CJM			DATE: 18/02/2015			

PROJECT: Proposed Sand Extraction

LOCATION: Cabbage Tree Road, Williamtown

GEOTECHNICAL BOREHOLE LOG

SHEET 2 OF 2

DATE COMMENCED: 28/11/2014 DATE COMPLETED: 28/11/2014 SURFACE RL: 3.28 m AHD

COORDS: 389178.27 m E 6369271.68 m N MGA94 56

DESCRIPTION A A A A A A A A A		ming r ty Ltd				DRILLER NAIVIE: F		THOW	vviiliai			Porobolo In	CAI		
SAND, medium grained, grey-brown, with a trace of silt, AEOLIAN Screen in filter s 6.00m		Field Material Information						Borehole Information							
Screen in filter s 6.00m 6.00m 5PT 9, 20/130mm N=R 6.28m 6.28m 6.28m 6.6.8 BOREHOLE BH8 TERMINATED AT 6.28 m	NSTRUCTION	BORE CONSTRU	CONSIDERATIVE DENSITY/ STRENGTH	CONSISTENCY RELATIVE DENSITY/	MOISTURE/ WEATHERIN	(SOIL NAME; plasticity/grain size, colour, particle shape, secondary components, minor constituents) (ROCK NAME; grain size, colour, minor constituents)		GRAPHIC LOG	DEPTH (m)	RL (m AHD)	SAMPLE	FIELD	WATER	METHOD	
6.00m 6.00m	n (encapsulated sock)	Screen (encal in filter sock)	VD	VD	W	SAND, medium grained, grey-brown, with a trace of silt, AEOLIAN	SP SLAGAGAGAG		- - - - -5.5	-2.0 —				Flight Auger	
9, 20/130mm N=R 6.28m 3.0 6.28 BOREHOLE BH8 TERMINATED AT 6.28 m							বৈত্যত্ত্ত্ত্ত্ত্ত্ত্ত্ত্ত্ত্ত্ত্ত্ত্ত্ত্		-6.0	-2.5 — -	6.00m	6.00m		Hollow	
-6.5						BODEHOLE BUS TEDMINATED AT 6.28 m	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\		6.28	-3.0-		9, 20/130mm N=R			
3.5.5						DONAL OLD TENNINGATED AT 0.20 III			-6.5	-					
1—7.0 1—7.0									- - -	-3.5 -					
4.0 — ———————————————————————————————————									-7.0 -	-					
-4.58.0 -5.05.55.59.0 -7.59.0 -7.59.0 -7.59.0 -7.59.0									- - -7.5	-4.0 -					
08ED LOOS GPO 1906 1006 1006 1006 1006 1006 1006 1006									-	-4.5					
-5.0									-8.0	-					
7- -5.5 9.0									- - 8.5	-5.0 — -					
									- -	-5.5					
									9.0	-					
ON SOLUTION OF THE STATE OF THE										-6.0					
1									-9.5 - -	-6.5					
LOGGED: TH CHECKED: CJM DATE: 18/02/2015		2/2015	E: 19/00/00	ATE: 40	DA	ECKED C IM		LOCOED, TH							

SHEET 1 OF 4

DATE COMMENCED: 09/12/2014 DATE COMPLETED: 10/12/2014 SURFACE RL: 17.07 m AHD

COORDS: 387520.43 m E 6368798.88 m N MGA94 56

DRILL MODEL: Track Mounted Drill Rig DRILLER NAME: Total Drilling Pty Ltd

Borehole Information								Field Material Inform	nation			
METHOD	WATER	FIELD	SAMPLE	RL (m AHD)	DEPTH (m)	GRAPHIC LOG	CLASSIFICATION SYMBOL	DESCRIPTION (SOIL NAME; plasticity/grain size, colour, particle shape, secondary components, minor constituents) (ROCK NAME; grain size, colour, minor constituents)	MOISTURE/ WEATHERING	CONSISTENCY/ RELATIVE DENSITY/ STRENGTH	BORE CONSTRUCTION	
			0.20m	17.0 -	- 0.20 -		SP	SAND, medium grained, grey, trace of organics, AEOLIAN	М	.₽	Concrete -	
					- 0.20		SP	SAND, medium grained, pale yellow-brown, AEOLIAN		MD ∵	→ Bentonite	
			D	16.5	-0.5							
				-	-							
		1.00m	1.00m	16.0 -	-1.0					MD - L		
		SPT 2, 2, 4 N=6	D	-	-							
		1.45m	1.45m	15.5 -	1.5							
				-	-							
ed by Datge					-2.0							
nal, Develop			11	15.0 -	-						-	
IT Professio		2.50m	2.50m	-	-2.5							
AD/T P		SPT	D	14.5 -	<u></u>						. · . · . · · · · · · · · · · · · · · ·	
5 09:49 Pro		1, 1, 1 N=2 2.95m	2.95m								-	
> 19/05/201				14.0 -	4.0							
rawingFile>					-							
S.GPJ <<				13.5	-3.5							
10059-LOC					-							
ORED LUG		4.00m	4.00m	13.0 –	-4.0			SAND, as above			-	
ACA NON C		SPT 2, 2, 2 N=4	D		-							
RCA_LIB_08_RCA_STANDARD.GLB_Log_RCA NON CORED.LOG 10069-LOGS.GPJ < <drawingfile>> 1906/2015 09:49 Produced by gNT Professional, Developed by Datgel — AD/T</drawingfile>		4.45m	4.45m	12.5 –	-4.5							
STANDAR					-						-	
98 24 24												
AS I	LOGGED: TH						CHECKED: CJM DATE: 18/02/2015			2015		

SHEET 2 OF 4

DATE COMMENCED: 09/12/2014 DATE COMPLETED: 10/12/2014 SURFACE RL: 17.07 m AHD

COORDS: 387520.43 m E 6368798.88 m N MGA94 56

DRILL MODEL: Track Mounted Drill Rig DRILLER NAME: Total Drilling Pty Ltd

Borehole Information								Field Material Infor	nation			
METHOD	WATER	FIELD	SAMPLE	RL (m AHD)	DEPTH (m)	GRAPHIC LOG	CLASSIFICATION SYMBOL	DESCRIPTION (SOIL NAME; plasticity/grain size, colour, particle shape, secondary components, minor constituents) (ROCK NAME; grain size, colour, minor constituents)	MOISTURE/ WEATHERING CONSISTENCY FELATIVE DENSITY/ STRENGTH STRENG			
				12.0-	5.00	Q89	SP	SAND, medium grained, pale yellow-brown, AEOLIAN	M L O O			
oped by Datgel		5.50m SPT 2, 3, 3 N=6 5.95m	5.50m D 5.95m	11.5 - 11.5 - 10.5 - 10.0 - 10.	-5.5 -6.0		SP S	SAND, medium grained, pale yellow-brown, AEOLIAN	M L			
l, Devel		SPT	D	10.0	10.0							
essiona		3, 3, 4 N=7			-				- 4 8 8			
99:49 Produced by gINT Prof AD/T		7.45m	7.45m	9.5-	-7.5 -7.5				Sand Backfill —			
<drawingfile>> 19/05/2015 (</drawingfile>		8.50m	8.50m	9.0-	8.0							
10059-LOGS.GPJ <		SPT 3, 3, 3 N=6	D	8.5-	-8.5 -			L Becoming darker in colour (orange-brown) at 8.8m				
RCA_LIB_06_RCA_STANDARD.GLB_Log_RCA NON CORED.LOG 10059-LOGS.GPJ < <drawingfile>> 19105/2015 09:49 Produced by gNT Professional. Developed by Datgel</drawingfile>		8.95m	8.95m	8.0 -	-9.0 9.5							
SASTA					-							
8 — K		10.00m	10.00m			<u>ነረጎት</u> Τ	ł					
RCA LIB	LOGGED: TH						CH	HECKED: CJM	DATE: 18/02/2015			

SHEET 3 OF 4

DATE COMMENCED: 09/12/2014 DATE COMPLETED: 10/12/2014 SURFACE RL: 17.07 m AHD

COORDS: 387520.43 m E 6368798.88 m N MGA94 56

DRILL MODEL: Track Mounted Drill Rig DRILLER NAME: Total Drilling Pty Ltd

LUCATION: Cabbage			Field Material Information						
Borehole Info		Z							
METHOD WATER FIELD TEST	SAMPLE RL (m AHD)	GRAPHIC LOG CLASSIFICATION SYMBOL	DESCRIPTION (SOIL NAME; plasticity/grain size, colour, particle shape, secondary components, minor constituents) (ROCK NAME; grain size, colour, minor constituents)	MOISTURE/ WEATHERING CONSISTENCY/ RELATIVE DENSITY/ STRENGTH STRENGTH OOD OOD OOD					
SPT 2, 3, 6 N=9 10.45m 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	10.45m 10.45m	11.0 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	SAND, medium grained, grey-brown, some zones of brown and pale yellow sand, AEOLIAN SAND, medium grained, grey-brown, AEOLIAN Becoming pale yellow-grey at ~14.0m	M L-MD					
N=32	14.95m		HECKED: CJM	DATE: 18/02/2015					

PROJECT: Proposed Sand Extraction

GEOTECHNICAL BOREHOLE LOG

SHEET 4 OF 4

DATE COMMENCED: 09/12/2014 DATE COMPLETED: 10/12/2014 SURFACE RL: 17.07 m AHD

COORDS: 387520.43 m E 6368798.88 m N MGA94 56

DRILL MODEL: Track Mounted Drill Rig DRILLER NAME: Total Drilling Pty Ltd

METHOD Borehole Information BORD SAMPLE RL (m AHD) SAMPLE SAMPHC	Field Material Inform	nation		
	DESCRIPTION Solid Name; plasticity/grain size, colour, particle shape, secondary components, minor constituents)	URE/ ERING	ACY/ H	
-	ဖြို့ဖြို့ (ROCK NAME; grain size, colour, minor constituents)	MOISTURE/ WEATHERING	CONSISTENCY/ RELATIVE DENSITY/ STRENGTH	BORE CONSTRUCTION
2.0 — 15.00 1.5 — 15.5 1.5 — 16.0 1.5 — 16.0 1.5 — 16.0 1.5 — 16.0 1.5 — 16.5 1.5	SAND, medium grained, pale yellow-grey, AEOLIAN	W W	D-VD	
17.90 m 17.9	BOREHOLE BH9 TERMINATED AT 18.18 m		E: 18/02/2	-

SHEET 1 OF 2

DATE COMMENCED: 10/12/2014 DATE COMPLETED: 10/12/2014 SURFACE RL: 6.09 m AHD

COORDS: 387931.22 m E 6369744.44 m N MGA94 56

DRILL MODEL: Track Mounted Drill Rig DRILLER NAME: Total Drilling Pty Ltd

LOGF	ATION: Cabba			vviiliai	I		Ciald Material Infor		iiii ig r ty Lt	<u> </u>
	Borehole Ir	nformatio				z	Field Material Infor		<u> </u>	
METHOD	FIELD	SAMPLE	RL (m AHD)	ОЕРТН (m)	GRAPHIC LOG	CLASSIFICATION SYMBOL	DESCRIPTION (SOIL NAME; plasticity/grain size, colour, particle shape, secondary components, minor constituents) (ROCK NAME; grain size, colour, minor constituents)	>	CONSISTENCY RELATIVE DENSITY/ STRENGTH	BORE CONSTRUCTION
		0.20m	6.0 -	- 0.20 -		SP	SAND, medium grained, pale grey, with organics, AEOLIAN/TOPSOIL	D-M	. ß	Concrete
		D	5.5 -	0.5 		B 8	SAND, fine to medium grained, pale grey, AEOLIAN		MD	■ Bentonite Sand Backfill
	1.00m	1.00m	5.0-	-1.0		. X. X.				Cana Backiiii
AD/T	SPT 3, 3, 4 N=7	D 1 45m	-	- 1.20 - - 1.30 -		SM	Silty SAND, fine to medium grained, brown, slightly indurated (weakly cemented), AEOLIAN SAND, fine to medium grained, yellow-brown, with a			
	1.45m	1.45m	4.5	1.5 			trace of silt, AEOLIAN		51-70	■ Bentonite
			4.0-	2.00 - 2.00 -		SP	SAND, fine to medium grained, pale grey, AEOLIAN	M	_	Fine Gravel backfill
	2.50m	2.50m	3.5-	-2.5						
41/21/10	SPT 3, 4, 6 N=10 2.95m	D 2.95m	-	- -		X. X. X. X. X. X. X. X. X. X. X. X. X. X		W		
			3.0	-3.0 - - -		\$11.\$11.\$11.\$11.				
Hollow Flight Auger			2.5-	3.50 - 		SP	SAND, fine to medium grained, yellow-brown, slightly indurated (weakly cemented), slight organic odour, AEOLIAN		D	Screen (encapsulated in filter sock)
ਮ 	4.00m SPT 10, 17, 21 N=38	4.00m	2.0-	-4.0 - 4.10 -		SP	SAND, fine to medium grained, dark grey-brown, with a trace to some silt, AEOLIAN		D-VD	
	4.45m	4.45m	1.5	-4.5 -4.5		. X. (
	5.00m		<u> </u>			4				
LOC	LOGGED: TH					CH	IECKED: CJM	DATE: 18/02/2015		

GEOTECHNICAL BOREHOLE LOG

SHEET 2 OF 2

DATE COMMENCED: 10/12/2014 DATE COMPLETED: 10/12/2014 SURFACE RL: 6.09 m AHD

COORDS: 387931.22 m E 6369744.44 m N MGA94 56

DRILL MODEL: Track Mounted Drill Rig DRILLER NAME: Total Drilling Pty Ltd

PROJECT No: 10059
CLIENT: Benelli Equity Pty Ltd
PROJECT: Proposed Sand Extraction
LOCATION: Cabbage Tree Road, Williamtown

	Borehole Information				Field Material Information							
METHOD	WATER	FIELD	SAMPLE	RL (m AHD)	DEPTH (m)	GRAPHIC LOG	CLASSIFICATION SYMBOL	DESCRIPTION (SOIL NAME; plasticity/grain size, colour, particle shape, secondary components, minor constituents) (ROCK NAME; grain size, colour, minor constituents)	MOISTURE/ WEATHERING	CONSISTENCY/ RELATIVE DENSITY/ STRENGTH	В	ORE CONSTRUCTION
		SPT 2, 11, 20 N=31		1.0 -	- - -		SP	SAND, fine to medium grained, dark grey-brown, with a trace to some silt, AEOLIAN	W	D - VD		-
		5.45m		0.5 -	-5.5 -	<u>.</u>		BOREHOLE BH10 TERMINATED AT 5.45 m				_ - -
				0.0 -	-6.0 -							- - - -
				-0.5	- 6.5							- - -
veloped by Datgel				- - -1.0 –	-7.0							- - -
gINT Professional, De				- - -	- - - -7.5							- - -
015 09:50 Produced by				-1.5 - - - -	8.0							- - -
DrawingFile>> 19/05/2				-2.0 - - -								- - -
10059-LOGS,GPJ < <l< td=""><td></td><td></td><td></td><td>-2.5 -</td><td>-8.5 -</td><td></td><td></td><td></td><td></td><td></td><td></td><td>- - - -</td></l<>				-2.5 -	-8.5 -							- - - -
A NON CORED LUG				-3.0 -	-9.0 -							- - - -
NDARD.GLB Log RC,				-3.5 -	-9.5 -							- - - -
RCA_LIB_08_RCA_STANDARD.GLB_Log_RCA NON CORED.LOG 10059-LOGS.GPJ < <drawngfile>> 19/05/2015 09:50 Produced by gNT Professional, Developed by Datget</drawngfile>	LOG	GED: TH		-	-		CH	HECKED: CJM	DAT	TE: 18/0	02/2018	5

GEOTECHNICAL BOREHOLE LOG

SHEET 1 OF 2

DATE COMMENCED: 11/12/2014 DATE COMPLETED: 11/12/2014 SURFACE RL: 6.02 m AHD

COORDS: 387650.66 m E 6369979.77 m N MGA94 56

DRILL MODEL: Track Mounted Drill Rig DRILLER NAME: Total Drilling Pty Ltd

PROJECT No: 10059
CLIENT: Benelli Equity Pty Ltd
PROJECT: Proposed Sand Extraction
LOCATION: Cabbage Tree Road, Williamtown

F		Borehole In			***************************************			Field Material Infor					
\vdash		Borenole II	Ilornialio				Z O			>			
METHOD	WATER	FIELD	SAMPLE	RL (m AHD)	DEPTH (m)	GRAPHIC LOG	CLASSIFICATION SYMBOL	DESCRIPTION (SOIL NAME; plasticity/grain size, colour, particle shape, secondary components, minor constituents) (ROCK NAME; grain size, colour, minor constituents)	MOISTURE/ WEATHERING	CONSISTENCY RELATIVE DENSITY/ STRENGTH	ВО	ORE CONSTRUCTION	
			0.10m		-		SP	SAND, medium grained, pale grey-white, trace of silt, AEOLIAN	М		· B · B	€ Concrete	_
				-				Trace of organics from 0.0-0.1m				€ Bentonite	-
AD/T			D	5.5 -	-0.5		7. 20. 20. 20					€ Sand Backfill	-
		1.00m	1.00m	5.0	-1.0			Becoming white at 1.0m		MD - D		€ Bentonite	-
		SPT 3, 6, 6 N=12	D	-	-			Deconing white at 1.0m				€ Sand Backfill	
		1.45m	1.45m	4.5	1.5							- Sand Buokiii	-
u by barger				-	-2.00		**************************************						- - -
odenomia procession	11/12/14			4.0			SP	SAND, fine to medium grained, pale grey-brown, with a trace of silt, slight organic odour, AEOLIAN	M - W	MD -			
		2.50m	2.50m	3.5 -	2.5							Fine Gravel Backfill	-
nt Auger		SPT 2, 4, 6 N=10 2.95m	D 2.95m	-				SAND, as above					
HOLLOW Flight Auger				3.0 -	3.0		Cr. XII XII XII						
				2.5 -	-3.5 -		×1 ×1 ×1						-
!		4.00m SPT 5, 10, 17	4.00m D	2.0 -	-4.0		0 × × × ×	SAND, as above		D - VD		Screen (encapsulated in filter sock)	-
,		N=27 4.45m	4.45m	1.5 – -	-4.5 -		17. 247. 247. 247. 247						_
				-	-		ž X						_
	LOGO	GED: TH					CH	ECKED: CJM	DA	TE: 18/0	02/2015		

CLIENT: Benelli Equity Pty Ltd

PROJECT: Proposed Sand Extraction

LOCATION: Cabbage Tree Road, Williamtown

GEOTECHNICAL BOREHOLE LOG

SHEET 2 OF 2

DATE COMMENCED: 11/12/2014 DATE COMPLETED: 11/12/2014 SURFACE RL: 6.02 m AHD

COORDS: 387650.66 m E 6369979.77 m N MGA94 56

DRILL MODEL: Track Mounted Drill Rig DRILLER NAME: Total Drilling Pty Ltd

ŀ			Rorehole In						Field Material Infor			
ŀ		Borehole Information						9 k				
	METHOD	WATER	FIELD	SAMPLE	RL (m AHD)	DEPTH (m)	GRAPHIC LOG	CLASSIFICATION SYMBOL	DESCRIPTION (SOIL NAME; plasticity/grain size, colour, particle shape, secondary components, minor constituents) (ROCK NAME; grain size, colour, minor constituents)	MOISTURE/ WEATHERING	CONSISTENCY/ RELATIVE DENSITY/ STRENGTH	BORE CONSTRUCTION
•			5.50m		-	5.00		SP	SAND, fine to medium grained, pale grey-brown, with a trace of silt, slight organic odour, AEOLIAN	W	D - VD	
-			SPT 2, 8, 15 N=23		0.5 - -	-5.5 -					D	-
			5.95m			- -5.95- -6.0						_
					0.0 - - -	-6.0			BOREHOLE BH11 TERMINATED AT 5.95 m			-
-					-0.5 — -	-6.5 -						-
onal, Developed by Datge					-1.0 — 	-7.0 -7.0						-
< <drawingfile>> 19/05/2015 09:50 Produced by gINT Professional, Developed by Datgel</drawingfile>					-1.5 - -1.5 -	-7.5 -						-
e>> 19/05/2015 09:50 Pr					-2.0 -	-8.0 -						- -
LOGS.GPJ < <drawingfile< td=""><td></td><td></td><td></td><td></td><td>-2.5 —</td><td>- -8.5</td><td></td><td></td><td></td><td></td><td></td><td>-</td></drawingfile<>					-2.5 —	- -8.5						-
ON CORED LOG 10059-					-3.0 -	- -9.0						- -
RCA_STANDARD.GLB_Log_RCA NON CORED LOG_10059-LOGS.GPJ					-3.5 —	-9.5						- -
CA_STAND					-	 - -						
RCA LIB 08 RO	L	.ogo	GED: TH			<u> </u>		Cŀ	HECKED: CJM	DA	TE: 18/0)2/2015

CLIENT: Benelli Equity Pty Ltd

PROJECT: Proposed Sand Extraction

GEOTECHNICAL BOREHOLE LOG

SHEET 1 OF 2

DATE COMMENCED: 11/12/2014 DATE COMPLETED: 11/12/2014 SURFACE RL: 8.06 m AHD

COORDS: 388202.99 m E 6369332.97 m N MGA94 56

DRILL MODEL: Track Mounted Drill Rig DRILLER NAME: Total Drilling Pty Ltd

	LOCATION: Cabbage Tree Road, Williamtov					town	DRILLER MODEL: Track Modified Drill Rig DRILLER NAME: Total Drilling Pty Ltd					
		Borehole Ir	formatio	n		,-		Field Material Infor				
METHOD	WATER	FIELD	SAMPLE	RL (m AHD)	DEPTH (m)	GRAPHIC LOG	CLASSIFICATION SYMBOL	DESCRIPTION (SOIL NAME; plasticity/grain size, colour, particle shape, secondary components, minor constituents) (ROCK NAME; grain size, colour, minor constituents)	MOISTURE/ WEATHERING	CONSISTENCY/ RELATIVE DENSITY/ STRENGTH	BORE CONSTRUCTION	
			0.50m	8.0 — - - - 7.5 —	- - - - -0.50) -		SP	SAND, fine to medium grained, yellow-brown, AEOLIAN Trace of organics 0.0-0.1m SAND, fine to medium grained, white, AEOLIAN	M	₹ 4	Concrete Bentonite	
		1.00m	D 1.00m	7.0-	- 0.90 -		SM	Silty SAND, fine to medium grained, dark brown, slightly indurated (weakly cemented), AEOLIAN		L - MD		
		SPT 2, 1, 2 N=3 1.45m	D 1.45m	6.5	- 1.10		SP	SAND, fine to medium grained, white, AEOLIAN				
essional, Developed by Datgel				6.0	- - - -2.0						Sand Backfill	
15 09:50 Produced by gINT Prof AD/T		2.50m SPT 3, 4, 9 N=13 2.95m	2.50m D 2.95m	5.5 — - -	- -2.5 - - -					MD - D		
: <drawingfile>> 19/05/20</drawingfile>				5.0	-3.0 -3			Becoming pale yellow-brown at ~3.0m				
ED LOG 10059-LOGS GPJ		4.00m	4.00m	4.5 -	- 3.5 - - - - 4.0			Becoming pale grey at ~3.5m			■ Bentonite □	
RCA_LIB_08_RCA_STANDARD.GLB_Log_RCA NON CORED LOG_10089-LOGS.GPJ_<-DrawingFile>> 19/08/2015 08:50 Produced by gNT Professional, Developed by Datgel		SPT 6, 9, 10 N=19 4.45m	D 4.45m	3.5 –	- - - - - - -			Becoming yellow-brown at 4.2m			Sand Backfill	
RCA LIB 08 R	LOGO	JED: TH		-	[2	<u> </u>	СН	ECKED: CJM	DA	[: 目:]		

GEOTECHNICAL BOREHOLE LOG

SHEET 2 OF 2

DATE COMMENCED: 11/12/2014 DATE COMPLETED: 11/12/2014 SURFACE RL: 8.06 m AHD

COORDS: 388202.99 m E 6369332.97 m N MGA94 56

DRILL MODEL: Track Mounted Drill Rig DRILLER NAME: Total Drilling Pty Ltd

PROJECT No: 10059
CLIENT: Benelli Equity Pty Ltd
PROJECT: Proposed Sand Extraction
LOCATION: Cabbage Tree Road, Williamtown

F.	Borehole Information					THOWIT	Field Material Information					
-	T	Borehole Ir	ntormatio I				z	Field Material Inform	mation	-		
METHOD	WATER	FIELD	SAMPLE	RL (m AHD)	DEPTH (m)	GRAPHIC LOG	CLASSIFICATION SYMBOL	DESCRIPTION (SOIL NAME; plasticity/grain size, colour, particle shape, secondary components, minor constituents) (ROCK NAME; grain size, colour, minor constituents)		CONSISTENCY RELATIVE DENSITY/ STRENGTH		
AD/T				3.0 -	5.00		SP	SAND, fine to medium grained, pale grey-brown, with a trace of silt, AEOLIAN	M	MD - D		
	11/12/14	5.50m SPT	5.50m D	2.5 -	-5.5		***			MD	- Fine Gravel Backfill	
	_₩	4, 7, 6 N=13 5.95m	5.95m	2.0 -	-6.0		******		W	_		
5				- - -	-6.5		****				-	
Hollow Flight Auger		7.00m		1.5 - -			*** ***				Screen (encapsulated in filter sock)	
Ĭ		SPT 3, 2, 7 N=9		1.0 -	-7.0		×17 ×17 ×					
)		7.45m		0.5 -	-7.5		****					
		8.00m SPT 9, 25, 25/90mm		0.0	-8.0		×			VD	_	
		N=R 8.39m			8.39							
				-0.5 - -	-8.5 -			BOREHOLE BH12 TERMINATED AT 8.39 m			-	
				-1.0 -	-9.0						-	
				-1.5	-9.5						-	
HOllow F				-	- - - -							
	LOG	GED: TH					CH	HECKED: CJM	DA ⁻	TE: 18/0	02/2015	

Explanatory Notes – Soil Description

In engineering terms soil includes every type of uncemented or partially cemented inorganic material found in the ground. In practice, if the material can be remoulded by hand in its field condition or in water it is described as a soil. The dominant soil constituent is given in capital letters, with secondary textures in lower case. The dominant feature is assessed from the Unified Soil Classification system and a soil symbol is used to define a soil layer

METHOD

METHOD	
Method	Description
AS	Auger Screwing
AD/V	Auger Drilling with V Bit
AD/T	Auger Drilling with TC bit
BH	Backhoe
CT	Cable Tool Rig
N	Natural Exposure
X	Existing Excavation
E	Excavator
EH	Excavator with Hammer
HA	Hand Auger
HQ	Diamond Core-63mm
NMLC	Diamond Core-52mm
NQ	Diamond Core-47mm
PT	Push Tube
RR	Rock Roller
DB	Washbore Drag Bit
WS	Washbore
AT	Air Track
DT	Diatube
Percussion	Percussion Drilling

Water

Water level at date shown

Seepage

NOT ENCOUNTERED: The borehole/test pit was dry soon after excavation. Inflow may have been observed had the borehole/test pit been left open for a longer period.

NOT OBSERVED: The observation of groundwater, whether present or not, was not possible due to drilling water, surface seepage or cave in of the borehole/test pit.

SAMPLING

Sample	Description
В	Bulk Disturbed Sample
D	Disturbed Sample
SPT	Standard Penetration Test
U50	Undisturbed Sample-50mm
ES	Soil Sample, Environmental
EW	Water Sample, Environmental
G	Gas Sample

UNIFIED SOIL CLASSIFICATION

The appropriate symbols are selected on the result of visual examination, field tests and available laboratory tests, such as sieve analysis, liquid limit and plasticity index.

USC Symbol	Description
GW	Well graded gravel
GP	Poorly graded gravel
GM	Silty gravel
GC	Clayey gravel
SW	Well graded sand
SP	Poorly graded sand
SM	Silty sand
SC	Clayey sand
ML	Silt of low plasticity
CL	Clay of low plasticity
OL	Organic soil of low plasticity
CI	Clay of medium plasticity
MH	Silt of high plasticity
CH	Clay of high plasticity
OH	Organic soil of high plasticity
Pt	Peaty soil

MOISTURE CONDITION

Dry Cohesive soils are friable or powdery
Cohesionless soil grains are free-running.

Moist Soil feels cool, darkened in colour
Cohesive soils can be moulded
Cohesionless soil grains tend to adhere.

Wet Cohesive soils usually weakened
Free water forms on hands when handling.

For cohesive soils the following codes may also be used:

MC>PL Moisture Content greater than the Plastic Limit.
MC-PL Moisture Content near the Plastic Limit.
MC<PL Moisture Content less than the Plastic Limit.

PLASTICITY

The potential for soil to undergo change in volume with moisture change is assessed from its degree of plasticity. The classification of the degree of plasticity in terms of the Liquid Limit (LL) is as follows.

Description of Plasticity	LL(%)	
Low Medium	<35 35 to 50	
High	>50	

COHESIVE SOILS - CONSISTENCY

The consistency of a cohesive soil is defined by descriptive terminology such as very soft, soft, firm, stiff, very stiff and hard. These terms are assessed by the shear strength of the soil as observed visually, by hand penetrometer values and by resistance to deformation to hand moulding. A Hand Penetrometer may be used in the field or the laboratory to provide an approximate assessment of the unconfined compressive strength (UCS) of cohesive soils. Undrained shear strength Cu = $0.5\times UCS$. The UCS values are recorded in kPa as follows:

Strength	Symbol	Unconfined Compressive Strength, q _u (kPa)
Very Soft	VS	< 25
Soft	S	25 to 50
Firm	F	50 to 100
Stiff	St	100 to 200
Very Stiff	VSt	200 to 400
Hard	Н	> 400

COHESIONLESS SOILS – RELATIVE DENSITY

Relative density terms such as very loose, loose, medium, dense and very dense are used to describe silty and sandy material, and these are usually assessed based on penetration test results (eg Standard Penetration Test (SPT) N values) in conjunction with published correlations. Other condition terms, such as friable, powdery or crumbly may also be used.

Term	Symbol	Density Index
Very Loose	VL	0 to 15
Loose	L	15 to 35
Medium Dense	MD	35 to 65
Dense	D	65 to 85
Very Dense	VD	>85

COHESIONLESS SOILS PARTICLE SIZE DESCRIPTIVE TERMS

Name	Subdivision	Size
Boulders	·	>200 mm
Cobbles		63 mm to 200 mm
Gravel	Coarse	20 mm to 63 mm
	medium	6 mm to 20 mm
	Fine	2.36 mm to 6 mm
Sand	Coarse	0.6 mm to 2.36 mm
	medium	0.2 mm to 0.6 mm
	fine	0.075 mm to 0.2 mm

Explanatory Notes - Rock Description

METHOD

Refer soil description sheet.

WATER

Refer soil description sheet.

ROCK QUALITY

The fracture spacing is shown where applicable and the Rock Quality Designation (RQD) or Total Core Recovery (TCR) is given where:

TCR (%) = <u>length of core recovered</u> length of core run

RQD (%) = sum of axial lengths of core > 100mm long length of core run.

ROCK MATERIAL WEATHERING

Rock weathering is described using the abbreviations and definitions used in AS1726. $\label{eq:continuous} % \begin{subarray}{ll} AS1726. \end{subarray}$

Term	Symbol	Definition
Residual soil	RS	Soil developed on extremely weathered rock; the mass structure and substance fabric are no longer evident; there is a large change in volume but the soil has not been significantly transported.
Extremely weathered rock	XW	Rock is weathered to such an extent that it has 'soil' properties, ie, it either disintegrates or can be remoulded in water.
Distinctly weathered rock	DW	Rock strength usually changed by weathering. The rock may be highly discoloured, usually by iron staining. Porosity may be increased by leaching, or may be decreased due to deposition of weathering products in pores.
Slightly weathered rock	SW	Rock is slightly discoloured but shows little or no change of strength from fresh rock.
Fresh rock	FR	Rock shows no sign of decomposition or staining.

ROCK STRENGTH

Rock strength is described using AS1726 and ISRM – Commission on Standardisation of Laboratory and Field Tests, 'Suggested method of determining the Uniaxial Compressive Strength of Rock materials and the Point Load Index' as follows:

Term	Symbol	Point Load Index Is ₅₀ (MPa)
Extremely Low	EL	≤0.03
Very Low	VL	>0.03 to ≤0.1
Low	L	>0.1 to ≤0.3
Medium	М	>0.3 to ≤1.0
High	Н	>1 to ≤3
Very High	VH	>3 to ≤10
Extremely High	EH	>10

Diametral Point Load Index test.

Axial Point Load Index test.

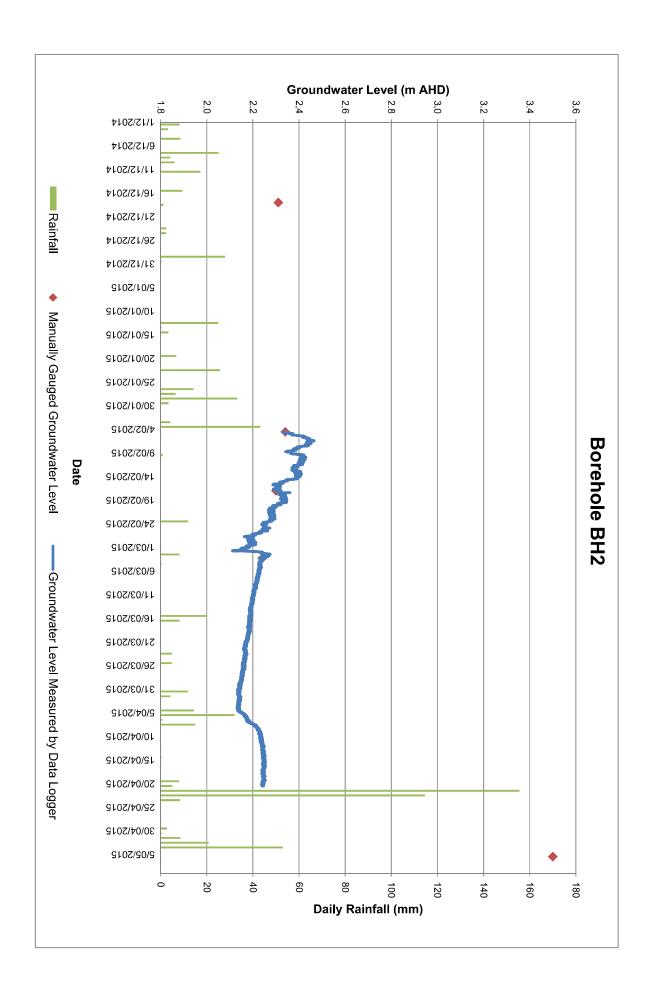
DEFECT SPACING/BEDDING THICKNESS

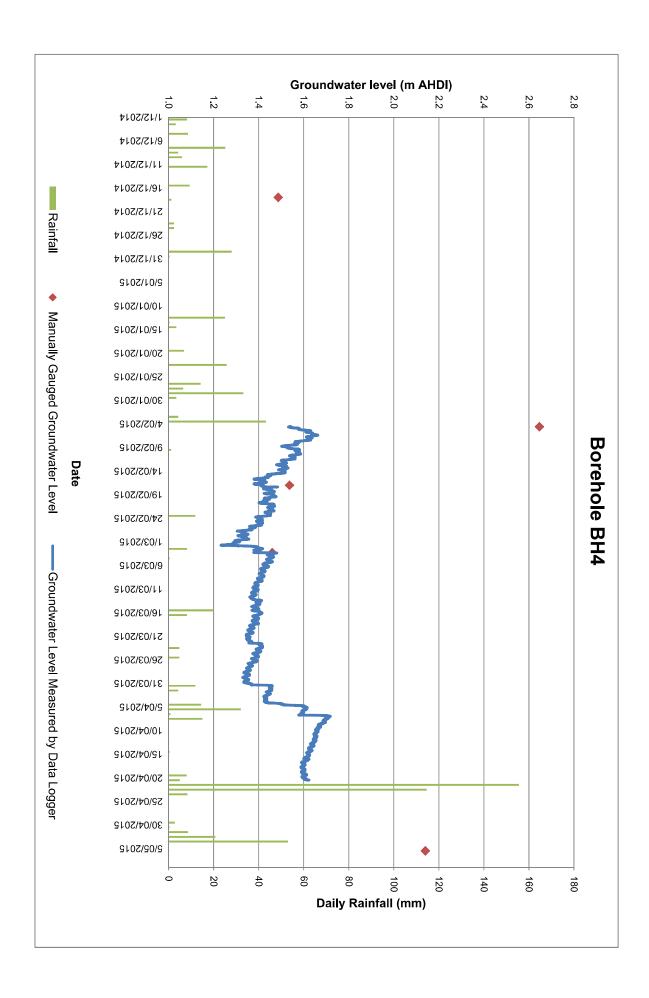
Measured at right angles to defects of same set or bedding.

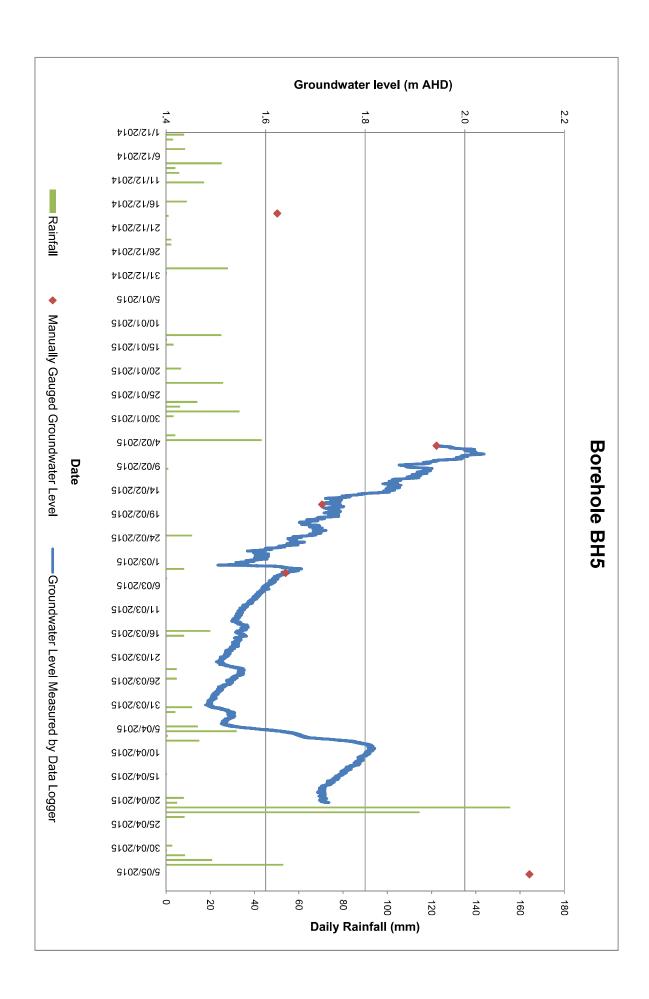
Term	Defect Spacing	Bedding
Extremely closely spaced	<6 mm	Thinly laminated
	6 to 20 mm	Laminated
Very closely spaced	20 to 60 mm	Very thin
Closely spaced	0.06 to 0.2 m	Thin
Moderately widely spaced	0.2 to 0.6 m	Medium
Widely spaced	0.6 to 0.2 m	Thick
Very widely spaced	>2 m	Very thick

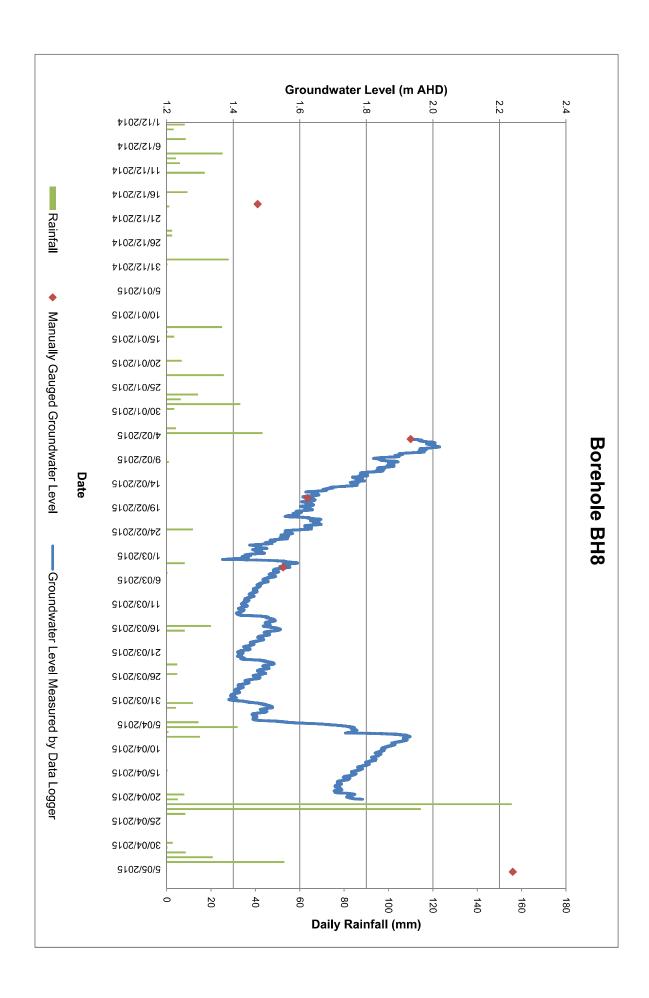
DEFECT DESCRIPTION

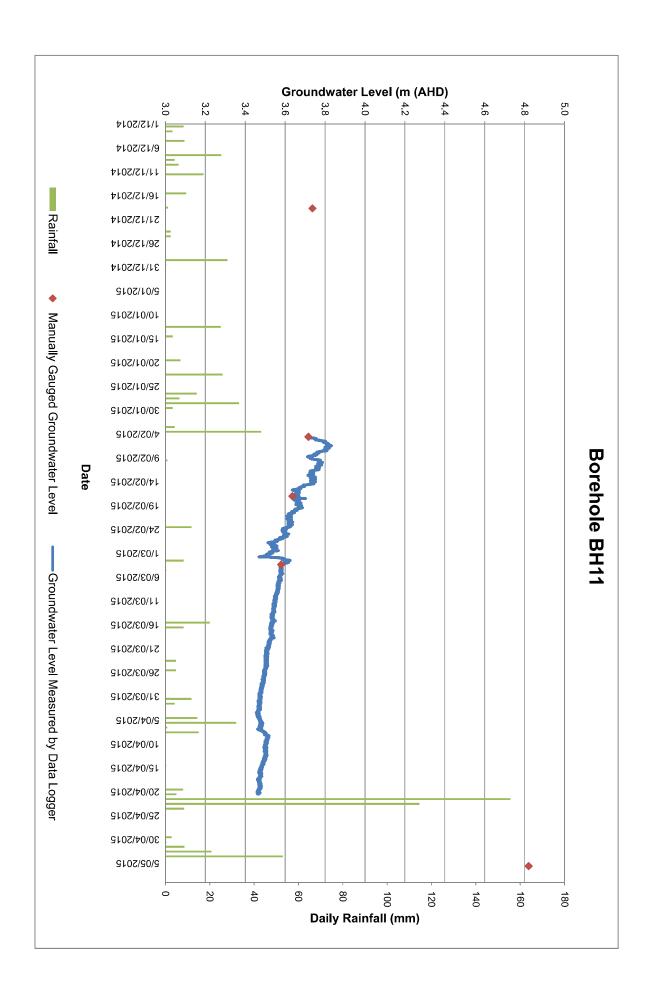
Туре	Definition	
JT	Joint	
BP	Bed Parting	
CO	Contact	
CS	Clay Seam	
CZ	Crush Zone	
DK	Dyke	
DZ	Decomposed Zone	
FC	Fracture	
FZ	Fracture Zone	
FL	Foliation	
FLT	Fault	
VN	Vein	
SM	Seam	
IS	Infilled Seam	
SZ	Shear Zone	
DB	Drill Break	
HB	Handling Break	


Planarity	Roughness	
PR – Planar	RF – Rough	
IR – Irregular	VR – Very Rough	
ST – stepped	S – Smooth	
U – Undulating	SL – Slickensides	
CU - Curved	POL – Polished	


Symbol	Coating or infill	
Χ	Carbonaceous	<u> </u>
CA	Calcite	
Fe	Iron oxide	
KT	Chlorite	
Clay	Clay	
CN	Clean	
Qz	Quartz	
SN	Stain	
VNR	Veneer	


The inclinations of defects are measured from perpendicular to the core axis


Appendix C


Groundwater Level Monitoring Results

Appendix D

Laboratory Test Reports

PHONE +61 2 4902 9200

FAX +61 2 4902 9299

WEB www.rca.com.au

ABN 53 063 515 711

NATA Accredited Laboratory: 9811

Corporate Site No: 9804 Construction Materials Testing

Particle Size Distribution Report

Client :	Benelli Equity Pty Ltd			Report Number:	10059 - 001
Client Address :	101 Hannell Street Wick	ham NSW 2293			
Job Number:	10059			Report Date:	11/02/2015
Project:	Proposed Sand Extractio	n		Order Number:	=
Location	Cabbage Tree Road , Wil	liamtown		Page 1	. of 1
Lab No:	15-216			Sample Lo	cation
Date Sampled:	24/11/2014			BH1	
Date Tested:	10/02/2015			6.0m-6.45m	
Sampled By:	RCA Geotech				
Sample Method:	AS 1289.1.2.1-6.5.3				
Material Source:	-			Spec Description:	
For Use As:	-			Lot Number:	-
Remarks:				Spec Number:	·
		A.S. Sieve Sizes	Specification	Percent	Specification
T M			Minimum	Passing	Maximum
Test Method	: AS 1289.3.6.1 (washed),2.1				
100]		75.00 mm			
9		53.00 mm			
		37.50 mm	<u> </u>		
80		26.50 mm		400	
n /		19.00 mm		100	
⊗		13.20 mm	<u>.</u>	100	
9'00		9.50 mm		100	
· /		6.70 mm		100	
0.50					
100 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		4.75 mm		100	
Percent percent of the percent of th		4.75 mm 2.36 mm		100	
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		4.75 mm 2.36 mm 1.18 mm		100 100	
1		4.75 mm 2.36 mm 1.18 mm 0.600 mm		100 100 97	
1		4.75 mm 2.36 mm 1.18 mm 0.600 mm 0.425 mm		100 100 97 74	
Percent Brasilia (%)		4.75 mm 2.36 mm 1.18 mm 0.600 mm 0.425 mm 0.300 mm		100 100 97 74 31	
30	118 236 435 63 45 132 19	4.75 mm 2.36 mm 1.18 mm 0.600 mm 0.425 mm 0.300 mm 0.150 mm		100 100 97 74 31 4	
20	118 236 475 67 95 132 19 AS Seve Size(mm)	4.75 mm 2.36 mm 1.18 mm 0.600 mm 0.425 mm 0.300 mm		100 100 97 74 31	

Accredited for compliance with ISO/IEC 17025.

Approved Signatory Form Number

Matt Flood Senior Technician

PHONE +61 2 4902 9200 **FAX** +61 2 4902 9299 WEB www.rca.com.au **ABN** 53 063 515 711 NATA Accredited Laboratory: 9811

Corporate Site No: 9804 Construction Materials Testing

Particle Size Distribution Report

Client :	Benelli Equity Pty Ltd			Report Number:	10059 - 002
Client : Client Address :	101 Hannell Street Wick	ham NSW 2202		Report Number:	10059 - 002
Job Number:	101 Hannell Street Wick	IIaiii 1 1 3 VV 22 3 3		Report Date:	11/02/2015
Project:	Proposed Sand Extractio	.n		Order Number:	11/02/2015
_ocation	Cabbage Tree Road , Wil			Page 1	of 1
_ab No:	15-217	Hallitowii		Sample Lo	
Date Sampled:	25/11/2014			BH2	cation
Date Tested:	10/02/2015			4.5m-4.95m	
Sampled By:	RCA Geotech			4.5111-4.95111	
Sample Method:	AS 1289.1.2.1-6.5.3				
Material Source:	A3 1209.1.2.1-0.3.3			Spec Description:	
For Use As:	_			Lot Number:	
Remarks:	_			Spec Number:	
CONTROL NO.		A.S. Sieve Sizes	Specification	Percent	Specification
		5.5.5 5.255	Minimum	Passing	Maximum
Test Method:	AS 1289.3.6.1 (washed),2.1	l.1		1 4331119	
	(//212	75.00 mm			
100	/	53.00 mm			
90	/	37.50 mm			
	'	26.50 mm			
80		19.00 mm		100	
n		13.20 mm		100	
8		9.50 mm		100	
<u> </u>		6.70 mm		100	
Perceng (%)		4.75 mm		100	
0 40		2.36 mm		100	
ŭ /		1.18 mm		100	
		0.600 mm		80	
20		0.425 mm		53	
10				16	
↓		0.300 mm			
0.075 0.15 0.3 0.425 0.6	1.18 236 4.75 6.7 9.5 13.2 19	0.150 mm		4	
	AS Sieve Size(mm)	0.075 mm		3	
		Flakiness Index(%)		_	

Accredited for compliance with ISO/IEC 17025.

Approved Signatory Form Number

RP131-7

Matt Flood Senior Technician

PHONE +61 2 4902 9200 **FAX** +61 2 4902 9299 WEB www.rca.com.au **ABN** 53 063 515 711 NATA Accredited Laboratory: 9811

Corporate Site No: 9804 Construction Materials Testing

Particle Size Distribution Report

	Particle Size Distrib	ution Ke	port	
Client : Ben	elli Equity Pty Ltd		Report Number:	10059 - 003
Client Address : 101	Hannell Street Wickham NSW 2293			
Job Number: 100:	59		Report Date:	11/02/2015
Project: Prop	osed Sand Extraction		Order Number:	-
Location Cabl	page Tree Road , Williamtown		Page :	L of 1
Lab No: 15-2	18		Sample Lo	cation
	11/2014		ВН3	
Date Tested: 10/0	02/2015		1.5m-1.95m	
' '	Geotech			
•	289.1.2.1-6.5.3			
Material Source: -			Spec Description:	
For Use As:			Lot Number:	-
Remarks: -			Spec Number:	<u> </u>
	A.S. Sieve Sizes	Specification	Percent	Specification
		Minimum	Passing	Maximum
Test Method: AS 12	289.3.6.1 (washed),2.1.1			
100]; ; ; ; ;	75.00 mm			·
	53.00 mm			
	37.50 mm			
80				
70	19.00 mm		100	
8	13.20 mm		100	
Percent Passing (%)	9.50 mm		100	
© 50	6.70 mm		100	
E o	4.75 mm		100	
0 0	2.36 mm		100	
30	1.18 mm		100	
20	0.600 mm		98	
	0.425 mm		80	
10	0.300 mm		22	
0075 0.15 0.3 0.425 0.6 1.18	236 475 61 95 132 19		3	
AS Sieve Size(mm)	0.075 mm		2	
	Flakiness Index(%)		_	

Accredited for compliance with ISO/IEC 17025.

Approved Signatory Form Number

Matt Flood Senior Technician

PHONE +61 2 4902 9200

FAX +61 2 4902 9299

WEB www.rca.com.au

ABN 53 063 515 711

NATA Accredited Laboratory: 9811

Corporate Site No: 9804 Construction Materials Testing

Particle Size Distribution Report

				<u>-</u>	
Client :	Benelli Equity Pty Ltd			Report Number:	10059 - 004
Client Address :	101 Hannell Street Wickham N	ISW 2293			
Job Number:	10059			Report Date:	11/02/2015
Project:	Proposed Sand Extraction			Order Number:	-
Location	Cabbage Tree Road , Williamto	wn		Page 1	
Lab No:	15-219			Sample Lo	cation
Date Sampled:	26/11/2014			BH5	
Date Tested:	10/02/2015			1.5m-1.95m	
Sampled By:	RCA Geotech				
Sample Method:	AS 1289.1.2.1-6.5.3				
Material Source:	=			Spec Description:	
For Use As:	-			Lot Number: -	
Remarks:				Spec Number: -	
	A.S.	Sieve Sizes	Specification	Percent	Specification
			Minimum	Passing	Maximum
Test Method:	AS 1289.3.6.1 (washed),2.1.1		<u>.</u>		
1001		75.00 mm			
		53.00 mm			
90		37.50 mm			
80		26.50 mm			
		19.00 mm		100	
· · · · · · · · · · · · · · · · · · ·		13.20 mm		100	
D 0 /		9.50 mm		100	
Ø 50		6.70 mm		100	
Percent passing (%)		4.75 mm		100	
9 40 /		2.36 mm		99	
30		1.18 mm		95	
		0.600 mm		91	
20		0.425 mm		89	
10		0.300 mm		67	
		0.150 mm		8	
0.075 0.15 0.3 0.425 0.6	1.18 2.36 4.75 6.7 9.5 13.2 19 AS Sieve Size(mm)	0.075 mm		2	
	vo orale oralimit)	0.075 111111			

NATA	
V	
World Plocensko Aggreditation	

Accredited for compliance with ISO/IEC 17025.

Approved Signatory Form Number

Matt Flood
Senior Technician

PHONE +61 2 4902 9200

FAX +61 2 4902 9299

WEB www.rca.com.au

ABN 53 063 515 711

NATA Accredited Laboratory: 9811

Corporate Site No: 9804 Construction Materials Testing

Particle Size Distribution Report

Client :	Benelli Equity Pty Ltd			Report Number:	10059 - 005
Client Address :	101 Hannell Street Wickham NSW 22	93			
Job Number:	10059			Report Date:	11/02/2015
Project:	Proposed Sand Extraction			Order Number:	-
Location	Cabbage Tree Road , Williamtown			Page 1	of 1
Lab No:	15-220			Sample Lo	cation
Date Sampled:	28/11/2014			BH8	
Date Tested:	10/02/2015			3.0m-3.45m	
Sampled By:	RCA Geotech				
Sample Method:	AS 1289.1.2.1-6.5.3				
Material Source:	-			Spec Description:	
For Use As:	-			Lot Number:	•
Remarks:	-	<u>c.</u>		Spec Number:	
	A.S. Sieve	Sizes	Specification	Percent	Specification
Took Moth	d. 40 1000 0 0 1 (marks d) 0 1 1		Minimum	Passing	Maximum
Test Metho		5.00 mm			
100					
90		3.00 mm 7.50 mm			
80		6.50 mm 9.00 mm		100	
70		3.20 mm		100	
§		9,50 mm		100	
(%) B		6.70 mm		100	
å 50		4.75 mm			
te 2 40				100	
ů		2.36 mm		100	
0		1.18 mm	<u> </u>	100	
20		.600 mm		99	
		.425 mm		83	
		.300 mm		29	
0.075 0.15 0.3 0.425 0	6 118 236 475 67 95 132 19	.150 mm		3	
	AS Sieve Size(mm)	.075 mm		2	<u></u>
	Flakiness I	I		_	

Accredited for compliance with ISO/IEC 17025.

Approved Signatory Form Number

Matt Flood
Senior Technician

PHONE +61 2 4902 9200 **FAX** +61 2 4902 9299 WEB www.rca.com.au **ABN** 53 063 515 711 NATA Accredited Laboratory: 9811

Corporate Site No: 9804 Construction Materials Testing

Particle Size Distribution Report

Client : Bei	nelli Equity Pty Ltd			Report Number:	10059 - 006
	. , , , 1 Hannell Street Wickh	nam NSW 2293		'	
Job Number: 100	059			Report Date:	11/02/2015
Project: Pro	posed Sand Extraction	1		Order Number:	-
Location Cal	bbage Tree Road , Will	iamtown		Page	1 of 1
Lab No: 15 -	-221			Sample Lo	ocation
Date Sampled: 9/:	12/2014			вн9	
Date Tested: 10	/02/2015			1.0m-1.45m	
Sampled By: RC	A Geotech				
Sample Method: AS	1289.1.2.1-6.5.3				
Material Source: -				Spec Description:	
For Use As:				Lot Number:	-
Remarks: -				Spec Number:	<u>-</u>
		A.S. Sieve Sizes	Specification	Percent	Specification
			Minimum	Passing	Maximum
Test Method: AS 1	1289.3.6.1 (washed),2.1.				
1001:		75.00 mm			
		53.00 mm			
90		37.50 mm			
80		26.50 mm			
70		19.00 mm		100	
§ /		13.20 mm		100	
Percent Pessing(%)		9.50 mm		100	
8 50 50		6.70 mm		100	
		4.75 mm		100	
0.00		2.36 mm		100	
30		1.18 mm		100	
		0.600 mm		98	
		0.425 mm		77	
10		0.300 mm		21	
		0.150 mm		3	
0.075 0.15 0.3 0.425 0.6 1.18 AS Sieve Size(n	236 475 67 9.5 13.2 19 nm)	0.075 mm		2	
,					
		Flakiness Index(%)		-	

^	
NATA	
WORLD PLOCEMBED ASSERBITATION	

Accredited for compliance with ISO/IEC 17025.

Approved Signatory Form Number

Matt Flood Senior Technician

PHONE +61 2 4902 9200

FAX +61 2 4902 9299

WEB www.rca.com.au

ABN 53 063 515 711

NATA Accredited Laboratory: 9811

Corporate Site No: 9804 Construction Materials Testing

Particle Size Distribution Report

Client : Benelli	Equity Pty Ltd		Report Number:	10059 - 007
Client Address : 101 Ha	nnell Street Wickham NSW 2293			
Job Number: 10059			Report Date:	11/02/2015
Project: Propos	ed Sand Extraction		Order Number:	=
_ocation Cabbag	ge Tree Road , Williamtown		Page 1	. of 1
_ab No: 15-222	2		Sample Lo	cation
Date Sampled: 9/12/2	2014		вн9	
Date Tested: 10/02,	/2015		4.0m-4.45m	
Sampled By: RCA Ge	eotech			
Sample Method: AS 128	9.1.2.1-6.5.3			
Material Source: -			Spec Description:	
For Use As:			Lot Number:	-
Remarks: -		г	Spec Number:	·
	A.S. Sieve Sizes	Specification	Percent	Specification
		Minimum	Passing	Maximum
Test Method: AS 1289	.3.6.1 (washed),2.1.1			
1001:				
	53.00 mm			
90	37.50 mm			
80	26.50 mm			
70	19.00 mm		100	
Ç.	13.20 mm		100	
Ŏ O	9.50 mm		100	
50	6.70 mm		100	
	4.75 mm		100	
(A) Silver and the second and the se	2.36 mm		100	
100	1.18 mm		100	
20	0.600 mm		97	
	0.425 mm		64	
10	0.300 mm		15	
	0.150 mm		1	
0.075 0.15 0.3 0.425 0.6 1.18 2.3 AS Sieve Size(mm)	6 475 67 95 132 19 O.075 mm		0	

^	
NATA	
WORLD PLOCENISMS ASSERBITATION	

Accredited for compliance with ISO/IEC 17025.

Approved Signatory Form Number

Matt Flood Senior Technician

PHONE +61 2 4902 9200

FAX +61 2 4902 9299

WEB www.rca.com.au

ABN 53 063 515 711

NATA Accredited Laboratory: 9811

Corporate Site No: 9804 Construction Materials Testing

Particle Size Distribution Report

Client :	Benelli Equity Pty Ltd		<u> </u>	Report Number:	10059 - 008
Client Address :	101 Hannell Street Wickh	nam NSW 2293		'	
Job Number:	10059			Report Date:	11/02/2015
Project:	Proposed Sand Extraction	1		Order Number:	-
Location	Cabbage Tree Road , Will			Page :	1 of 1
Lab No:	15-223			Sample Lo	cation
Date Sampled:	9/12/2014			вн9	
Date Tested:	10/02/2015			8.5m-8.95m	
Sampled By:	RCA Geotech				
Sample Method:	AS 1289.1.2.1-6.5.3				
Material Source:	-			Spec Description:	
For Use As:	-			Lot Number:	-
Remarks:	-	r		Spec Number:	
		A.S. Sieve Sizes	Specification	Percent	Specification
			Minimum	Passing	Maximum
Test Method	: AS 1289.3.6.1 (washed),2.1.				
1001		75.00 mm			
/		53.00 mm			
90		37.50 mm			
80		26.50 mm			
70		19.00 mm		100	
Ŷ		13.20 mm		100	
- De al		9.50 mm		100	
0 0 0 50		6.70 mm		100	
<u> </u>		4.75 mm		100	
Percent Passing (%)		2.36 mm		100	
30		1.18 mm		100	
20		0.600 mm		98	
Δ /		0.425 mm		78	
10		0.300 mm		20	
(I)		0.150 mm		1	
0.075 0.15 0.3 0.425 0.6	1.18 2.36 4.75 6.3 9.5 13.2 19 AS Sieve Size(mm)	0.075 mm		1	
			<u></u>		
		Flakiness Index(%)		-	

Accredited for compliance with ISO/IEC 17025.

Approved Signatory Form Number

Matt Flood
Senior Technician

PHONE +61 2 4902 9200

FAX +61 2 4902 9299

WEB www.rca.com.au

ABN 53 063 515 711

NATA Accredited Laboratory: 9811

Corporate Site No: 9804 Construction Materials Testing

Particle Size Distribution Report

Client :	Benelli Equity Pty Ltd			Report Number:	10059 - 009
Client Address :	101 Hannell Street Wickh	am NSW 2293			
Job Number:	10059			Report Date:	11/02/2015
Project:	Proposed Sand Extraction	1		Order Number:	-
ocation	Cabbage Tree Road , Will	iamtown		Page 1	of 1
∟ab No:	15-224			Sample Loc	cation
Date Sampled:	9/12/2014			вн9	
Pate Tested:	10/02/2015			13.0m-13.45m	
Sampled By:	RCA Geotech				
ample Method:	AS 1289.1.2.1-6.5.3				
1aterial Source:	-			Spec Description:	
or Use As:	-			Lot Number: -	
Remarks:	-	1000		Spec Number: -	
		A.S. Sieve Sizes	Specification	Percent	Specification
T M-/		_	Minimum	Passing	Maximum
rest method:	AS 1289.3.6.1 (washed),2.1.				
100]		75.00 mm			
9		53.00 mm			
		37.50 mm			
80		26.50 mm			
70		19.00 mm		100	
		13.20 mm		100	
50		9.50 mm		100	
50		6.70 mm		100	
40		4.75 mm		100	
		2.36 mm		100	
30		1.18 mm		100	
20		0.600 mm		96	
		0.425 mm		55	
		0.300 mm		11	
0.075 0.15 0.3 0.425 0.6	1.18 2.36 4.75 6.7 9.5 13.2 19	0.150 mm		1	
	S Sieve Size(mm)	0.075 mm		0	
		Flakiness Index(%)		_	
		riakilless illuext 70 /l			

Accredited for compliance with ISO/IEC 17025.

Approved Signatory Form Number

Matt Flood Senior Technician

PHONE +61 2 4902 9200

FAX +61 2 4902 9299

WEB www.rca.com.au

ABN 53 063 515 711

NATA Accredited Laboratory: 9811

Corporate Site No: 9804 Construction Materials Testing

Particle Size Distribution Report

Client :	Benelli Equity Pty Ltd			Report Number:	10059 - 010						
Client Address :	101 Hannell Street Wickh	am NSW 2293									
Job Number:	10059			Report Date:	11/02/2015						
Project:	Proposed Sand Extraction	1		Order Number: -							
_ocation	Cabbage Tree Road , Will	iamtown		Page 1	of 1						
Lab No:	15-225			Sample Lo	cation						
Date Sampled:	10/12/2014			BH10							
Date Tested:	10/02/2015			4.0m-4.45m							
Sampled By:	RCA Geotech										
Sample Method:	AS 1289.1.2.1-6.5.3										
Material Source:	-			Spec Description:							
For Use As:	=			Lot Number: -							
Remarks:	-	T		Spec Number: -							
		A.S. Sieve Sizes	Specification	Percent	Specification						
			Minimum	Passing	Maximum						
Test Method	d: AS 1289.3.6.1 (washed),2.1.										
100]: : : : : : : : : : : : : : : : : : :		75.00 mm									
		53.00 mm									
**		37.50 mm									
80		26.50 mm									
70		19.00 mm		100							
8		13.20 mm		100							
9 Passing (%)		9.50 mm		100							
o 50		6.70 mm		100							
Percent		4.75 mm		100							
Ď /		2.36 mm		100							
30		1.18 mm		100							
20		0.600 mm		98							
		0.425 mm		88							
10		0.300 mm		41							
0.075 0.15 0.3 0.425 0.6	1.18 2.36 4.75 6.7 9.5 13.2 19	0.150 mm		7							
0.10 0.0 0.4EJ 0.0	AS Sieve Size(mm)	0.075 mm		5							
		FI 11 F 1 (2)	.								
		Flakiness Index(%)									

Accredited for compliance with ISO/IEC 17025.

Approved Signatory Form Number

Matt Flood Senior Technician

PHONE +61 2 4902 9200 **FAX** +61 2 4902 9299 WEB www.rca.com.au **ABN** 53 063 515 711 NATA Accredited Laboratory: 9811

Corporate Site No: 9804 Construction Materials Testing

Particle Size Distribution Report

Client :	Benelli Equity Pty Ltd			Report Number:	10059 - 011
Client Address :	101 Hannell Street Wickh	am NSW 2293			
lob Number:	10059			Report Date:	11/02/2015
Project:	Proposed Sand Extraction	ı		Order Number:	=
_ocation	Cabbage Tree Road , Willi	amtown		Page 1	of 1
_ab No:	15-226			Sample Lo	cation
Date Sampled:	11/12/2014			BH11	
Date Tested:	10/02/2015			0.1m-1.0m	
Sampled By:	RCA Geotech				
Sample Method:	AS 1289.1.2.1-6.5.3				
Material Source:	-			Spec Description:	
For Use As:	-			Lot Number:	-
Remarks:	-			Spec Number:	-
		A.S. Sieve Sizes	Specification Minimum	Percent Passing	Specificatior Maximum
Test Method:	AS 1289.3.6.1 (washed),2.1.	1			
		75.00 mm			
100		53.00 mm			
90		37.50 mm			
80		26.50 mm			
		19.00 mm		100	
o		13.20 mm		100	
D 00		9.50 mm		100	
Ø (0)		6.70 mm		100	
Percent Passing (%)		4.75 mm		100	
9 40		2.36 mm		100	
30		1.18 mm		100	
		0.600 mm		98	
20		0.425 mm		67	
10		0.300 mm		24	
(t)		0.150 mm		4	
0.075 0.15 0.3 0.425 0.6	1.18 236 475 67 95 132 19 AS Sieve Size(mm)	0.075 mm		3	
		Flakiness Index(%)			

Accredited for compliance with ISO/IEC 17025.

Approved Signatory Form Number

RP131-7

Matt Flood Senior Technician

PHONE +61 2 4902 9200

FAX +61 2 4902 9299

WEB www.rca.com.au

ABN 53 063 515 711

NATA Accredited Laboratory: 9811

Corporate Site No: 9804 Construction Materials Testing

Particle Size Distribution Report

		ize Distrib			
Client :	Benelli Equity Pty Ltd			Report Number:	10059 - 012
Client Address :	101 Hannell Street Wickl	nam NSW 2293			
Job Number:	10059			Report Date:	11/02/2015
Project:	Proposed Sand Extraction			Order Number:	-
_ocation	Cabbage Tree Road , Will	liamtown		Page 1	
_ab No:	15-227			Sample Lo	cation
Date Sampled:	11/12/2014			BH11	
Date Tested:	10/02/2015			2.5m-2.95m	
Sampled By:	RCA Geotech				
Sample Method:	AS 1289.1.2.1-6.5.3				
Material Source:	-			Spec Description:	
For Use As:	=			Lot Number:	-
Remarks:	-	A.C. Ciava Cinas	Consideration:	Spec Number:	Considientia
		A.S. Sieve Sizes	Specification	Percent	Specification
Test Method:	AS 1289.3.6.1 (washed),2.1	1	Minimum	Passing	Maximum
rest method.	no 1205131011 (Wasiled),211	75.00 mm			
100		53.00 mm	<u> </u>		
90		37.50 mm			
		26.50 mm			
80		19.00 mm		100	
n /		13.20 mm		100	
(%)		9.50 mm		100	
Perceng(%)		6.70 mm		100	
ğ 50 /					
₩ Q 40		4.75 mm		100	
ů /		2.36 mm	<u></u>	100	
30		1.18 mm		100	
20	- 	0.600 mm		99	
10		0.425 mm		93	
d		0.300 mm		57 _	
0.075 0.15 0.3 0.425 0.6	1.18 2.36 4.75 6.7 9.5 13.2 19	0.150 mm		5	
	AS Sieve Size(mm)	0.075 mm		4	

Accredited for compliance with ISO/IEC 17025.

Approved Signatory Form Number

Matt Flood
Senior Technician

RCA Australia 92 Hill Street CARRINGTON 2294

Attention: Mr Calvin Mickan

This report supersedes Report 10059-701/0 which was sent on 9/1/2015

This report was reissued due to some sample descriptions revised based on results of particle distribution tests.

Project: RCA ref 10059-701/1

Date: 11/3/15

Client reference: Cabbage Tree Road, Williamtown ASS Screen Testing

Received date:7/1/15Number of samples:42Client order number:Not SuppliedTesting commenced:9/1/15

CERTIFICATE OF ANALYSIS

1 ANALYTICAL TEST METHODS

ANALYSIS	METHOD	UNITS	ANALYSING LABORATORY	NATA ANALYSIS/NON- NATA
Acid Sulfate Soil Screening Testing	ENV-LAB032*	рН	RCA Laboratories - Environmental	NATA

^{*} The analytical procedures used by RCA Laboratories - Environmental are based on established internationally recognised procedures such as APHA and Australian Standards

Robert Carr & Associates Pry.Ltd Trading as RCA Laboratories – Environmental 92 HII Street - PO Box 175, Carrington NSW 2294
ABN 63 063 515 71 1P ft 02 4902 9200 – Fax 02 4902 9299
Email: administrator@rca.com.au Web www.rca.com.au

N

RESULTS

Soil Type	Reaction Rate [^]	$pH_F - pH_{FOX}$	pH _{FOX}	pH _F	Date Sampled	Sample Number	Acid Sulfate Soil Screening Test	ANALYSIS	Soil Type	Reaction Rate^	$pH_F - pH_{FOX}$	pH _{FOX}	pH _F	Date Sampled	Sample Number	Acid Sulfate Soil Screening Test	ANALYSIS
ı	1	pH unit	pH unit	pH unit	1	1		STINU	-	ı	pH unit	pH unit	pH unit	-	ı		STINU
sand, pale brown/sand, brown with dark brown mottles	0	1.56	3.40	4.96	25/11/2014	011510059007		BH2 1.5-1.95	sand, brown and pale grey	0	1.61	3.60	5.21	24/11/2014	011510059001		BH1 0.5-0.95
sand, brown-dark brown/sand, very dark-brown, trace to some silt	0	1.08	3.78	4.86	25/11/2014	011510059008		ВН2 3-3.45	sand, grey	0	2.31	2.29	4.60	24/11/2014	011510059002		BH1 1.5-1.95
sand, very pale brown	0	0.69	4.45	5.14	25/11/2014	011510059009		BH2 4.5-4.95	sand, grey/sand, very dark brown with a trace of silt	0	1.91	2.87	4.78	24/11/2014	011510059003		BH1 3-3.45
sand, pale brown	0	0.84	4.64	5.48	25/11/2014	011510059010		BH2 6-6.45	sand, brown with a trace of silt/sand, white	0	1.04	3.89	4.93	24/11/2014	011510059004		BH1 4.5-4.95
sand, pale brown	0	1.63	4.98	6.61	25/11/2014	011510059011		внз 0.5-0.95	sand, pale grey- brown, with a trace of silt	0	1.12	4.15	5.27	24/11/2014	011510059005		BH1 6-6.45
sand, pale brown/sand, brown- dark brown	0	1.24	4.21	5.45	25/11/2014	011510059012		внз 1.5-1.95	sand, dark-brown, trace of gravel/sand, pale brown	0	1.09	4.17	5.26	25/11/2014	011510059006		BH2 0.5-0.95

Robert Carr & Associates Pty Ltd Trading as RCA Laboratories – Environmental 92 Hill Street - PO Box 175, Carrington NSW 2294

ABN 53 063 515 711 Ph 02 4902 9200 – Fax 02 4902 9299

Email: administrator/@rca.com.au Web www.rca.com.au

NATA Accredited Laboratory 9811
Corporate Site Number 18077
Accredited for compliance with ISO/IEC 17025

Soil Type	Reaction Rate [^]	$pH_F - pH_{FOX}$	pH _{FOX}	pH _F	Date Sampled	Sample Number	Acid Sulfate Soil Screening Test	SISATANA	Soil Type	Reaction Rate [^]	$pH_F - pH_{FOX}$	pH _{FOX}	pHϝ	Date Sampled	Sample Number	Acid Sulfate Soil Screening Test	SISATIVA	Soil Type	Reaction Rate [^]	$pH_F - pH_{FOX}$	pH _{FOX}	pH _F	Date Sampled	Sample Number	Acid Sulfate Soil Screening Test	ANALYSIS
,	1	pH unit	pH unit	pH unit	1	1		STINU	1	1	pH unit	pH unit	pH unit	1	ı		STINU	-	•	pH unit	pH unit	pH unit	I	ı		STINU
sand, pale yellow- brown	0	0.63	4 75	5.38	9/12/2014	011510059025		ВН9 0.2-1	sand, dark grey	1	1.66	4.20	5.86	26/11/2014	011510059019		BH5 2.5-3	sand, grey- brown/sand very dark brown, with a trace to some silt	0	1.25	3.73	4.98	25/11/2014	011510059013		внз 3-3.45
sand, pale yellow- brown	0	0.82	4.70	5.52	9/12/2014	011510059026		ВН9 2.5-2.95	sand, white/sand, brown with a trace of silt and clay	0	1.07	4.31	5.38	26/11/2014	011510059020		BH5 4.5-4.95	sand, yellow- brown/sand, very pale brown	0	0.89	3.97	4.86	25/11/2014	011510059014		ВНЗ 4.5-4.95
sand, pale yellow- brown	0	0.90	4.58	5.48	9/12/2014	011510059027		BH9 4-4.45	sand, brown with a trace of silt	0	0.61	4.44	5.05	26/11/2014	011510059021		BH5 6-6.45	sand, pale brown/sand, brown- dark brown	0	0.49	5.18	5.67	25/11/2014	011510059015		внз 6-6.45
sand, pale yellow- brown	0	1.30	4.35	5.65	9/12/2014	011510059028		BH9 7-7.45	sand, pale grey with black grains	0	0.88	4.21	5.09	27/11/2014	011510059022		ВН7 0.5-0.95	sand, pale brown, with a trace of silt	0	0.84	4.14	4.98	26/11/2014	011510059016		ВН4 0.5-0.95
sand, orange-brown	0	1.21	4.47	5.68	9/12/2014	011510059029		ВН9 8.5-8.95	sand, white-pale grey	0	1.45	3.10	4.55	28/11/2014	011510059023		вн8 0.5-0.95	sand, pale grey	0	1.59	4.58	6.17	26/11/2014	011510059017		ВН5 0.5-0.95
sand, grey-brown with brown and pale yellow zones	0	1.13	4.42	5.55	9/12/2014	011510059030		BH9 10-10.45	sand, dark brown with a trace of silt	0	0.58	3.99	4.57	28/11/2014	011510059024		ВН8 1.5-1.95	sand, pale greywhite with very dark grey speckles	0	1.20	4.60	5.80	26/11/2014	011510059018		BH5 1.5-1.95

Robert Carr & Associates Pty Ltd Trading as RCA Laboratories – Environmental 92 Hill Street - PO Box 175, Carrington NSW 2294

ABN 53 063 515 711 Ph 02 4902 9200 – Fax 02 4902 9299

Email: administrator@rca.com.au Web www.rca.com.au

sand, pale grey/sand, yellow-brown	sand, white	silty sand, dark brown/sand white	sand, white/silty sand, dark brown	sand, pale grey- brown, with a trace of silt	sand, white	,	Soil Type
0	0	0	0	0	0	ı	Reaction Rate [^]
1.88	2.64	1.20	1.16	0.32	1.71	pH unit	pH _F – pH _{FOX}
3.00	2.69	3.10	2.99	4.97	3.74	pH unit	pH _{FOX}
4.88	5.33	4.30	4.15	5.29	5.45	pH unit	pHϝ
11/12/2014	11/12/2014	11/12/2014	11/12/2014	11/12/2014	11/12/2014	ı	Date Sampled
011510059042	011510059041	011510059040	011510059039	011510059038	011510059037	•	Sample Number
							Acid Sulfate Soil Screening Test
BH12 4-4.45	BH12 2.5-2.95	BH12 1-1.45	BH12 0.5-1	BH11 2.5-2.95	BH11 1-1.45	UNITS	ANALYSIS
sand, yellow- brown/sand with silt, dark grey brown	sand, pale grey	sand, pale grey/silty sand brown/sand, yellow-brown, with a trace of silt	sand, pale grey	sand, pale yellow- grey	sand, grey-brown	-	Soil Type
0	0	0	0	0	0	ı	Reaction Rate^
0.73	0.95	0.59	1.61	0.92	0.77	pH unit	pH _F – pH _{FOX}
4.85	4.45	3.81	2.90	4.83	4.71	pH unit	pH _{FOX}
5.58	5.40	4.40	4.51	5.75	5.48	pH unit	pHϝ
10/12/2014	10/12/2014	10/12/2014	10/12/2014	9/12/2014	9/12/2014	-	Date Sampled
011510059036	011510059035	011510059034	011510059033	011510059032	011510059031	•	Sample Number
							Acid Sulfate Soil Screening Test
ВН10 4-4.45	BH10 2.5-2.95	BH10 1-1.45	BH10 0.2-1	BH9 14.5-14.95	ВН9 13-13.45	STINU	ANALYSIS

^{**} Indicates NATA accreditation does not cover the performance of this service

Acid Sulfate Soil Screening

Note: This screening test only provides an indication of the likely presence and severity of Acid Sulfate Soils. This test should not be used as a substitute for laboratory analysis which would positively identify the presence of Acid Sulfate Soils (ASS) for assessment purposes.

NATA Scope of Accreditation does not cover the sampling of soils by the client or by RCA Employees.

Analysis for pH and Acid Sulphate Screen Testing is covered by RCA Laboratories - Environmental NATA Scope of Accreditation.

Analysis on samples is on an as received basis.

Acid Sulfate Soil Screening Test Reaction Rate

^Reaction Rate: 0 = No Reaction, 1 = Slight, 2 = Moderate, 3 = High, 4 = Very Vigorous

Note: Due to the subjectivity the assessment of the Reaction Rate is not covered by our NATA Scope of Accreditation.

3 QUALITY CONTROL RESULTS

Acid Sulfate Soil Screening Test Quality Control

DATE	ANALYSIS	METHOD	UNITS	QUALITY CONTROL STANDARD VALUE	QUALITY CONTROL ACCEPTANCE CRITERIA	QUALITY CONTROL STANDARD RESULT
9/1/15	pH – Acid Sulfate Soil Screen Testing	ENV- LAB032	рН	7.00	6.95 - 7.05	7.01

Acid Sulfate Soil Screening Test Duplicate Analysis

SAMPLE NUMBER	DATE	ANALYSIS	METHOD	UNITS	LOR	SAMPLE RESULT	SAMPLE DUPLICATE RESULT	ACCEPTANCE CRITERIA RESULT
011510059010	9/1/15	pH – Acid Sulfate Soil Screen Testing	ENV- LAB032	pН	N/A	5.48	5.48	0.0%
011510059020	9/1/15	pH – Acid Sulfate Soil Screen Testing	ENV- LAB032	pН	N/A	5.38	5.30	1.5%
011510059030	9/1/15	pH – Acid Sulfate Soil Screen Testing	ENV- LAB032	pН	N/A	5.55	5.59	0.7%
011510059040	9/1/15	pH – Acid Sulfate Soil Screen Testing	ENV- LAB032	рН	N/A	4.30	4.21	2.1%

Please contact the undersigned if you have any queries.

Yours sincerely

Chad South
Environmental Technician
Robert Carr & Associates Pty Ltd Trading as
RCA Laboratories - Environmental
Approved Signatory

Laura Schofield Environmental Laboratory Manager Robert Carr & Associates Pty Ltd Trading as RCA Laboratories - Environmental

Robert Carr and Associates Pty Ltd shall not be liable for loss, cost, damages or expenses incurred by the client, or any other person or company resulting from the use of any information or interpretation given in this report. In no case shall RCA limited be liable for consequential damages including, but not limited to, loss profits damages for failure to meet deadlines and lost production arising from this report. This document shall not be reproduced except in full and relates only to the items tested. Unless indicated otherwise, the tests were performed on the samples as received. Sampled dates quoted in this report are those listed on the CCC or sample jars; fin os sample dates are noted, the date the samples are received at the laboratory have been used. The Laboratory is accredited for compliance with ISO/IEC 17025. The results of the tests, calibrations &/or measurements included in this document are traceable to Australian / National Standards.

RCA Internal Quality Review

General

- Laboratory QC results for Method Blanks, Duplicates and Laboratory Control Samples are included in this QC report where applicable. Additional QC data maybe available on request.
- RCA QC Acceptance / Rejection Criteria are available on request.
- Proficiency Trial results are available on request.
- Actual PQLs are matrix dependant. Quoted PQLs may be raised where sample extracts are diluted due to interferences.
- 5. When individual results are qualified in the body of a report, refer to the qualifier descriptions that follow.
- 6. Samples were analysed on an 'as received' basis.
- Sampled dates in this report are those listed on the COC or sample jars; if no sample dates are noted, the date the samples are received at the laboratory have been used.
- 8. All soil results are reported on a dry basis, unless otherwise stated. (ACID SULFATE SOILS)
- This report replaces any interim results previously issued.

Holding Times.

For samples received on the last day of holding time, notification of testing requirements should have been received at least 6 hours prior to sample receipt deadlines as stated on the Sample

Receipt Acknowledgment.

If the Laboratory did not receive the information in the required timeframe, and regardless of any other integrity issues, suitably qualified results may still be reported.

Holding times apply from the date of sampling, therefore compliance to these may be outside the laboratory's control.

##NOTE: pH duplicates are reported as a range NOT as RPD

QC - ACCEPTANCE CRITERIA

RPD Duplicates: Global RPD Duplicates Acceptance Criteria is 30% however the following acceptance guidelines are equally applicable:

Results <10 times the LOR: No Limit

Results between 10-20 times the LOR: RPD must lie between 0-50%

Results >20 times the LOR: RPD must lie between 0-30%

QC DATA GENERAL COMMENTS

- 1. Where a result is reported as a less than (<), higher than the nominated LOR, this is due to either matrix interference, extract dilution required due to interferences or contaminant levels within the sample, high moisture content or insufficient sample provided.
- 2. Duplicate data shown within this report that states the word "BATCH" is a Batch Duplicate from outside of your sample batch, but within the laboratory sample batch at a 1:10 ratio. The Parent and Duplicate data shown is not data from your samples.
- 3. Duplicate RPD's are calculated from raw analytical data thus it is possible to have two sets of data.

Glossary

UNITS

mg/kg: milligrams per Kilogram

ug/L: micrograms per litre

ppm: Parts per million

ppb: Parts per billion

%: Percentage

org/100ml: Organisms per 100 millilitres

NTU: Unit

MPN/100mL: Most Probable Number of organisms per 100 millilitres

mg/L: milligrams per Litre

TERMS

Dry Where moisture has been determined on a solid sample the result is expressed on a dry basis.

LOR Limit of Reporting.

RPD Relative Percent Difference between two Duplicate pieces of analysis can be obtained upon request.

QCS Quality Control Sample - reported as value recovery

Method Blank In the case of solid samples these are performed on laboratory certified clean sands.

In the case of water samples these are performed on de-ionised water.

Duplicate A second piece of analysis from the same sample and reported in the same units as the result to show comparison.

Batch Duplicate A second piece of analysis from a sample outside of the clients batch of samples but run within the laboratory batch of analysis.

USEPA United States Environment Protection Authority

APHA American Public Health Association

COC Chain of Custody

CP Client Parent - QC was performed on samples pertaining to this report

NCP Non-Client Parent - QC performed on samples not pertaining to this report, QC is representative of the sequence or batch that client samples were analysed within

- < indicates less than
- > Indicates greater than

ND Not Detected

Appendix 1

Chain of Custody Documentation

Ph: (02) 4902 9200 Fax: 02 4902 9299 92 Hill Street, Carrington NSW 2294

www.rca.com.au Email: labenviro@rca.com.au

Client Name: Benelli Equity Pty Ltd Contact Name: ENV-F103-4

Turnaround Required: Client Site: Cabbage Tree Road, Williamtown Date Required: (low priority) Phone Number: **Expected Reporting Date:** Project Manager: Calvin Mickan Email Report To: calvinm@rca.com.au

Of: RCA Vame: TH 011510059001 Environmental Sample RCA Laboratories RCA Job Number: 10059 Number 016 400 50 002 410 510 410 006 ccs ccs 00 BH3 3.0-3.45m, SAND, grey-brown/SAND, very dark brown, with a trace to some silt BH3 4.5-4.95m, SAND, yellow-brown / SAND, very pale BH2 0.5-0.95m. SAND, dark brown, trace of gravel / SAND, pale brown
BH2 1.5-1.95m. SAND, pale brown / SAND, brown with BH3 6.0-6.45m. SAND, pale brown / SAND, brown-dark BH4 0.5-0.95m. SAND, pale brown with a trace of silt BH2 3.0-3.45m. SAND, brown-dark brown / SAND, very dark brown, trace to some silt BH1 6.0-6.45m. SAND, pale grey-blown, with a trace of BH1 4.5-4.95m. SAND, brown with a trace of silt/SAND, BH1 3.0-3.45m. SAND, grey/SAND, very dark brown with a trace of sit BH3 1.5-1.95m. SAND, pale brown / SAND, brown BH1 0.5-0.95m. SAND, browr and pale grey BH2 4.5-4.95m. SAND, very pale brown SAMPLE INFORMATION BH3 0.5-0.95m. SAND, pale brown BH2 6.0-6.45m. SAND, pale brown BH1 1.5-1.95m. SAND, grey RELINQUISHED BY Client ID / Description ☐ Urgent ☑ Standard (5 Day) Date: 7/1/15 ime: 26/11/14 25/11/14 25/11/14 25/11/14 25/11/14 25/11/14 25/11/14 25/11/14 25/11/14 25/11/14 25/11/14 24/11/14 24/11/14 24/11/14 24/11/14 24/11/14 Date Matrix S S S S S S S S S S S S S S S S Samples Total Of: Name: ASS Screen **ANALYSIS REQUIRED** RECEIVED BY Time: Date: select samples will be used for CMT testing after ASS screen completed Notes: Please minimise sample use as Chilled: Received in good condition: aboratory use only (circle appropriate) (Laboratory Use Only) Page of 3 No No

ANALYSIS REQUIRED

Chilled: Yes No	Time:			Of:			Time:		
Received in good condition: Yes No	Date:		le:	Name:			Date:		
Laboratory use only (circle appropriate)		RECEIVED BY		,			٤		
			,	000	5.5	Previous	RELINQUISHED BY		
			< ;	٠,	\forall	11/12/14	BH12 2.5-2.95m. SAND white	140	1,
			×	→		11/12/14	BH12 1.0-1.45m. Silty SAND, dark brown / SAND, white	040	ř.
			×	-3		11/12/14	BH12 0.5-1.0m. SAND, white / Silty SAND, dark brown	039	£.
			×	_	s	11/12/14	BH11 2.5-2.95m. SAND, pale gre/-brown, with silt	038	ų.
			×	_	S	11/12/14	BH11 1.0-1.45m. SAND, white	3	۶
			×	_	S	10/12/14	BH10 4.0-4.45m. SAND, yellow-brown / Silty SAND, dark grey-brown	036	r
			×	٦	S	10/12/14	BH10 2.5-2.95m, SAND, pale grey	035	7
			×	_	S	10/12/14	BH10 1.0-1.45m. SAND, pale grey / Silty SAND, brown / SAND, yellow -brown, with silt	034	٠
			×	1	S	10/12/14	BH10 0.2-1.0m. SAND, pale grey	033	5
			×	1	S	9/12/14	BH9 14.5-14.95m. SAND, pale yellow-grey	034	ارد
			×	1	S	9/12/14	BH9 13.0-13.45m. SAND, grey-brown, with silt	931	t
			×	1	S	9/12/14	pale yellow zones, with silt	030	۶
			×	1	S	9/12/14	вну 8.5-8.95m. SAND, orange-brown, with a trace of silt	CIG	۲,
			×	_	S	9/12/14	of silt	810	۶
			×	_	S	9/12/14	BH9 4.0-4.45m. SAND, pale yellow-brown, with a trace of silt	cil	۶
			×	1	S	9/12/14	BH9 2.5-2.95m. SAND, pale yellow-brown	orb	`
			×	٦.	S	9/12/14	BH9 0.2-1.0m. SAND, pale yellow-brown	05	>
			×	_	4 S	28/11/14	BH8 1.5-1.95m. SAND, dark brown with a trace of silt	CZY	61
			×	1	s S	28/11/14	BH8 0.5-0.95m. SAND, while - pale grey	023	5
			×	_	4 S	27/11/14	BH7 0.5-0.95m. SAND, pale grey with black grains	ON	5
			×	_		26/11/14	BH5 6.0-6.45m. SAND, brown, with a trace of silt	22	2
			×	_			BH5 4.5-4.95m. SAND, white / SAND, brown with trace of silt and clay	ow	7
			×	1	s S	26/11/14	BH5 2.5-3.0m. SAND, dark grey	510	· ·
			×	_	s S	26/11/14	BH5 1.5-1.95m. SAND, pale grey /white with very dark grey speckles	810	۲,
			×	1	4 S	26/11/14	BH5 0.5-0.95m. SAND, pale grey	59 01	CIS 120015110
			ASS Scree	Total Samples	Matrix	Date	Client ID / Description	RCA Laboratories Environmental Sample Number	RCA Lat Environme Nur
			en				Chair Chairting		
							SAMDIE INECOMATION		
used for CMT testing after ASS screen completed									RCA Job Number:

ENV-F103-4 page 2 of 3

RECEIVED BY Claboratory use only (circle appropriate) Received in good condition: Yes	Name:				2
				Date:	Na lie
		Rese	Mewers 1	RELINQUISHED BY See	
			-		
	×	S	11/12/14	BH12 4.0-4.45m. SAND, pale gray / SAMD, yellow brown	0115100560+1
	Total Samples ASS	Matrix Sam	Date	Client ID / Description	RCA Laboratories Environmental Sample Number
	n			SAMPLE INFORMATION	
Notes: Please minimise sample use as select samples will be used for CMT testing after ASS screen completed					RCA Job Number:

CERTIFICATE OF ANALYSIS

Quote number		Site	Sampler	C-O-C number	Order number	Project	Facsimile	Telephone	E-mail		Address	Contact	Client	Work Order
;;!			: CALVIN MICKAN, THOMAS HOSKING	:	ï	: 10059	: +61 02 4902 9299	: +61 02 4902 9200	: calvinm@rca.com.au	CARRINGTON NSW, AUSTRALIA 2294	: P O BOX 175	: MR CALVIN MICKAN	: ROBERT CARR & ASSOCIATES P/L	: EB1511988
No. of samples analysed	No. of samples received		Issue Date	Date Analysis Commenced	Date Samples Received	QC Level	Facsimile	Telephone	E-mail		Address	Contact	Laboratory	Page
: 19	: 19		: 12-Feb-2015 11:52	: 10-Feb-2015	: 03-Feb-2015 08:20	: NEPM 2013 Schedule B(3) and ALS QCS3 requirement	: +61-7-3243 7218	: +61-7-3243 7222	: ALSEnviro.Brisbane@alsglobal.com		: 2 Byth Street Stafford QLD Australia 4053	: Customer Services EB	: Environmental Division Brisbane	: 1 of 10

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted.

This Certificate of Analysis contains the following information:

General Comments

Analytical Results

Accredited for compliance with ISO/IEC 17025.

WORLD RECOGNISED

ACCREDITATION

NATA Accredited Laboratory 825 Signator

carried out in compliance with procedures specified in 21 CFR Part 11. Signatories

This document has been electronically signed by the authorized signatories indicated below. Electronic signing has been Kim McCabe Senior Inorganic Chemist Brisbane Acid Sulphate Soils Accreditation Category

Client Page Work Order : 2 of 10 : EB1511988

: ROBERT CARR & ASSOCIATES P/L

Project

General Comments

developed procedures are employed in the absence of documented standards or by client request. The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the USEPA, APHA, AS and NEPM. In house

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes.

Key: LOR = Limit of reporting CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

- ^ = This result is computed from individual analyte detections at or above the level of reporting
- \emptyset = ALS is not NATA accredited for these tests.
- ASS: EA029 (SPOCAS): Excess ANC not required because pH OX less than 6.5.
- ASS: EA029 (SPOCAS): Liming rate is calculated and reported on a dry weight basis assuming use of fine agricultural lime (CaCO3) and using a safety factor of 1.5 to allow for non-homogeneous mixing and poor reactivity of lime. For conversion of Liming Rate from kg/t dry weight to kg/m3 in-situ soil, multiply reported results x wet bulk density of soil in l/m3.

Page Work Order

: 3 of 10 : EB1511988 : ROBERT CARR & ASSOCIATES P/L : 10059

Analytical Results Project Client

Sub-Matrix: SOIL) (Matrix: SOIL)		C	Client sample ID	011510059001 (BH1	011510059003 (BH1	011510059004 (BH1	011510059007 (BH2	011510059008 (BH2
				0.5-0.95m)	3.0-3.45m)	4.5-4.95m)	1.5-1.95m)	3.0-3.45m)
		lient samp	Ciletti samping date / time	[24-NOV-2014]	[24-1009-2014]	[24-1009-2014]	[23-NOV-2014]	[23-NO0-2014]
Co. Process				Result	Result	Result	Result	Result
EA026 : Chromium Reducible Sulfur								
Chromium Reducible Sulphur		0.005	%	<0.005	<0.005	<0.005	<0.005	<0.005
EA029-A: pH Measurements								
рн КСІ (23А)		0.1	pH Unit	5.3	4.8	6.1	5.2	5.0
рн ОХ (23В)	-	0.1	pH Unit	4.0	4,0	4.6	4.2	4.0
EA029-B: Acidity Trail								
Titratable Actual Acidity (23F)		Ŋ	mole H+ / t	6	29	<2	4	12
Titratable Peroxide Acidity (23G)		2	mole H+/t	24	90	4	13	34
Titratable Sulfidic Acidity (23H)		2	mole H+ / t	18	61	4	9	22
sulfidic - Titratable Actual Acidity (s-23F)		0.02	% pyrite S	<0.02	0.05	<0.02	<0.02	<0.02
sulfidic - Titratable Peroxide Acidity (s-23G)	1	0.02	% pyrite S	0.04	0.14	<0.02	0.02	0.06
sulfidic - Titratable Sulfidic Acidity (s-23H)		0.02	% pyrite S	0.03	0.10	<0.02	<0.02	0.04
EA029-C: Sulfur Trail								
KCI Extractable Sulfur (23Ce)		0.02	% S	<0.02	<0.02	<0.02	<0.02	<0.02
Peroxide Sulfur (23De)		0.02	% S	<0.02	<0.02	<0.02	<0.02	<0.02
Peroxide Oxidisable Sulfur (23E)		0.02	% S	<0.02	<0.02	<0.02	<0.02	<0.02
acidity - Peroxide Oxidisable Sulfur (a-23E)		10	mole H+/t	<10	<10	<10	^10	<10
EA029-D: Calcium Values								
KCI Extractable Calcium (23Vh)		0.02	% Ca	<0.02	<0.02	<0.02	<0.02	<0.02
Peroxide Calcium (23Wh)		0.02	% Ca	<0.02	<0.02	<0.02	<0.02	<0.02
Acid Reacted Calcium (23X)		0.02	% Ca	<0.02	<0.02	<0.02	<0.02	<0.02
acidity - Acid Reacted Calcium (a-23X)		10	mole H+/t	<10	<10	<10	<10	<10
sulfidic - Acid Reacted Calcium (s-23X)		0.02	% S	<0.02	<0.02	<0.02	<0.02	<0.02
EA029-E: Magnesium Values								
KCI Extractable Magnesium (23Sm)		0.02	% Mg	<0.02	<0.02	<0.02	<0.02	<0.02
Peroxide Magnesium (23Tm)		0.02	% Mg	<0.02	<0.02	<0.02	<0.02	<0.02
Acid Reacted Magnesium (23U)		0.02	% Mg	<0.02	<0.02	<0.02	<0.02	<0.02
Acidity - Acid Reacted Magnesium (a-23U)		10	mole H+/t	<10	<10	<10	<10	<10
sulfidic - Acid Reacted Magnesium		0.02	% S	<0.02	<0.02	<0.02	<0.02	<0.02
(s-23U)		Ī						
EA029-G: Retained Acidity								
HCI Extractable Sulfur (20Be)	-	Т	% S	!	Į	į	i	!
Net Acid Soluble Sulfur (20Je)		0.02	% S	!	ļ	i	ł	!

Page Work Order

Project Client

Analytical Results

: 4 of 10 : EB1511988 : ROBERT CARR & ASSOCIATES P/L : 10059

Sub-Matrix: SOIL		C)	Client sample ID	011510059001 (BH1	011510059003 (BH1	011510059004 (BH1	011510059007 (BH2	011510059008 (BH2
(Matrix: SOIL)				0.5-0.95m)	3.0-3.45m)	4.5-4.95m)	1 5 1 95m)	3.0-3.45m)
	()	ient sampl	Client sampling date / time	[24-Nov-2014]	[24-Nov-2014]	[24-Nov-2014]	[25-Nov-2014]	[25-Nov-2014]
Compound	CAS Number LOR	LOR	Unit	EB1511988-001	EB1511988-002	EB1511988-003	EB1511988-004	EB1511988-005
				Result	Result	Result	Result	Result
EA029-G: Retained Acidity - Continued								
sulfidic - Net Acid Soluble Sulfur (s-20J)		0.02	% pyrite S		ij	į		
EA029-H: Acid Base Accounting								
ANC Fineness Factor		0.5	•	1.5	1.5	1.5	1.5	1.5
Net Acidity (sulfur units)		0.02	% S	<0.02	0.05	<0.02	<0.02	<0.02
Net Acidity (acidity units)		10	mole H+ / t	<10	29	<10	<10	12
Liming Rate		_	kg CaCO3/t	4	2	4	4	4

: 5 of 10 : EB1511988 : ROBERT CARR & ASSOCIATES P/L : 10059

Net Acid Soluble Sulfur (2004) 0.02 %S	0.02	sulfidic - Acid Reacted Magnesium 0.02 % S <0.02	(a-23U) 10 mole H+ / t <10 <10	Acid Reacted Magnesium (23U) 0.02 % Mg <0.02	Peroxide Magnesium (23Tm) 0.02 % Mg <-0.02 <-0.02 <-0.02	KCI Extractable Magnesium (23Sm) 0.02 % Mg <0.02	EA029-E: Magnesium Values	sulfidic - Acid Reacted Calcium (s-23X) 0.02 % S <0.02	acidity - Acid Reacted Calcium (a-23X) 10 mole H+ / t <10 <10 <10 <10	Acid Reacted Calcium (23X) 0.02 % Ca <0.02	Peroxide Calcium (23Wh) 0.02 % Ca <0.02	KGI Extractable Calcium (23Vh) 0.02 % Ca <0.02	EA029-D: Calcium Values	acidity - Peroxide Oxidisable Sulfur 10 mole H+ / t <10 <10 <10	Peroxide Oxidisable Sulfur (23E) 0.02 % S <0.02	Peroxide Sulfur (23De) 0.02 % S <0.02	KGI Extractable Sulfur (23Ce) 0.02 % S <0.02	EA029-C: Sulfur Trail	sulfidic - Titratable Sulfidic Acidity (s-23H) 0.02 % pyrite S <0.02 0.03 0.04	sulfidic - Titratable Peroxide Acidity 0.02 % pyrite S <0.02	sulfidic - Titratable Actual Acidity (s-23F) 0.02 % pyritie S <0.02	Titratable Sulfidic Acidity (23H) 2 mole H+ / t 5 18 27	Titratable Peroxide Acidity (23G) 2 mole H+ / t 4 31 27	Titratable Actual Acidity (23F) 2 mole H+ / t <2	EA029-B: Acidity Trail	pH OX (23B) 0.1 pH Unit 4.8 3.7 3.9	рН КСІ (23A) 0.1 рН Unit 6.0 4.9 5.5	EA029-A: pH Measurements	Chromium Reducible Sulphur 0.005 % <0.005	EA026 : Chromium Reducible Sulfur		Compound CAS Number LOR Unit EB1511988-006 EB1511988-007 EB1511988-0	Client sampling date / time [25-Nov-2014] [25-Nov-2014] [26-Nov-201	Sub-Matrix: SOIL Client sample ID 011510059011 (BH3 011510059013 (BH3 011510059019 (Matrix: SOIL) 0.5-0.95m) 3.0-3.45m) 2.5-3.0m)	Analytical Results
-	i	<0.02	<10	<0.02	<0.02	<0.02		<0.02	<10	<0.02	<0.02	<0.02		<10	<0.02	<0.02	<0.02		0.04	0.04	<0.02	27	27	<2		3.9	5.5		<0.005		Result	EB1511988-008	[26-Nov-2014]	H3 011510059019 (BH5 2.5-3.0m)	
	:	<0.02	<10	<0.02	<0.02	<0.02		<0.02	<10	<0.02	<0.02	<0.02		<10	<0.02	<0.02	<0.02		<0.02	0.02	<0.02	12	15	3		4.2	5.5		0.005		Result	EB1511988-009	[26-Nov-2014]	01150059020 (BH5 4.5-4.95m)	
	!	<0.02	<10	<0.02	<0.02	<0.02		<0.02	<10	<0.02	<0.02	<0.02		<10	<0.02	<0.02	<0.02		0.02	0.02	<0.02	15	15	<2		3.7	5.6		<0.005		Result	EB1511988-010	[28-Nov-2014]	011510059023 (BH8 0.5-0.95m)	

: 6 of 10 : EB1511988 : ROBERT CARR & ASSOCIATES P/L : 10059

Sub-Matrix: SOIL (Matrix: SOIL)		Clie	Client sample ID	011510059011 (BH3 0.5-0.95m)	011510059013 (BH3 3.0-3.45m)	011510059019 (BH5 2.5-3.0m)	01150059020 (BH5 4.5-4.95m)	011510059023 (BH8 0.5-0.95m)
	Clier	ıt sampli	Client sampling date / time	[25-Nov-2014]	[25-Nov-2014]	[26-Nov-2014]	[26-Nov-2014]	[28-Nov-2014]
Compound	CAS Number LOR	LOR	Unit	EB1511988-006	EB1511988-007	EB1511988-008	EB1511988-009	EB1511988-010
				Result	Result	Result	Result	Result
EA029-G: Retained Acidity - Continued								
sulfidic - Net Acid Soluble Sulfur (s-20J)		0.02	% pyrite S	!				
EA029-H: Acid Base Accounting								
ANC Fineness Factor		0.5	•	1.5	1.5	1.5	1.5	1.5
Net Acidity (sulfur units)		0.02	% S	<0.02	<0.02	<0.02	<0.02	<0.02
Net Acidity (acidity units)		10	mole H+/t	<10	12	<10	<10	<10
Liming Rate		_	kg CaCO3/t	۵	7	4	Δ	

: 7 of 10 : EB1511988 : ROBERT CARR & ASSOCIATES P/L : 10059

Net Acid Soluble Sulfur (20Je)	HCI Extractable Sulfur (20Be)	EA029-G: Retained Acidity	sulfidic - Acid Reacted Magnesium (s-23U)	Acidity - Acid Reacted Magnesium (a-23U)	Acid Reacted Magnesium (23U)	Peroxide Magnesium (23Tm)	KCI Extractable Magnesium (23Sm)	EA029-E: Magnesium Values	sulfidic - Acid Reacted Calcium (s-23X)	acidity - Acid Reacted Calcium (a-23X)	Acid Reacted Calcium (23X)	Peroxide Calcium (23Wh)	KCI Extractable Calcium (23Vh)	EA029-D: Calcium Values	acidity - Peroxide Oxidisable Sulfur (a-23E)	Peroxide Oxidisable Sulfur (23E)	Peroxide Sulfur (23De)	KCI Extractable Sulfur (23Ce)	EA029-C: Sulfur Trail	sulfidic - Titratable Sulfidic Acidity (s-23H)	sulfidic - Titratable Peroxide Acidity (s-23G)	sulfidic - Titratable Actual Acidity (s-23F)	Titratable Sulfidic Acidity (23H)	Titratable Peroxide Acidity (23G)	Titratable Actual Acidity (23F)	EA029-B: Acidity Trail	рн ох (23В)	рн КСІ (23А)	EA029-A: pH Measurements	Chromium Reducible Sulphur	EA026 : Chromium Reducible Sulfur		Compound		Sub-Matrix: SOIL (Matrix: SOIL)	Analytical Results
				23U)																23H)		3F)											CAS I			
			-	ł	ł	1	ł						1			ł	1					1	1	1			1	ļ					CAS Number	Clie		
0.02	0.02		0.02	10	0.02	0.02	0.02	111	0.02	10	0.02	0.02	0.02		10	0.02	0.02	0.02		0.02	0.02	0.02	2	2	2		0.1	0.1		0.005			LOR	ent samplir	Clie	
% S	% S		% S	mole H+/t	% Mg	% Mg	% Mg		% S	mole H+ / t	% Ca	% Ca	% Ca		mole H+ / t	% S	% S	% S		% pyrite S	% pyrite S	% pyrite S	mole H+/t	mole H+/t	mole H+/t		pH Unit	pH Unit		%			Unit	Client sampling date / time	Client sample ID	
			<0.02	<10	<0.02	<0.02	<0.02		<0.02	<10	<0.02	<0.02	<0.02		<10	<0.02	<0.02	<0.02		<0.02	<0.02	<0.02	7	7	<2		4.4	5.6		<0.005		Result	EB1511988-011	[09-Dec-2014]	011510059028 (BH9 7.0-7.45m)	
-	-		<0.02	<10	<0.02	<0.02	<0.02		<0.02	<10	<0.02	<0.02	<0.02		<10	<0.02	<0.02	<0.02		<0.02	<0.02	<0.02	3	5	2		4,4	5.4		<0.005		Result	EB1511988-012	[09-Dec-2014]	011510059030 (BH9 10.0-10.45m)	
-			<0.02	<10	<0.02	<0.02	<0.02		<0.02	<10	<0.02	<0.02	<0.02		<10	<0.02	<0.02	<0.02		<0.02	<0.02	<0.02	6	8	2		3,4	5.2		<0.005		Result	EB1511988-013	[10-Dec-2014]	011510059033 (BH10 0.2-1.0m)	
-			<0.02	<10	<0.02	<0.02	<0.02		<0.02	<10	<0.02	<0.02	<0.02		<10	<0.02	<0.02	<0.02		<0.02	<0.02	<0.02	2	2	<2		3,8	5.8		<0.005		Result	EB1511988-014	[11-Dec-2014]	011510059037 (BH11 1.0-1.45m)	
<0.02	<0.02		<0.02	<10	<0.02	<0.02	<0.02		<0.02	<10	<0.02	<0.02	<0.02		<10	<0.02	<0.02	<0.02		0.11	0.13	0.02	68	83	16		2,4	4.2		<0.005		Result	EB1511988-015	[11-Dec-2014]	011510059039 (BH12 0.5-1.0m)	

Page Work Order

Project

Analytical Results

Client

: 8 of 10 : EB1511988 : ROBERT CARR & ASSOCIATES P/L : 10059

	Client sample ID	0118	011510059030 (BH9 10.0-10.45m)	011510059033 (BH10 0.2-1.0m)	011510059037 (BH11 1.0-1.45m)	011510059039 (BH12 0.5-1.0m)
Client s	sampling date / time	[09-Dec-2014]	[09-Dec-2014]	[10-Dec-2014]	[11-Dec-2014]	[11-Dec-2014]
CAS Number LO	OR Unit	EB1511988-011	EB1511988-012	EB1511988-013	EB1511988-014	EB1511988-015
		Result	Result	Result	Result	Result
0.	02 % pyrite S	!	i	i	i	<0.02
0	5	1.5	1.5	1.5	1.5	1.5
0.	02 % S	<0.02	<0.02	<0.02	<0.02	0.02
1	0 mole H+ / t	<10	<10	<10	<10	16
-	1 kg CaCO3/t	4	4	4	Δ	_
	Client s CAS Number L1 CAS Number 0 0	Client samplii LOR COS 0.02 10 1	ling date / time Unit "w pyrite S "w S mole H+ / t kg CaCC3/t	Mark Mark		

: 9 of 10 : EB1511988 : ROBERT CARR & ASSOCIATES P/L : 10059

Net Acid Soluble Sulfur (20Je) 0.02 % S	HCI Extractable Sulfur (20Be) 0.02 % S	EA029-G: Retained Acidity	sulfidic - Acid Reacted Magnesium 0.02 % S <0.02 (s-23U)	(a-23U) 10 mole H+ / t	0.02 % Mg	% Mg	(23Sm) 0.02 % Mg	sulfidic - Acid Reacted Calcium (s-23X) 0.02 % S <0.02	acidity - Acid Reacted Calcium (a-23X) 10 mole H+ / t <10	Acid Reacted Calcium (23X) 0.02 % Ca <0.02	Peroxide Calcium (23Wh) 0.02 %Ca <0.02	KCI Extractable Calcium (23Vh) 0.02 % Ca <0.02	acidity - Peroxide Oxidisable Sulfur 10 mole H+ / t <10 (a-23E)	% S	Peroxide Sulfur (23De) 0.02 % S <0.02	KCI Extractable Sulfur (23Ce) 0.02 % S <0.02	EA029-C: Sulfur Trail	sulfidic - Titratable Sulfidic Acidity (s-23H) 0.02 % pyrite S <0.02	sulfidic - Titratable Peroxide Acidity 0.02 % pyritie S <0.02 (s-23G)	sulfidic - Titratable Actual Acidity (s-23F) 0.02 % pyrite S <0.02	Titratable Sulfidic Acidity (23H) 2 mole H+ / t 8	Titratable Peroxide Acidity (23G) 2 mole H+/t 11	ly (23F)	EA029-B: Acidity Trail	pH OX (23B) 0.1 pH Unit 2.8	pH KCI (23A) 0.1 pH Unit 5.2	EA029-A: pH Measurements	Chromium Reducible Sulphur 0.005 % <0.005	EA026 : Chromium Reducible Sulfur	Result	Compound CAS Number LOR Unit EB1511988-016	Client sampling date / time [11-Dec-2014]	1.0-1.45111)
	-		<0.02					<0.02	<10	<0.02	<0.02	<0.02	^10		<0.02	<0.02		<0.02	<0.02	<0.02	ω	ω	<2		3.8	6.1		5 <0.005		t Result	\$8-016 EB1511988-017	2014] [11-Dec-2014]	5m) 2.5-2.95m)
	!		<0.02	<10	<0.02	<0.02	<0.02	<0.02	<10	<0.02	<0.02	<0.02	^10	<0.02	<0.02	<0.02		0.03	0.03	<0.02	18	22	4		2.7	5.0		<0.005		Result	EB1511988-018	[11-Dec-2014]	4 0-4 45m)
i	1		<0.02	\$10°	<0.02	<0.02	<0.02	<0.02	<10	<0.02	<0.02	<0.02	^10	<0.02	<0.02	<0.02		0.04	0.06	0.02	22	36	13		2.7	4.8		<0.005		Result	EB1511988-019	[25-Nov-2014]	1.5.1.95m)
	!		!	ļ	!	1	1	!	į	į	!	ŀ	!	!	!	į		!	!	!	ļ	1	-		!	Į		!		Result	!	1	

Page Work Order Client

: 10 of 10 : EB1511988 : ROBERT CARR & ASSOCIATES P/L : 10059

Project **Analytical Results**

Sub-Matrix: SOIL		Cli	Client sample ID	011510059040 (BH12	011510059041 (BH12	011510059042 (BH12	011510059002 (BH1	i
(Matrix: SOIL)				1.0-1.45m)	2 5-2 95m)	4.0-4.45m)	1.5-1.95m)	
	Cli	ent sampli	Client sampling date / time	[11-Dec-2014]	[11-Dec-2014]	[11-Dec-2014]	[25-Nov-2014]	!
Compound	CAS Number LOR	LOR	Unit	EB1511988-016	EB1511988-017	EB1511988-018	EB1511988-019	
				Result	Result	Result	Result	Result
EA029-G: Retained Acidity - Continued								
sulfidic - Net Acid Soluble Sulfur (s-20J)		0.02	% pyrite S	1	ļ	į	i	!
EA029-H: Acid Base Accounting								
ANC Fineness Factor		0.5	•	1.5	1.5	1.5	1.5	!
Net Acidity (sulfur units)		0.02	% S	<0.02	<0.02	<0.02	0.02	!
Net Acidity (acidity units)		10	mole H+ / t	<10	<10	<10	13	!
Liming Rate		_	kg CaCO3/t	4	4	4		!

CERTIFICATE OF ANALYSIS

Quote number		Site	Sampler	C-O-C number	Order number	Project	Facsimile	Telephone	E-mail		Address	Contact	Client	Work Order
			: CALVIN MICKAN, THOMAS HOSKING	·	Ï	: 10059	: +61 02 4902 9299	: +61 02 4902 9200	: calvinm@rca.com.au	CARRINGTON NSW, AUSTRALIA 2294	: P O BOX 175	: MR CALVIN MICKAN	ROBERT CARR & ASSOCIATES P/L	: EB1513169
No. of samples analysed	No. of samples received		Issue Date	Date Analysis Commenced	Date Samples Received	QC Level	Facsimile	Telephone	E-mail		Address	Contact	Laboratory	Page
: 17	: 17		: 25-Feb-2015 13:39	: 20-Feb-2015	: 18-Feb-2015 15:50	: NEPM 2013 Schedule B(3) and ALS QCS3 requirement	: +61-7-3243 7218	: +61-7-3243 7222	: ALSEnviro.Brisbane@alsglobal.com		: 2 Byth Street Stafford QLD Australia 4053	: Customer Services EB	: Environmental Division Brisbane	: 1 of 6

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted.

This Certificate of Analysis contains the following information:

General Comments

Analytical Results

Accredited for compliance with ISO/IEC 17025.

NATA Accredited Laboratory 825

carried out in compliance with procedures specified in 21 CFR Part 11. Signatories

This document has been electronically signed by the authorized signatories indicated below. Electronic signing has been Kim McCabe Signatories Senior Inorganic Chemist Brisbane Inorganics Accreditation Category

WORLD RECOGNISED

ACCREDITATION

Client Work Order : 2 of 6 : EB1513169

: ROBERT CARR & ASSOCIATES P/L

General Comments

developed procedures are employed in the absence of documented standards or by client request. The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the USEPA, APHA, AS and NEPM. In house

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes.

LOR = Limit of reporting CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

^ = This result is computed from individual analyte detections at or above the level of reporting

ø = ALS is not NATA accredited for these tests.

Key:

Page Work Order Client

: 3 of 6 : EB1513169 : ROBERT CARR & ASSOCIATES P/L : 10059

Project **Analytical Results**

Sub-Matrix: SOIL (Matrix: SOIL)		Clie	Client sample ID	011510059001 (BH1 0.5-0.95m)	011510059002 (BH1 1.5-1.95m)	011510059003 (BH1 3.0-3.45m)	011510059004 (BH1 4.5-4.95m)	011510059007 (ВН2 1.5-1.95m)
				EB1511988-001	EB1511988-019	EB1511988-002	EB1511988-003	EB1511988-004
	Cli	ent samplin	Client sampling date / time	[24-Nov-2014]	[24-Nov-2014]	[24-Nov-2014]	[24-Nov-2014]	[25-Nov-2014]
Compound	CAS Number LOR	LOR	Unit	EB1513169-001	EB1513169-002	EB1513169-003	EB1513169-004	EB1513169-005
				Result	Result	Result	Result	Result
EA055: Moisture Content								
Moisture Content (dried @ 103°C)		_	%	3.7	3.1	6.1	4.3	8.0

: 4 of 6 : EB1513169 : ROBERT CARR & ASSOCIATES P/L : 10059

Sub-Matrix: SOIL (Matrix: SOIL)		Clie	Client sample ID	011510059008 (BH2 3.0-3.45m)	011510059011 (BH3 0.5-0.95m)	011510059013 (BH3 3.0-3.45m)	011510059019 (BH5 2.5-3.0m)	011510059028 (BH9 7.0-7.45m)
				EB1511988-005	EB1511988-006	EB1511988-007	EB1511988-008	EB1511988-011
	CI	ient samplin	Client sampling date / time	[25-Nov-2014]	[25-Nov-2014]	[25-Nov-2014]	[26-Nov-2014]	[09-Dec-2014]
Compound	CAS Number LOR	LOR	Unit	EB1513169-006	EB1513169-007	EB1513169-008	EB1513169-009	EB1513169-010
				Result	Result	Result	Result	Result
EA055: Moisture Content								
Moisture Content (dried @ 103°C)		_	%	6.7	4.6	5.0	3.8	3.7

: 5 of 6 : EB1513169 : ROBERT CARR & ASSOCIATES P/L : 10059

Sub-Matrix: SOIL (Matrix: SOIL)		Clie	Client sample ID	011510059030 (BH9 10.0-10.45m)	011510059033 (BH10 0.2-1.0m)	011510059037 (BH11 1.0-1.45m)	011510059039 (BH12 0.5-1.0m)	011510059040 (BH12 1.0-1.45m)
				EB1511988-012	EB1511988-013	EB1511988-014	EB1511988-015	EB1511988-016
	Cli	ent samplir	Client sampling date / time	[09-Dec-2014]	[10-Dec-2014]	[11-Dec-2014]	[11-Dec-2014]	[11-Dec-2014]
Compound	CAS Number LOR	LOR	Unit	EB1513169-011	EB1513169-012	EB1513169-013	EB1513169-014	EB1513169-015
				Result	Result	Result	Result	Result
EA055: Moisture Content		111,						
^ Moisture Content (dried @ 103°C)		_	%	4.4	2.6	3.9	4.6	4.1

: 6 of 6 : EB1513169 : ROBERT CARR & ASSOCIATES P/L : 10059

Sub-Matrix: SOIL (Matrix: SOIL)		Clien	Client sample ID	011510059041 (BH12 2.5-2.95m)	011510059042 (BH12 4.0-4.45m)	!	I	İ
				EB1511988-017	EB1511988-018			
	Clien	t sampling	Client sampling date / time	[11-Dec-2014]	[11-Dec-2014]			
Compound	CAS Number LOR	LOR	Unit	EB1513169-016	EB1513169-017			
				Result	Result	Result	Result	Result
EA055: Moisture Content								
Moisture Content (dried @ 103°C)		1 %	%	2.7	3.9			!

Robert Carr & Associates 92 Hill Street CARRINGTON NSW 2294

Attention: John Gilbert

Project: RCA ref 10059-702/0

Date: 18/02/2015

Client reference: Cabbage Tree Road Williamtown

Received date: 17/2/2015 Number of samples: 12

Client order number: N/A Testing commenced: 18/2/2015

CERTIFICATE OF ANALYSIS

1 ANALYTICAL TEST METHODS

ANALYSIS	METHOD	UNITS	ANALYSING LABORATORY	NATA ANALYSIS/ NON NATA
pН	ENV-LAB006*	рН	RCA Laboratories - Environmental	NATA
Conductivity	ENV-LAB010*	μS/cm	RCA Laboratories - Environmental	NATA

^{*} The analytical procedures used by RCA Laboratories - Environmental are based on established internationally recognised procedures such as APHA and Australian Standards.

^{**} Indicates NATA accreditation does not cover the performance of this service.

Robert Carr & Associates Pty Ltd Trading as RCA Laboratories – Environmental 92 Hill Street – PO Box 175, Carrington NSW 2294
ABN 53 063 515 711 Ph 02 4902 9200 – Fax 02 4902 9299
Email: administrator@rca.com.au Web www.rca.com.au

NATA Accredited Laboratory 9811 Corporate Site Number 18077 Accredited for compliance with ISO/IEC 17025

RESULTS

ANALYSIS	UNITS	BH1	ВН2	вн3	BH4	ВН5	ВН6
Water							
Sample Number	-	021510059001	021510059002	021510059003	021510059004	021510059005	021510059006
Date Sampled	-	17/2/2015	17/2/2015	17/2/2015	17/2/2015	17/2/2015	17/02/2015
Sampled By		JG	JG	Ðſ	JG	9r	JG
pH Value	pH unit	5.63	5.10	5.50	5.51	5.20	5.36
Conductivity	μS/cm	127.9	130.7	112.5	150.3	240.5	266.2

ANALYSIS	UNITS	вн7	вн8	вн9	BH10	BH11	BH12
Water							
Sample Number	1	021510059007	021510059008	021510059009	021510059010	021510059011	021510059012
Date Sampled	1	17/2/2015	17/2/2015	17/2/2015	17/2/2015	17/2/2015	17/2/2015
Sampled By		JG	JG	JG	JG	JG	JG
pH Value	pH unit	5.58	5.22	4.85	4.81	4.89	5.17
Conductivity	µS/cm	145.2	252.2	103.0	236.2	131.0	166.4

Water

NATA Scope of Accreditation does not cover the sampling of surface and groundwaters by the client or by RCA.

Analysis on samples is on an as received basis.

3 QUALITY CONTROL RESULTS

Water Quality Control Sample Results

DATE	ANALYSIS	METHOD	UNITS	QUALITY CONTROL STANDARD VALUE	QUALITY CONTROL ACCEPTANCE CRITERIA	QUALITY CONTROL STANDARD RESULT
18/2/15	рН	ENV-LAB006	рН	7.00	6.95 - 7.05	6.98
18/2/15	Conductivity	ENV-LAB010	μS/cm	1413	1385 - 1441	1419

Water Duplicate Analysis Results

SAMPLE NUMBER	DATE	ANALYSIS	METHOD	UNITS	LOR	SAMPLE RESULT	SAMPLE DUPLICATE RESULT
021510059001	18/2/15	рН	ENV-LAB006	рН	-	5.63	5.62
021510059012	18/2/15	рН	ENV-LAB006	рН	-	5.17	5.17
021510059001	18/2/15	Conductivity	ENV-LAB010	μS/cm	1	127.9	128.1
021510059012	18/2/15	Conductivity	ENV-LAB010	μS/cm	1	166.4	166.2

Please contact the undersigned if you have any queries.

Yours sincerely

Laura Schofield Environmental Laboratory Manager Robert Carr & Associates Pty Ltd Trading as RCA Laboratories - Environmental Approved Signatory Julie Fisher Environmental Chemist Robert Carr & Associates Pty Ltd Trading as RCA Laboratories - Environmental Approved Signatory

Jh Th

Robert Carr and Associates Pty Ltd shall not be liable for loss, cost, damages or expenses incurred by the client, or any other person or company resulting from the use of any information or interpretation given in this report. In no case shall RCA limited be liable for consequential damages including, but not limited to, loss profits damages for failure to meet deadlines and lost production arising from this report. This document shall not be reproduced except in full and relates only to the items tested. Unless indicated otherwise, the tests were performed on the samples as received. Sampled fates quoted in this report are those listed on the COC or sample jars; fin os ample dates are noted, the date the samples been used. The Laboratory is accredited for compliance with ISO/IEC 17025. The results of the tests, calibrations &/or measurements included in this document are traceable to Australian / National Standards.

RCA Internal Quality Review

General

- Laboratory QC results for Method Blanks, Duplicates and Laboratory Control Samples are included in this QC report where applicable. Additional QC data maybe available on request.
- RCA QC Acceptance / Rejection Criteria are available on request.
- Proficiency Trial results are available on request.
- Actual PQLs are matrix dependant. Quoted PQLs may be raised where sample extracts are diluted due to interferences.
- 5. When individual results are qualified in the body of a report, refer to the qualifier descriptions that follow.
- 6. Samples were analysed on an 'as received' basis.
- Sampled dates in this report are those listed on the COC or sample jars; if no sample dates are noted, the date the samples are received at the laboratory have been used.
- 3. All soil results are reported on a dry basis, unless otherwise stated. (ACID SULPHATE SOILS)
- This report replaces any interim results previously issued.

Holding Times.

For samples received on the last day of holding time, notification of testing requirements should have been received at least 6 hours prior to sample receipt deadlines as stated on the Sample

Receipt Acknowledgment.

If the Laboratory did not receive the information in the required timeframe, and regardless of any other integrity issues, suitably qualified results may still be reported.

Holding times apply from the date of sampling, therefore compliance to these may be outside the laboratory's control.

##NOTE: pH duplicates are reported as a range NOT as RPD

QC - ACCEPTANCE CRITERIA

RPD Duplicates: Global RPD Duplicates Acceptance Criteria is 30% however the following acceptance guidelines are equally applicable:

Results <10 times the LOR: No Limit

Results between 10-20 times the LOR: RPD must lie between 0-50%

Results >20 times the LOR: RPD must lie between 0-30%

QC DATA GENERAL COMMENTS

- 1. Where a result is reported as a less than (<), higher than the nominated LOR, this is due to either matrix interference, extract dilution required due to interferences or contaminant levels within the sample, high moisture content or insufficient sample provided.
- 2. Duplicate data shown within this report that states the word "BATCH" is a Batch Duplicate from outside of your sample batch, but within the laboratory sample batch at a 1:10 ratio. The Parent and Duplicate data shown is not data from your samples.
- 3. Duplicate RPD's are calculated from raw analytical data thus it is possible to have two sets of data.

Glossary

UNITS

mg/kg: milligrams per Kilogram

ug/L: micrograms per litre

ppm: Parts per million

ppb: Parts per billion

%: Percentage

org/100ml: Organisms per 100 millilitres

NTU: Unit

MPN/100mL: Most Probable Number of organisms per 100 millilitres

mg/L: milligrams per Litre

TERMS

Dry Where moisture has been determined on a solid sample the result is expressed on a dry basis.

LOR Limit of Reporting.

RPD Relative Percent Difference between two Duplicate pieces of analysis can be obtained upon request.

QCS Quality Control Sample - reported as value recovery

Method Blank In the case of solid samples these are performed on laboratory certified clean sands.

In the case of water samples these are performed on de-ionised water.

Duplicate A second piece of analysis from the same sample and reported in the same units as the result to show comparison.

Batch Duplicate A second piece of analysis from a sample outside of the clients batch of samples but run within the laboratory batch of analysis.

USEPA United States Environment Protection Authority

APHA American Public Health Association

COC Chain of Custody

CP Client Parent - QC was performed on samples pertaining to this report

NCP Non-Client Parent - QC performed on samples not pertaining to this report, QC is representative of the sequence or batch that client samples were analysed within

- < indicates less than
- > Indicates greater than

IS Insufficient sample for analysis

ND Not Detected

Turnaround Required:

□ Urgent⊠ Stancard (5 Day)

Date Required: 5 day TAT

Phone Number: 49029210 Contact Name: John Gilbert

Client Name: RCA

Client Site: William town

Ph: (02) 4902 9200 Fax: 02 4902 9299 92 Hill Street, Carrington NSW 2294

www.rca.com.au Email: labenviro@rca.com.au

ENV-F103-4

Project Manager: Calvin Email Report To: johng@rca.com.au; tomh@rca.com.au

Expected Reporting Date:

ANALYSIS REQUIRED (Laboratory Use Only) Page of

Chilled: (Yes) No	Time: 4 ~30	100	Reace	Of:		Time: 4:30pm	Of: RCA
Received in good condition: (Yes) No	Date: 17 - 2 - 18	DAWSEN	R	Name:		M Date: 17/2/15	Name: John Gilbert Jima
Laboratory use only (circle appropriate)		RECEIVED BY				RELINQUISHED BY	
	i.						
			8				
			×	12	17/02/15 Water	BH12 1	v 012
			× ×	11	17/02/15 Water	BH11 1	r 011
			×	10	17/02/15 Water	BH10 1	v c(0
			× ×	9	17/02/15 Water	BH9 1	ir ccs
			× ×	8	17/02/15 Water	BH8 1	a cos
			× ×	7	17/02/15 Water	BH7 1	~ cc7
			× ×	6	17/02/15 Water	BH6 1	n oc6
			×	ڻ.	17/02/15 Water	BH5 1	n ses
			× ×	4	17/02/15 Water	BH4 1	n cey
			×	ω	17/02/15 Water	BH3 1	~ 60}
			×	2	17/02/15 Water	BH2 1	u cor
			×	1	17/02/15 Water	BH1 1	0215/0059001
*		27	pH EC	Total Samples	Date Matrix	Client ID / Description	RCA Laboratories Environmental Sample Number
		2				SAMPLE INFORMATION	6
Notes: Please filter water and put into metals container provided.	Notes:						RCA Job Number: 10059
The state and put into motolo portainer poudod							

Certificate of Analysis

NATA
WORLD RECOGNISED
ACCREDITATION

NATA Accredited Accreditation Number 1261 Site Number 1254

Accredited for compliance with ISO/IEC 17025. The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

Robert Carr and Associates Pty Ltd PO Box 175 Carrington NSW 2294

Attention: John Gilbert

 Report
 447947-W

 Project name
 10059

 Project ID
 10059

 Received Date
 Feb 19, 2015

Client Sample ID Sample Matrix			BH1 Water	BH2 Water	BH3 Water	BH4 Water
Eurofins mgt Sample No.			S15-Fe13784	S15-Fe13785	S15-Fe13786	S15-Fe13787
Date Sampled			Feb 17, 2015	Feb 17, 2015	Feb 17, 2015	Feb 17, 2015
Test/Reference	LOR	Unit				
Ammonia (as N)	0.01	mg/L	0.14	< 0.01	< 0.01	< 0.01
Major Anions						
Bicarbonate Alkalinity (as CaCO3)	5	mg/L	10	8.0	7.0	7.0
Carbonate Alkalinity (as CaCO3)	5	mg/L	< 5	< 5	< 5	< 5
Chloride	1	mg/L	21	20	15	24
Nitrate (as N)	0.01	mg/L	< 0.1	2.3	1.4	0.57
Sulphate (as S)	2	mg/L	< 2	< 2	< 2	< 2
Alkali Metals						
Calcium	0.5	mg/L	1.4	3.3	5.2	3.4
Magnesium	0.5	mg/L	1.8	2.4	1.9	2.0
Potassium	0.5	mg/L	0.6	< 0.5	1.0	0.8
Sodium	0.5	mg/L	11	13	8.8	17
Heavy Metals						
Arsenic (filtered)	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Cadmium (filtered)	0.0001	mg/L	< 0.0001	< 0.0001	< 0.0001	< 0.0001
Chromium (filtered)	0.001	mg/L	0.003	< 0.001	0.001	< 0.001
Copper (filtered)	0.001	mg/L	0.005	0.002	0.005	0.002
Lead (filtered)	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Mercury (filtered)	0.0001	mg/L	< 0.0001	< 0.0001	< 0.0001	< 0.0001
Nickel (filtered)	0.001	mg/L	0.002	0.004	0.004	0.002
Zinc (filtered)	0.005	mg/L	0.073	0.096	0.077	0.018

Client Sample ID Sample Matrix Eurofins mgt Sample No. Date Sampled Test/Reference	LOR	Unit	BH5 Water S15-Fe13788 Feb 17, 2015	BH6 Water S15-Fe13789 Feb 17, 2015	BH7 Water S15-Fe13790 Feb 17, 2015	BH8 Water S15-Fe13791 Feb 17, 2015
resurrence	LOIT	Offic				
Ammonia (as N)	0.01	mg/L	0.05	0.03	0.01	0.11
Major Anions						
Bicarbonate Alkalinity (as CaCO3)	5	mg/L	< 5	7.0	11	< 5
Carbonate Alkalinity (as CaCO3)	5	mg/L	< 5	< 5	< 5	< 5
Chloride	1	mg/L	52	48	22	57
Nitrate (as N)	0.01	mg/L	< 0.1	< 0.1	< 0.01	< 0.1
Sulphate (as S)	2	mg/L	4.7	5.6	< 2	2.0

Client Sample ID Sample Matrix Eurofins mgt Sample No.			BH5 Water S15-Fe13788	BH6 Water S15-Fe13789	BH7 Water S15-Fe13790	BH8 Water S15-Fe13791
Date Sampled			Feb 17, 2015	Feb 17, 2015	Feb 17, 2015	Feb 17, 2015
Test/Reference	LOR	Unit				
Alkali Metals						
Calcium	0.5	mg/L	2.4	1.2	2.3	2.0
Magnesium	0.5	mg/L	3.9	8.1	2.1	3.2
Potassium	0.5	mg/L	1.0	< 0.5	0.8	< 0.5
Sodium	0.5	mg/L	26	25	16	28
Heavy Metals						
Arsenic (filtered)	0.001	mg/L	< 0.001	< 0.001	< 0.001	0.005
Cadmium (filtered)	0.0001	mg/L	< 0.0001	< 0.0001	< 0.0001	0.0003
Chromium (filtered)	0.001	mg/L	0.001	< 0.001	0.002	0.005
Copper (filtered)	0.001	mg/L	< 0.001	< 0.001	< 0.001	0.004
Lead (filtered)	0.001	mg/L	< 0.001	< 0.001	< 0.001	0.003
Mercury (filtered)	0.0001	mg/L	< 0.0001	< 0.0001	< 0.0001	< 0.0001
Nickel (filtered)	0.001	mg/L	0.006	0.002	0.003	0.007
Zinc (filtered)	0.005	mg/L	0.024	0.014	0.024	0.011

Client Sample ID			вн9	BH10	BH11	BH12
Sample Matrix			Water	Water	Water	Water
Eurofins mgt Sample No.			S15-Fe13792	S15-Fe13793	S15-Fe13794	S15-Fe13795
Date Sampled			Feb 17, 2015	Feb 17, 2015	Feb 17, 2015	Feb 17, 2015
Test/Reference	LOR	Unit				
Ammonia (as N)	0.01	mg/L	< 0.01	0.10	0.06	< 0.01
Major Anions						
Bicarbonate Alkalinity (as CaCO3)	5	mg/L	< 5	< 5	< 5	< 5
Carbonate Alkalinity (as CaCO3)	5	mg/L	< 5	< 5	< 5	< 5
Chloride	1	mg/L	18	60	27	34
Nitrate (as N)	0.01	mg/L	0.54	< 0.05	< 0.01	< 0.01
Sulphate (as S)	2	mg/L	3.7	< 2	< 2	< 2
Alkali Metals						
Calcium	0.5	mg/L	1.7	< 0.5	0.7	1.3
Magnesium	0.5	mg/L	1.5	3.5	1.6	2.4
Potassium	0.5	mg/L	< 0.5	0.7	< 0.5	0.8
Sodium	0.5	mg/L	9.8	28	15	19
Heavy Metals						
Arsenic (filtered)	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Cadmium (filtered)	0.0001	mg/L	< 0.0001	< 0.0001	< 0.0001	< 0.0001
Chromium (filtered)	0.001	mg/L	< 0.001	< 0.001	0.001	0.002
Copper (filtered)	0.001	mg/L	0.002	< 0.001	< 0.001	< 0.001
Lead (filtered)	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Mercury (filtered)	0.0001	mg/L	< 0.0001	< 0.0001	< 0.0001	< 0.0001
Nickel (filtered)	0.001	mg/L	0.002	< 0.001	0.001	< 0.001
Zinc (filtered)	0.005	_ mg/L	0.048	0.006	0.014	0.009

Sample History

Where samples are submitted/analysed over several days, the last date of extraction and analysis is reported.

A recent review of our LIMS has resulted in the correction or clarification of some method identifications. Due to this, some of the method reference information on reports has changed. However, no substantive change has been made to our laboratory methods, and as such there is no change in the validity of current or previous results (regarding both quality and NATA accreditation).

If the date and time of sampling are not provided, the Laboratory will not be responsible for compromised results should testing be performed outside the recommended holding time.

Description	Testing Site	Extracted	Holding Time
Major Cations			
Ammonia (as N)	Sydney	Feb 19, 2015	28 Day
- Method: E036/E050 Ammonia as N			
Alkali Metals	Sydney	Feb 19, 2015	180 Day
- Method: E022/E030 Unfiltered Cations in Water			
Major Anions			
Bicarbonate Alkalinity (as CaCO3)	Sydney	Feb 20, 2015	14 Day
- Method: E035 Alkalinity (CO3, HCO3, OH)			
Carbonate Alkalinity (as CaCO3)	Sydney	Feb 20, 2015	14 Day
- Method: E035 Alkalinity (CO3, HCO3, OH)			
Chloride	Sydney	Feb 20, 2015	28 Day
- Method: E033 /E045 /E047 Chloride			
Nitrate (as N)	Sydney	Feb 20, 2015	28 Day
- Method: E037 /E051 Nitrate as N			
Sulphate (as S)	Sydney	Feb 20, 2015	28 Day
- Method: E045 Sulphate			
Metals M8 filtered	Sydney	Feb 19, 2015	28 Day

⁻ Method: E020/E030 Filtered Metals in Water & E026 Mercury

ABN - 50 005 085 521 e.mail : EnviroSales@eurofins.com.au web : www.eurofins.com.au

Melbourne
3-5 Kingston Town Close
Cakleigh VIC 3166
Phone: +61 3 8564 5000
NATA # 1261
Site # 1254 & 14271

Sydney
Unit F3, Building F
16 Mars Road
Lane Cove West NSW 2066
Phone : +61 2 9900 8400
NATA # 1261 Site # 18217

Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone : +61 7 3902 4600 NATA # 1261 Site # 20794

Project Name: Project ID: Company Name: Address: 10059 10059 Carrington NSW 2294 PO Box 175 Robert Carr and Associates Pty Ltd Order No.: Report #: Phone: 447947 02 4902 9200 02 4902 9299 Priority: Contact Name: Due: Received:

Eurofins | mgt Client Manager: Andrew Black

3 Day

Calvin Mickan

Feb 19, 2015 12:00 AM Feb 24, 2015

Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sampling Matrix LAB ID Matrix LAB ID Matrix S15-Fe13784 X X X X X X X X X	\times	×	S15-Fe13792	Water		Feb 17, 2015	BH9
Detail A	\times	×	S15-Fe13791	Water		Feb 17, 2015	ВН8
Detail A	×	×	S15-Fe13790	Water		Feb 17, 2015	BH7
Detail A	\times	×	S15-Fe13789	Water		Feb 17, 2015	ВН6
Detail A	×	×	S15-Fe13788	Water		Feb 17, 2015	BH5
Detail A & 14271	×	×	S15-Fe13787	Water		Feb 17, 2015	BH4
Detail Detail	×	×	S15-Fe13786	Water		Feb 17, 2015	ВН3
Detail Detail Water S15-Fe13784 X	\times	×	S15-Fe13785	Water		Feb 17, 2015	BH2
Detail Detail Detail Detail A & 14271 A & 14271 A & 14271	×	×	S15-Fe13784	Water		Feb 17, 2015	BH1
— × — — — — — — — — — — — — — — — — — —			LAB ID	Matrix	Sampling Time	Sample Date	Sample ID
Detail Detail Detail perpending 8M sign						atory	External Laboratory
Detail Detail Detail Detail					e # 20794	ratory - NATA Sit	Brisbane Laboi
bered filtered	×	×			# 18217	tory - NATA Site	Sydney Labora
benedilî 8M zla				271	ite # 1254 & 14	oratory - NATA S	Melbourne Lab
als M8 filtered					nducted	ere analysis is co	Laboratory whe
	anoinA roja	betals M8 filtered			Sample Detail		

Company Name: Address:

PO Box 175

Report #: Order No.:

Priority: Contact Name:

3 Day

Calvin Mickan

Feb 19, 2015 12:00 AM Feb 24, 2015

Eurofins | mgt Client Manager: Andrew Black

Received:

Robert Carr and Associates Pty Ltd

mgt

ABN - 50 005 085 521 e.mail: EnviroSales@eurofins.com.au

Melbourne
3-5 Kingston Town Close
Cakleigh VIC 3166
Phone: +61 3 8564 5000
NATA # 1261
Site # 1254 & 14271

web : www.eurofins.com.au

Sydney
Unit F3, Building F
16 Mars Road
Lane Cove West NSW 2066
Phone: +61 2 9900 8400
NATA # 1261 Site # 18217

Brisbane

1/21 Smallwood Place

Murarrie QLD 4172

Phone: +61 7 3902 4600

NATA # 1261 Site # 20794

BH11 BH10 Sydney Laboratory - NATA Site # 18217 Brisbane Laboratory - NATA Site # 20794 Melbourne Laboratory - NATA Site # 1254 & 14271 External Laboratory Laboratory where analysis is conducted Project Name: Project ID: Feb 17, 2015 Feb 17, 2015 10059 10059 Carrington NSW 2294 Sample Detail Water Water S15-Fe13794 S15-Fe13793 Metals M8 filtered Major Anions Phone: Major Cations

Feb 17, 2015

Water

S15-Fe13795

Page 5 of 10

Eurofins | mgt Internal Quality Control Review and Glossary

General

- 1. Laboratory QC results for Method Blanks, Duplicates, Matrix Spikes, and Laboratory Control Samples are included in this QC report where applicable. Additional QC data may be available on request.
- 2. All soil results are reported on a dry basis, unless otherwise stated.
- 3. Actual LORs are matrix dependant. Quoted LORs may be raised where sample extracts are diluted due to interferences.
- 4. Results are uncorrected for matrix spikes or surrogate recoveries.
- 5. SVOC analysis on waters are performed on homogenised, unfiltered samples, unless noted otherwise.
- 6. Samples were analysed on an 'as received' basis. 7. This report replaces any interim results previously issued.

Holding Times

Please refer to 'Sample Preservation and Container Guide' for holding times (QS3001).

For samples received on the last day of holding time, notification of testing requirements should have been received at least 6 hours prior to sample receipt deadlines as stated on the Sample Receipt Advice.

If the Laboratory did not receive the information in the required timeframe, and regardless of any other integrity issues, suitably qualified results may still be reported.

Holding times apply from the date of sampling, therefore compliance to these may be outside the laboratory's control.

**NOTE: pH duplicates are reported as a range NOT as RPD

UNITS

mg/kg: milligrams per Kilogram mg/l: milligrams per litre ug/I: micrograms per litre ppm: Parts per million ppb: Parts per billion %: Percentage

org/100ml: Organisms per 100 millilitres NTU: Nephelometric Turbidity Units

MPN/100mL: Most Probable Number of organisms per 100 millilitres

TERMS

Dry Where a moisture has been determined on a solid sample the result is expressed on a dry basis.

LOR Limit of Reporting.

SPIKE Addition of the analyte to the sample and reported as percentage recovery. RPD Relative Percent Difference between two Duplicate pieces of analysis.

LCS Laboratory Control Sample - reported as percent recovery CRM Certified Reference Material - reported as percent recovery

Method Blank In the case of solid samples these are performed on laboratory certified clean sands

In the case of water samples these are performed on de-ionised water

Surr - Surrogate The addition of a like compound to the analyte target and reported as percentage recovery.

Duplicate A second piece of analysis from the same sample and reported in the same units as the result to show comparison. **Batch Duplicate** A second piece of analysis from a sample outside of the clients batch of samples but run within the laboratory batch of analysis. Batch SPIKE Spike recovery reported on a sample from outside of the clients batch of samples but run within the laboratory batch of analysis.

USEPA United States Environmental Protection Agency

APHA American Public Health Association

ASLP Australian Standard Leaching Procedure (AS4439.3) TCLP Toxicity Characteristic Leaching Procedure

COC Chain of Custody SRA Sample Receipt Advice

CP Client Parent - QC was performed on samples pertaining to this report

NCP Non-Client Parent - QC performed on samples not pertaining to this report, QC is representative of the sequence or batch that client samples were analysed within

TEQ Toxic Equivalency Quotient

QC - ACCEPTANCE CRITERIA

RPD Duplicates: Global RPD Duplicates Acceptance Criteria is 30% however the following acceptance guidelines are equally applicable:

Results <10 times the LOR: No Limit

Results between 10-20 times the LOR : RPD must lie between 0-50%

Results >20 times the LOR: RPD must lie between 0-30%

Surrogate Recoveries: Recoveries must lie between 50-150% - Phenols 20-130%.

QC DATA GENERAL COMMENTS

- 1. Where a result is reported as a less than (<), higher than the nominated LOR, this is due to either matrix interference, extract dilution required due to interferences or contaminant levels within the sample, high moisture content or insufficient sample provided.
- 2. Duplicate data shown within this report that states the word "BATCH" is a Batch Duplicate from outside of your sample batch, but within the laboratory sample batch at a 1:10 ratio. The Parent and Duplicate data shown is not data from your samples.
- 3. Organochlorine Pesticide analysis where reporting LCS data, Toxophene & Chlordane are not added to the LCS.
- 4. Organochlorine Pesticide analysis where reporting Spike data, Toxophene is not added to the Spike.
- 5. Total Recoverable Hydrocarbons where reporting Spike & LCS data, a single spike of commercial Hydrocarbon products in the range of C12-C30 is added and it's Total Recovery is reported in the C10-C14 cell of the Report.
- 6. pH and Free Chlorine analysed in the laboratory Analysis on this test must begin within 30 minutes of sampling. Therefore laboratory analysis is unlikely to be completed within holding time. Analysis will begin as soon as possible after sample receipt.
- 7. Recovery Data (Spikes & Surrogates) where chromatographic interference does not allow the determination of Recovery the term "INT" appears against that analyte.
- 8. Polychlorinated Biphenyls are spiked only using Arochlor 1260 in Matrix Spikes and LCS's.
- 9. For Matrix Spikes and LCS results a dash " -" in the report means that the specific analyte was not added to the QC sample.
- 10. Duplicate RPD's are calculated from raw analytical data thus it is possible to have two sets of data.

Report Number: 447947-W

Quality Control Results

Test	Units	Result 1		Acceptance Limits	Pass Limits	Qualifying Code
Method Blank				Lillits	Lillius	Code
Ammonia (as N)	mg/L	< 0.01		0.01	Pass	
Method Blank		1 0.01		0.01	. 455	
Major Anions						
Bicarbonate Alkalinity (as CaCO3)	mg/L	< 5		5	Pass	
Carbonate Alkalinity (as CaCO3)	mg/L	< 5		5	Pass	
Chloride	mg/L	<1		1	Pass	
Nitrate (as N)	mg/L	< 0.01		0.01	Pass	
Sulphate (as S)	mg/L	< 2		2	Pass	
Method Blank						
Alkali Metals						
Calcium	mg/L	< 0.5		0.5	Pass	
Magnesium	mg/L	< 0.5		0.5	Pass	
Potassium	mg/L	< 0.5		0.5	Pass	
Sodium	mg/L	< 0.5		0.5	Pass	
Method Blank			_			
Heavy Metals						
Arsenic (filtered)	mg/L	< 0.001		0.001	Pass	
Cadmium (filtered)	mg/L	< 0.0001		0.0001	Pass	
Chromium (filtered)	mg/L	< 0.001		0.001	Pass	
Copper (filtered)	mg/L	< 0.001		0.001	Pass	
Lead (filtered)	mg/L	< 0.001		0.001	Pass	
Mercury (filtered)	mg/L	< 0.0001		0.0001	Pass	
Nickel (filtered)	mg/L	< 0.001		0.001	Pass	
Zinc (filtered)	mg/L	< 0.005		0.005	Pass	
LCS - % Recovery						
Ammonia (as N)	%	98		70-130	Pass	
LCS - % Recovery						
Major Anions						
Bicarbonate Alkalinity (as CaCO3)	%	102		70-130	Pass	
Chloride	%	108		70-130	Pass	
Nitrate (as N)	%	122		70-130	Pass	
Sulphate (as S)	%	94		70-130	Pass	
LCS - % Recovery						
Alkali Metals						
Calcium	%	99		70-130	Pass	
Magnesium	%	107		70-130	Pass	
Potassium	%	86		70-130	Pass	
Sodium	%	94		70-130	Pass	
LCS - % Recovery						
Heavy Metals						
Arsenic (filtered)	%	101		70-130	Pass	
Cadmium (filtered)	%	102		70-130	Pass	
Chromium (filtered)	%	97		70-130	Pass	
Copper (filtered)	%	101		70-130	Pass	
Lead (filtered)	%	104		70-130	Pass	
Mercury (filtered)	%	72		70-130	Pass	
Nickel (filtered)	%	103		70-130	Pass	
Zinc (filtered)	%	108		70-130	Pass	

Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Spike - % Recovery									
				Result 1					
Ammonia (as N)	S15-Fe13784	СР	%	103			70-130	Pass	
Spike - % Recovery									
Alkali Metals				Result 1					
Calcium	S15-Fe13785	CP	%	102			70-130	Pass	
Magnesium	S15-Fe13785	CP	%	111		_	70-130	Pass	
Potassium	S15-Fe13785	CP	%	91			70-130	Pass	
Sodium	S15-Fe13785	CP	%	94		_	70-130	Pass	
Spike - % Recovery				,					
Heavy Metals	ı			Result 1					
Arsenic (filtered)	S15-Fe13786	CP	%	96			70-130	Pass	
Cadmium (filtered)	S15-Fe13786	CP	%	106			70-130	Pass	
Chromium (filtered)	S15-Fe13786	CP	%	92			70-130	Pass	
Copper (filtered)	S15-Fe13786	CP	%	95			70-130	Pass	
Lead (filtered)	S15-Fe13786	CP	%	97		_	70-130	Pass	
Mercury (filtered)	S15-Fe13786	CP	%	89		_	70-130	Pass	
Nickel (filtered)	S15-Fe13786	CP	%	97		_	70-130	Pass	
Zinc (filtered)	S15-Fe13786	CP	%	117			70-130	Pass	
Spike - % Recovery				Ι_					
Major Anions				Result 1		_			
Nitrate (as N)	S15-Fe13787	CP	%	74			70-130	Pass	
Spike - % Recovery				Ι	1		T		
	T	1		Result 1					
Ammonia (as N)	S15-Fe13794	CP	%	90		_	70-130	Pass	
Spike - % Recovery				T = 1: 1	Т		T		
Alkali Metals	0.5.5.40705			Result 1			70.100		
Calcium	S15-Fe13795	CP	%	101		_	70-130	Pass	
Magnesium	S15-Fe13795	CP	%	103		_	70-130	Pass	
Potassium	S15-Fe13795	CP	<u>%</u>	89			70-130	Pass	
Sodium Childen 9/ Bacayana	S15-Fe13795	CP	%	82			70-130	Pass	
Spike - % Recovery Heavy Metals				Result 1			T		
Arsenic (filtered)	S15-Fe13795	СР	%	102			70-130	Pass	
Cadmium (filtered)	S15-Fe13795	CP	% 	102		_	70-130	Pass	
Chromium (filtered)	S15-Fe13795	CP	% 	96			70-130	Pass	
Copper (filtered)	S15-Fe13795	CP	% %	95		_	70-130	Pass	
Lead (filtered)	S15-Fe13795	CP	/ _%	93		_	70-130	Pass	
Mercury (filtered)	S15-Fe13795	CP	%	77			70-130	Pass	
Nickel (filtered)	S15-Fe13795	CP	/ %	98			70-130	Pass	
Zinc (filtered)	S15-Fe13795	CP	/%	112			70-130	Pass	
Test	Lab Sample ID	QA	Units	Result 1			Acceptance Limits	Pass	Qualifying Code
Duplicate		Source					Lillito	Limits	Code
- spirotto				Result 1	Result 2	RPD			
Ammonia (as N)	S15-Fe13784	СР	mg/L	0.14	0.14	3.0	30%	Pass	
Duplicate									
Major Anions				Result 1	Result 2	RPD			
Bicarbonate Alkalinity (as CaCO3)	S15-Fe13784	СР	mg/L	10	10	<1	30%	Pass	
Carbonate Alkalinity (as CaCO3)	S15-Fe13784	СР	mg/L	< 5	< 5	<1	30%	Pass	
Duplicate									
Alkali Metals				Result 1	Result 2	RPD			
Calcium	S15-Fe13784	CP	mg/L	1.4	1.4	3.0	30%	Pass	
Magnesium	S15-Fe13784	CP	mg/L	1.8	1.8	2.0	30%	Pass	
Potassium	S15-Fe13784	CP	mg/L	0.6	0.6	1.0	30%	Pass	
Sodium	S15-Fe13784	CP	mg/L	11	11	3.0	30%	Pass	

Duplicate									
Heavy Metals				Result 1	Result 2	RPD			
Arsenic (filtered)	S15-Fe13785	СР	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Cadmium (filtered)	S15-Fe13785	CP	mg/L	< 0.0001	< 0.0001	<1	30%	Pass	
Copper (filtered)	S15-Fe13785	CP	mg/L	0.002	0.002	10	30%	Pass	-
Lead (filtered)	S15-Fe13785	CP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Mercury (filtered)	S15-Fe13785	CP	mg/L	< 0.0001	< 0.0001	<1	30%	Pass	
Nickel (filtered)	S15-Fe13785	CP	mg/L	0.004	0.003	4.0	30%	Pass	
Zinc (filtered)	S15-Fe13785	CP	mg/L	0.096	0.093	3.0	30%	Pass	
Duplicate	0.0.0.0.00	<u> </u>	g, <u>_</u>		0.000	0.0	0070	. 000	
Major Anions				Result 1	Result 2	RPD			
Nitrate (as N)	S15-Fe13787	СР	mg/L	0.57	0.57	<1	30%	Pass	
Duplicate									
Major Anions				Result 1	Result 2	RPD			
Chloride	S15-Fe13790	СР	mg/L	22	22	<1	30%	Pass	
Sulphate (as S)	S15-Fe13790	CP	mg/L	< 2	< 2	<1	30%	Pass	
Duplicate									
				Result 1	Result 2	RPD			
Ammonia (as N)	S15-Fe13794	CP	mg/L	0.06	0.06	3.0	30%	Pass	
Duplicate				_					
Major Anions				Result 1	Result 2	RPD			
Bicarbonate Alkalinity (as CaCO3)	S15-Fe13794	СР	mg/L	< 5	< 5	<1	30%	Pass	
Carbonate Alkalinity (as CaCO3)	S15-Fe13794	CP	mg/L	< 5	< 5	<1	30%	Pass	
Duplicate									
Alkali Metals				Result 1	Result 2	RPD			
Calcium	S15-Fe13794	CP	mg/L	0.7	0.7	1.0	30%	Pass	
Magnesium	S15-Fe13794	CP	mg/L	1.6	1.7	3.0	30%	Pass	
Potassium	S15-Fe13794	CP	mg/L	< 0.5	< 0.5	<1	30%	Pass	
Sodium	S15-Fe13794	CP	mg/L	15	16	4.0	30%	Pass	
Duplicate									
Heavy Metals				Result 1	Result 2	RPD			
Arsenic (filtered)	S15-Fe13794	CP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Cadmium (filtered)	S15-Fe13794	CP	mg/L	< 0.0001	< 0.0001	<1	30%	Pass	
Chromium (filtered)	S15-Fe13794	CP	mg/L	0.001	0.001	19	30%	Pass	
Copper (filtered)	S15-Fe13794	CP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Lead (filtered)	S15-Fe13794	CP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Mercury (filtered)	S15-Fe13794	CP	mg/L	< 0.0001	< 0.0001	<1	30%	Pass	
Nickel (filtered)	S15-Fe13794	CP	mg/L	0.001	0.001	10	30%	Pass	
Zinc (filtered)	S15-Fe13794	CP	mg/L	0.014	0.016	12	30%	Pass	

Comments

Sample Integrity

 Custody Seals Intact (if used)
 N/A

 Attempt to Chill was evident
 Yes

 Sample correctly preserved
 Yes

 Appropriate sample containers have been used
 Yes

 Sample containers for volatile analysis received with minimal headspace
 Yes

 Samples received within HoldingTime
 Yes

 Some samples have been subcontracted
 No

Authorised By

Andrew Black Analytical Services Manager
Bob Symons Senior Analyst-Inorganic (NSW)
Ivan Taylor Senior Analyst-Metal (NSW)

Glenn Jackson

National Laboratory Manager

Final report - this Report replaces any previously issued Report

- Indicates Not Requested
- * Indicates NATA accreditation does not cover the performance of this service

Uncertainty data is available on request

Eurofins | mgt shall not be liable for loss, cost, damages or expenses incurred by the client, or any other person or company, resulting frem the use of any information or interpretation given in this report. In no case shall Eurofins | mgt be liable for consequential damages including, but not limited to, lost profilts, damages for failure to meet deadlines and lost production arising from this report. This document shall not be reproduced except in full and relates only to the items tested. Unless indicated otherwise, the tests were performed on the samples as received.

CHAIN OF CUSTOV RECORD					an art #	Courter Consignment #	Com					E	, 0	3	1201		5ignature:				Signification
TOTINS	ort quantier:	Repo			yered	Postal					10	D	3	1.30			Oats & Time				Date I. Tiene:
TOTITIS						Courier								XX	12 m 8		Placewed B			¥.	n peumpin
TOTINS	perature on arrivat:		of Shipment	Method C			-	1	8000	um around				Me	doratory St						
TOTINS				I	r	-	-		-			-					-	ŀ	_		#
Fig.						-	T														10
APOPTINS																					14
Formation Form	1000													-				Н			13
FORTING TOTAL																_	-	-	1778	BHI2	12
Former 1 For							-							-			Н	Н	37.78	BHH	11
For this Page					Ī												Н	Н	177	BHIO	10
Formation					r		H							-			Н	Н	17/0	BH9	
APOPTINS					Ī											Н	Н	Н	17%	BHB	60
Formation Page Pa																	Н	Н	17/1	BH7	7
Formation Page Pa					1		1					-				-	+	7	37/5	BH6	
APOFTINS							1		1		-			-		4	+	┪	17/6	BH5	-
## In 17/00/15 Water No. 20 Mary 1 of Mary Read, Lore Core Plant 1975 (1984) April 1984 (200) East Interior Core Plant 1974 (1994) (199					1	1	1		-			+		-		4	+	┪	17/0	BH4	1
## FOTTINS Impt Imp				1	1	1	1		-					-		-	+	+	1774	EH3	-
### Content Name: ACCA Australia				1	†	+	+		+		1	+	#	-		4	+	+	17/4	BH2	1
## POTTINS Prof. Supplement Prof. Pro		Т		1	4	+	1	1	-		1	1	1	1		4	+	7	17/6	THB	1
#** POTINS Fig. Content Numer Light Light Li	Sample comments:	ić		5	- 1	2509	Conta									_	_	\dashv	ь	Sample ID	٦
### POTINS #### Plant Section Se	7 days	ASLP, TOLP	7 days			apple System	7		-				_	_			ation		Beers	walter batch rues	ulles regis lit
HOTTINS Unit 71 - 8 hadrey 1 4 Mars Road Law Core Phone: 45/2 900 Midd Enal: entroug/Qrigid/mark.com.au CHAIN OF CUSTODY RECORD Contact Name: Direct Contact Name: Contact Name: Direct Name: Direct Contact Name: Direct Contact Name: Direct Contact Name: Direct Contact Name: Direct Contact Name: Direct Contact Name: Direct Contact Name: Direct Contact Name: Direct Contact Name: Direct Contact Name: Direct Contact Name: Direct Name: Direct Contact Name: Direct Contact Name: Direct Contact Name: Direct Contact Name: Direct Contact Name: Direct Contact Name: Direct Contact Name: Direct Contact Name: Direct Contact Name: Direct Contact Name: Direct Contact Name: Direct Contact Name: Direct Contact Name: Direct Contact Name: Direct Contact Name: Direct Contact Name: Direct Contact Name: Direct Name: Direct Contact Name: Direct Contact Name: Direct Contact Name: Direct Contact Name: Direct Contact Name: Direct Contact Name: Direct Contact Name: Direct Contact Name: Direct Contact Name: Direct Contact Name: Direct Contact Name: Direct Name: Direct Name: Direct Contact Name: Direct Contact Name: Direct Contact Name: Direct Contact Name: Direct Contact Name: Direct Contact Name: Direct Contact Name: Direct Contact Name: Direct Contact Name: Direct Contact Name: Direct Contact Name: Direct Contact Name: Direct Contact Name: Direct Con		SPOCAS, SH Flett and FOX, Crit	7 days		DS etc		Se									-	L				
### Comments: ### In Part Share Construction CHAIN OF CUSTODY RECORD Control Control Chair Control Chair Control Chair Control Chair Control Chair Control Chair Control Chair Control Chair Control Chair Control Chair Ch	28 da	Asignes	2 days	M	Wille. Tota	C. Wirate F	8		_					_			nd				
### Comments: #### Comments: #### Comments: #### Comments: #### Comments: ##### Comments: ###################################	72 ha	Recolating on testing	24 hours		Dursel	intideoprai	Mic										anie				
Unit 72 - Building 1 16 Mars Road Lare Gove Unit 72 - Building 1 16 Mars Road Lare Gove Phone: #17 800 Mars Phone: #17 800 Mars Phone: #17 800 Mars Phone: #17 800 Mars Phone: #17 800 Mars CHAIN OF CUSTODY RECORD Project Manager CHAIN OF CUSTODY RECORD Project Manager Canter Manager Chain Comments Project Manager Comments Chain Comments Chain Comments Project Manager Project Manager Project Manager Comments Project Manager Comments Project Manager Comments Project Manager Comments Project Manager Comments Project Manager Comments Project Manager Comments Project Manager Comments Project Manager Comments Project Manager Project Manager Project Manager Project Manager Comments Project Manager Project	28 da	Rerouy, CrVI	28 days			RELITY, CAM	Wes		_					_			ne				
### Page 1 - 6 Mars Road, Lave Cove #### Page 1 - 6 Mars Road, Lave Cove ####################################	6 mort	Indoor Mercula	Suppose 5			My Metals	7									_					
### Page Face	14.00	1994 PAH Phends Postkodes	7 days	scapes	enois, Pasi	H. PAM Sh	THO						_			_					
HOTTINS Ingt Link F3 - 8 hielerg (. 16 Mirx Road, Lare Gore Phone: +152 R00 M00 Phon	110	DON HAM KETS	14 days	-	8	A HWM XI	676								_	_					
HOTTINS Ingt Enalt an Four Hot Indiang I, 16 Mars Road, Lave Gore Phone: H12 State Accordance CHAIN OF CUSTODY RECORD RCA Australia Center turns: John Gibert Project Manager Calvan Mickan 92 Hill St Centington NSW Email for results John Gibert Project Manager Calvan Mickan Project Manager Calvan Mickan Project Manager Calvan Mickan Project Manager Calvan Mickan Project Manager Project Manager Project Manager Project Manager Project Manager Project Manager Project Manager Project Manager Project Manager Sees comman h Sees comman h For to		Solls			Waters								-		-		L		7.808	ing & Comme	echi Directio
HOTTINS Ingt Init F3 - 8 hierry (. 16 Mirx Road, Land Gore Phone: +107 RRO MAN Phone: +107 RRO MAN Phone: +107 RRO MAN Phone: +107 RRO MAN Phone: +107 RRO MAN Phone: +107 RRO MAN Phone: +107 RRO MAN Phone: +107 RRO MAN Phone: +107 RRO MAN Phone: +107 RRO MAN Phone: +107 RRO MAN Phone: +107 RRO MAN Phone: +107 RRO MAN Phone: +107 RRO MAN Phone: +107 RRO MAN PROJECT Number: -10059 92 Hill St. Carrington NSW Email: or results		men (with occurs preservation).	on holding &	ma commi	50		H					Analyton									
HOTTINS In gt	100	Sisoutput format:	0					180	MOJECT Na	-	h@ra.	u: homas	P. 000 85.	johng@		ill for results					
HPOTINS Unit 73 - 8 highery (. 16 Mirs Road, Line Gove Phone: +157 RKD MKD Phone: +157		: creamb idea i suppro					6900	-	SHOUSEL ME				Kan	Catvin Mic		edinem 10e		SN note	Il St Carrir		ics Address
HOTTINS Unit 73 - 8 hidreg f. 16 Mars Road, Land Gove Phone: +812 RR0 M40 Phone: +812			0					. 38	Profession				'n	John Gib		(act Harris:	Con		Australia		meny Nam
High Shales for the Gove Unit P3 - S		1																		- 6	ENT DETAIL
Unit 2 - Shiding fr. 16 Mars Road, Lane Core Unit 12 - Shiding fr. 16 Mars Road, Lane Core Unit 12 - Shiding fr. 16 Mars Road, Lane Core Phone: +612 1900 M00 Email: envirous/edgregate/mark.com.au Core: envirous/edgregate/mark.com.au)RD	RECO	STOD)F CU	HAIN C	C								
Sympy	8564 5080	MeiDourne Jan Town Close, Dakaign, VIC 3186 +613 8964 5000 Fac: +613 8 mg//set.met/c@mg/senank.com.au	2 Kings				Ē	abnerk.com	Brisbane 1 Sealwood Plu 1617 3802 4500 Brishabis@ingi	Unit 1-21 Phone: et			Lane Sove	Mars Road, Breark com.	dray deing f. 16 7 1900 1400 c.tyd@ngst	hit F3 - 6 Bi Flore: +512		mgt		urof	e

GS309_R0 Issue Date: 25 February 2013 Page 1 of 1

Appendix E

Summary of Groundwater Test Results

Sample Identification	PQL	Aquatic Ecosystem Guideline ^A	Human Health (Ingestion)	BH1	BH2	BH3
Sample Depth (m) ^C		95% Marine	Guideline B	5.3	5.1	5.2
Date	1	95 /6 IVIAITILE	Guideline	17/2/15	17/2/15	17/2/15
		Sample Desc	•	Pale grey/brown, very turbid, slight sulfur odour	Dark brown, very turbid, slight sulfur odour	Dark brown, very turbid, slight sulfur odour
	Laborato	ry Report Refe	erence	447947	447947	447947
		Sample Pu	ırpose	Groundwater quality assessment	Groundwater quality assessment	Groundwater quality assessment
		Sample collec	ted by	JG	JG	JG
Metals						
Arsenic	0.001	0.0023	0.01	< 0.001	< 0.001	< 0.001
Cadmium	0.0001	0.0055	0.002	< 0.0001	< 0.0001	< 0.0001
Chromium	0.001	0.0044	0.05	0.003	< 0.001	0.001
Copper	0.001	0.0013	2	0.005	0.002	0.005
Lead	0.001	0.0044	0.01	< 0.001	< 0.001	< 0.001
Mercury ^D	0.0001	0.0004	0.001	< 0.0001	< 0.0001	< 0.0001
Nickel	0.001	0.07	0.02	0.002	0.004	0.004
Zinc	0.005	0.015		0.073	0.096	0.077
Major Anions						
Ammonia as N	0.01	0.91		0.14	< 0.01	< 0.01
Bicarbonate Alkalinity as CaCO3	5			10	8	7
Carbonate Alkalinity as CaCO3	5			< 5	< 5	< 5
Chloride	1			21	20	15
Nitrate (as N)	0.01		50	< 0.1	2.3	1.4
Sulfate as S	2		500	< 2	< 2	< 2
Major Cations						
Calcium	0.5			1.4	3.3	5.2
Magnesium	0.5			1.8	2.4	1.9
Potassium	0.5			0.6	< 0.5	1
Sodium	0.5			11	13	8.8
Parameters						
pH (pH units)	0.5			5.63	5.1	5.5
Conductivity µS/cm	0.5			127.9	130.7	112.5
TDS ^E				82	84	72

Page 1 of 4

All results are in units of mg/L, unless otherwise stated.

Blank Cell indicates no criterion available

PQL = Practical Quantitation Limit. Where PQL is for a summation, PQL of all components is summed and may be different from that presented by laboratory

ANZECC guidelines in italics are low level reliability guidelines

ANZECC arsenic guideline based on As (III) for marine water, the lowest of presented guidelines.

NHMRC arsenic guidelines are based on total arsenic

ANZECC and NHMRC guidelines for chromium are based on Cr (VI)

ANZECC guidelines for mercury are based on inorganic mercury.

NHMRC guidelines for mercury are based on total mercury.

Results shown in $\ensuremath{\mathbf{BOLD}}$ are in excess of the aquatic ecosystems guidelines

Results shown in $\underline{\text{underline}}$ are in excess of the human health (ingestion) guideline

Benelli Equity Pty Ltd Geotechnical and Groundwater Investigation Cabbage Tree Road, Williamtown RCA ref 10059-201/1, May 2015 Prepared by: JG Checked by: MC.

RCA Australia.

 $^{^{\}rm A}$ ANZECC 2000 95% Protection Level for marine water

^B NHMRC Australian Drinking Water Guidelines, 2011

^CSample depths presented are as encountered during sampling

 $^{^{\}rm D}$ Bioaccummulative Compounds

^E TDS calculated using laboratory reported electrical conductivity values

Sample Identification	PQL	Aquatic Ecosystem Guideline ^A	Human Health (Ingestion)	BH4	BH5	BH6
Sample Depth (m) ^C		95% Marine	Guideline B	1.3	5.0	0.9
Date		3370 Warning	Galacinic	17/2/15	17/2/15	17/2/15
		Sample Desc	ription	Dark brown, very turbid, slight sulfur odour	Dark brown, very turbid, slight sulfur odour	Dark brown, turbid, slight sulfur odour
	Laborato	ry Report Refe	erence	447947	447947	447947
		Sample Pu	•	Groundwater quality assessment	Groundwater quality assessment	Groundwater quality assessment
		Sample collec	ted by	JG	JG	JG
Metals						
Arsenic	0.001	0.0023	0.01	< 0.001	< 0.001	< 0.001
Cadmium	0.0001	0.0055	0.002	< 0.0001	< 0.0001	< 0.0001
Chromium	0.001	0.0044	0.05	< 0.001	0.001	< 0.001
Copper	0.001	0.0013	2	0.002	< 0.001	< 0.001
Lead	0.001	0.0044	0.01	< 0.001	< 0.001	< 0.001
Mercury ^D	0.0001	0.0004	0.001	< 0.0001	< 0.0001	< 0.0001
Nickel	0.001	0.07	0.02	0.002	0.006	0.002
Zinc	0.005	0.015		0.018	0.024	0.014
Major Anions						
Ammonia as N	0.01	0.91		< 0.01	0.05	0.03
Bicarbonate Alkalinity as CaCO3	5			7	< 5	7
Carbonate Alkalinity as CaCO3	5			< 5	< 5	< 5
Chloride	1			24	52	48
Nitrate (as N)	0.01		50	0.57	< 0.1	< 0.1
Sulfate as S	2		500	< 2	4.7	5.6
Major Cations						
Calcium	0.5			3.4	2.4	1.2
Magnesium	0.5			2	3.9	8.1
Potassium	0.5			0.8	1	< 0.5
Sodium	0.5			17	26	25
Parameters						
pH (pH units)	0.5			5.51	5.2	5.36
Conductivity µS/cm	0.5			150.3	240.5	266.2
TDS ^E				96	154	170

Page 2 of 4

Aquatic

All results are in units of mg/L, unless otherwise stated.

Blank Cell indicates no criterion available

PQL = Practical Quantitation Limit. Where PQL is for a summation, PQL of all components is summed and may be different from that presented by laboratory

ANZECC guidelines in italics are low level reliability guidelines

ANZECC arsenic guideline based on As (III) for marine water, the lowest of presented guidelines.

NHMRC arsenic guidelines are based on total arsenic

ANZECC and NHMRC guidelines for chromium are based on Cr (VI)

 $\ensuremath{\mathsf{ANZECC}}$ guidelines for mercury are based on inorganic mercury.

NHMRC guidelines for mercury are based on total mercury.

Results shown in $\ensuremath{\mathbf{BOLD}}$ are in excess of the aquatic ecosystems guidelines

Results shown in $\underline{\text{underline}}$ are in excess of the human health (ingestion) guideline

Benelli Equity Pty Ltd Geotechnical and Groundwater Investigation Cabbage Tree Road, Williamtown RCA ref 10059-201/1, May 2015 Prepared by: JG Checked by: MC.

RCA Australia.

 $^{^{\}rm A}$ ANZECC 2000 95% Protection Level for marine water

^B NHMRC Australian Drinking Water Guidelines, 2011

^CSample depths presented are as encountered during sampling

 $^{^{\}rm D}$ Bioaccummulative Compounds

^E TDS calculated using laboratory reported electrical conductivity values

Sample Identification	PQL	Aquatic Ecosystem Guideline ^A	Human Health (Ingestion)	BH7	BH8	ВН9
Sample Depth (m) ^C		95% Marine	Guideline B	1.1	1.7	15.5
Date		3070 WIGHTIC	Galacinic	17/2/15	17/2/15	17/2/15
		Sample Desc	ription	Dark brown, very turbid, slight sulfur odour	Dark brown, very turbid, slight sulfur odour	Dark brown, very turbid, slight sulfur odour
	Laborato	ry Report Refe	erence	447947	447947	447947
		Sample Pu	•	Groundwater quality assessment	Groundwater quality assessment	Groundwater quality assessment
		Sample collec	ted by	JG	JG	JG
Metals						
Arsenic	0.001	0.0023	0.01	< 0.001	0.005	< 0.001
Cadmium	0.0001	0.0055	0.002	< 0.0001	0.0003	< 0.0001
Chromium	0.001	0.0044	0.05	0.002	0.005	< 0.001
Copper	0.001	0.0013	2	< 0.001	0.004	0.002
Lead	0.001	0.0044	0.01	< 0.001	0.003	< 0.001
Mercury ^D	0.0001	0.0004	0.001	< 0.0001	< 0.0001	< 0.0001
Nickel	0.001	0.07	0.02	0.003	0.007	0.002
Zinc	0.005	0.015		0.024	0.011	0.048
Major Anions			_			
Ammonia as N	0.01	0.91		0.01	0.11	< 0.01
Bicarbonate Alkalinity as CaCO3	5			11	< 5	< 5
Carbonate Alkalinity as CaCO3	5			< 5	< 5	< 5
Chloride	1			22	57	18
Nitrate (as N)	0.01		50	< 0.01	< 0.1	0.54
Sulfate as S	2		500	< 2	2	3.7
Major Cations	,		•			
Calcium	0.5			2.3	2	1.7
Magnesium	0.5			2.1	3.2	1.5
Potassium	0.5			0.8	< 0.5	< 0.5
Sodium	0.5			16	28	9.8
Parameters	1	ı	ı			
pH (pH units)	0.5			5.58	5.22	4.85
Conductivity µS/cm	0.5			145.2	252.2	103
TDS ^E				93	161	66

Page 3 of 4

Aquatic

All results are in units of mg/L, unless otherwise stated.

Blank Cell indicates no criterion available

PQL = Practical Quantitation Limit. Where PQL is for a summation, PQL of all components is summed and may be different from that presented by laboratory

ANZECC guidelines in italics are low level reliability guidelines

ANZECC arsenic guideline based on As (III) for marine water, the lowest of presented guidelines.

NHMRC arsenic guidelines are based on total arsenic

ANZECC and NHMRC guidelines for chromium are based on Cr (VI)

 $\ensuremath{\mathsf{ANZECC}}$ guidelines for mercury are based on inorganic mercury.

NHMRC guidelines for mercury are based on total mercury.

Results shown in **BOLD** are in excess of the aquatic ecosystems guidelines

Results shown in $\underline{\text{underline}}$ are in excess of the human health (ingestion) guideline

Benelli Equity Pty Ltd Geotechnical and Groundwater Investigation Cabbage Tree Road, Williamtown RCA ref 10059-201/1, May 2015 Prepared by: JG Checked by: MC.

RCA Australia.

 $^{^{\}rm A}$ ANZECC 2000 95% Protection Level for marine water

^B NHMRC Australian Drinking Water Guidelines, 2011

^CSample depths presented are as encountered during sampling

^D Bioaccummulative Compounds

^E TDS calculated using laboratory reported electrical conductivity values

Sample Identification Sample Depth (m) C Date	PQL	Aquatic Ecosystem Guideline ^A 95% Marine	Human Health (Ingestion) Guideline ^B	BH10 3.1 17/2/15	BH11 2.4 17/2/15	BH12 6.0 17/2/15
Date	l	Sample Desc	ription	Dark brown, very turbid, slight sulfur odour	Dark brown, very turbid, slight sulfur odour	Dark brown, very turbid, slight sulfur odour
	Laborato	ry Report Refe	erence	447947	447947	447947
		Sample Pu	•	Groundwater quality assessment	Groundwater quality assessment	Groundwater quality assessment
		Sample collec	ted by	JG	JG	JG
Metals	1					
Arsenic	0.001	0.0023	0.01	< 0.001	< 0.001	< 0.001
Cadmium	0.0001	0.0055	0.002	< 0.0001	< 0.0001	< 0.0001
Chromium	0.001	0.0044	0.05	< 0.001	0.001	0.002
Copper	0.001	0.0013	2	< 0.001	< 0.001	< 0.001
Lead	0.001	0.0044	0.01	< 0.001	< 0.001	< 0.001
Mercury ^D	0.0001	0.0004	0.001	< 0.0001	< 0.0001	< 0.0001
Nickel	0.001	0.07	0.02	< 0.001	0.001	< 0.001
Zinc	0.005	0.015		0.006	0.014	0.009
Major Anions						
Ammonia as N	0.01	0.91		0.1	0.06	< 0.01
Bicarbonate Alkalinity as CaCO3	5			< 5	< 5	< 5
Carbonate Alkalinity as CaCO3	5			< 5	< 5	< 5
Chloride	1			60	27	34
Nitrate (as N)	0.01		50	< 0.05	< 0.01	< 0.01
Sulfate as S	2		500	< 2	< 2	< 2
Major Cations						
Calcium	0.5			< 0.5	0.7	1.3
Magnesium	0.5			3.5	1.6	2.4
Potassium	0.5			0.7	< 0.5	0.8
Sodium	0.5			28	15	19
Parameters						
pH (pH units)	0.5			4.81	4.89	5.17
Conductivity µS/cm	0.5			236.2	131	166.4
TDS ^E				151	84	106

Page 4 of 4

All results are in units of mg/L, unless otherwise stated.

Blank Cell indicates no criterion available

PQL = Practical Quantitation Limit. Where PQL is for a summation, PQL of all components is summed and may be different from that presented by laboratory

ANZECC guidelines in italics are low level reliability guidelines

ANZECC arsenic guideline based on As (III) for marine water, the lowest of presented guidelines.

NHMRC arsenic guidelines are based on total arsenic

ANZECC and NHMRC guidelines for chromium are based on Cr (VI)

ANZECC guidelines for mercury are based on inorganic mercury.

NHMRC guidelines for mercury are based on total mercury.

Results shown in **BOLD** are in excess of the aquatic ecosystems guidelines

Results shown in $\underline{\text{underline}}$ are in excess of the human health (ingestion) guideline

Benelli Equity Pty Ltd Geotechnical and Groundwater Investigation Cabbage Tree Road, Williamtown RCA ref 10059-201/1, May 2015 Prepared by: JG Checked by: MC.

RCA Australia.

 $^{^{\}rm A}$ ANZECC 2000 95% Protection Level for marine water

^B NHMRC Australian Drinking Water Guidelines, 2011

^CSample depths presented are as encountered during sampling

 $^{^{\}rm D}$ Bioaccummulative Compounds

^E TDS calculated using laboratory reported electrical conductivity values

APPENDIX B: MONTHLY REPORTS

APPENDIX B1: FEBRUARY 2019

Kleinfelder Australia Pty Ltd 95 Mitchell Road CARDIFF NSW 2285 T| +61 2 4949 5200

www.kleinfelder.com.au ABN: 23 146 082 500

NEWCASTLE OFFICE

11 March 2019

Document Ref: NCA19R_20190320

Williamtown Sand Syndicate PO Box 898 Newcastle, NSW 2300

Attention: Darren Williams

Delivered by email: darren@arbus.com.au

Subject: Water quality monitoring results at Cabbage Tree Road Sand Quarry –

February 2019 monitoring

Please find enclosed the Water quality monitoring results at Cabbage Tree Road Sand Quarry for the February 2019 monitoring.

1. SCOPE OF SERVICE

The scope of work includes monthly surface and groundwater monitoring for a combined period of 12 months. **Figure 1** (attached) presents the surface water and groundwater sampling locations.

The February monitoring round was to include gauging and sampling from 13 monitoring wells (Noting that MW239D was also gauged but not was not proposed to be sampled) and sampling at four surface water locations.

2. SITE WORK

The monitoring round was conducted on 21 and 22 February 2019.

Each well location was gauged using a water level meter to determine groundwater depth (relative to the top of the well casing) and the total depth of the well, in order to calculate the volume of water in the well. Following the gauging a HydraSleeve was then placed into the well ensuring the top of the sleeve was located under the water and left in place while all remaining wells were gauged. Following the gauging each of the HydraSleeves were removed and samples taken.

The February 2019 monitoring round included:

Gauging of all available monitoring wells (a total of 14 wells);

- Groundwater sampling from a total of 9 monitoring wells (note MW239D does not require sampling, BH1, BH09, BH10 and BH12 were dry); and
- Surface water sampling from 1 location (all remaining locations were dry on the day of sampling).

Water samples were collected in laboratory supplied containers and place in an ice chilled esky. The samples were then submitted to a NATA accredited laboratory under a chain of custody (COC) for the analytical schedule as per **Table 2-1**.

Table 2-1: Summary of initial Water Quality Analysis

		Number of Samples									
Analysis	Primary	Intra-lab (Duplicate)	Inter-lab (Triplicate)	Transport Blank	Rinsate Blank						
Extended Water Suite*	10	0	0	0	0						
Hydrocarbons**	10	1	1	1	1						
Metals***	10	1	1	1	1						
Iron (dissolved)	10	1	1	1	1						
Total Dissolved Solids (TDS)	10	0	0	0	0						
Total Suspended Solids (TSS)	10	0	0	0	0						
PFAS (28 analytes, standard level)	10	1	1	1	1						

^{*} Extended Water Suite B: Ca, Mg, Na, K, pH, EC, Cl, F, SO₄, Alkalinity, Hardness & TDS (Calc'), Nitrate, Nitrite, Ammonia, Reactive Phosphorus, Total Phosphorus, Total Nitrogen, TKN.

3. SAMPLING RESULTS

Table 3-2 provides a summary of the gauging data and **Table 3-3** provides a summary of the field parameters taken during sampling. The full set of gauging data and field parameters for each monitoring location are provided in the **Tables** section.

Table 3-2: Summary of gauging data

Borehole	Top of Casing (mAHD)	Depth to Water (mBTOC)	Groundwater Elevation (mAHD)	Well Total Depth at point of sampling (mBTOC)	Comment
BH1	8.64	5.776	2.864	8.89	No water sample taken due to top of well casing being melted.
BH2*	7.79	5.674	2.116	8.93	Slightly Cloudy, light brown, slight sulfur odour.
BH3	7.57	6.026	1.544	8.94	Light Brown - No Odour.
BH4	3.06	1.994	1.066	5.92	light discolouration – Brown.

^{**} TRH (C6 – C40), BTEXN (Silica Gel)

^{***} NEPM Metals Suite (dissolved) - Arsenic (As), Boron (B), Barium (Ba), Beryllium (Be), Cadmium (Cd), Chromium (Cr), Cobalt (Co), Copper (Cu), Lead (Pb), Manganese (Mn), Mercury (Hg), Nickel (Ni), Selenium (Se), Vanadium (V), Zinc (Zn)

Borehole	Top of Casing (mAHD)	Depth to Water (mBTOC)	Groundwater Elevation (mAHD)	Well Total Depth at point of sampling (mBTOC)	Comment
BH5	7.36	6.063	1.297	8.63	Roots evident. Brown slight sulfur odour.
BH6	3.62	1.823	1.797	4.43	Clear to slightly cloudy, sulfur odour.
BH7	2.98	1.938	1.042	4.42	Slightly Cloudy, light brown, slight sulfur odour.
BH8	3.88	2.78	1.1	6.08	Sulfur smell - Dark Brown.
ВН9	17.75	Dry	-	15.82	Well was dry.
BH10	6.69	Dry	-	3.58	Well was dry.
BH11	6.63	3.02	3.61	5.21	Brown - No Odour.
BH12	8.67	Dry	-	6.17	Well was dry.
MW239S	3.04	1.529	1.511	3.89	Light Brown - Slight Sulfur odour.
MW239D	3.04	1.312	1.728	20.21	-
SW01*	2.5	Dry	-	N/A	Location was dry.
SW02*	3.3	Dry	-	N/A	Location was dry.
SW03*	2.1	1.1	1	N/A	Water was at a low level and was not seen to be flowing.
SW04*	2	Dry	-	N/A	Location was dry.

^{*} Surface water levels measured from measuring tape installed

Table 3-3: Summary of field parameters

Sample ID	Time	Temp (°C)	EC (us/cm)	рН	Redox (mV)
BH02	1030	22.7	124.1	4.29	111.00
BH03	1440	22.1	82.4	4.54	94.00
BH04	1420	20.4	129.2	3.85	135.00
BH05	830	20.1	320	4.06	122.00
BH06	850	23.1	228	4.28	111.00
BH07	920	23.7	283	4.04	125.00
BH08	1330	21.8	411	4.09	121.00
BH11	1530	22.3	402	3.78	136.00
MW239S	730	21.7	526	4.09	121.00
SW03	1615	26	313	5.11	62.00

Kleinfelder Australia Pty Ltd 95 Mitchell Road CARDIFF NSW 2285 T| +61 2 4949 5200 www.kleinfelder.com.au

ABN: 23 146 082 500

NEWCASTLE OFFICE

Table 3.4 presents a summary of the water monitoring results and comparison with identified trigger values. Full results tables are provided in the Tables Section. Full Laboratory results, including copies for the COC are provided in Attachment A

Table 3.4 Water screening levels

Analytical Groupings	Analyte	Limit of reporting (mg/L)	Number of Samples	Minimum (mg/L)	Maximum (mg/L)	Criteria Exceeded	Relative to previous monitoring
Physical and	Sodium	0.01	10	4	61	No	N/A
Chemical Stressors	Sulphate	1	10	4	28	No	N/A
311622012	Chloride	1	10	10	104	No	N/A
	Flouride	0.1	10	<0.1	0.2	No	N/A
	Reactive Phosphorous	0.01	10	<0.01	<0.01	No	N/A
	Total Phosphorous	0.01	10	0.03	2.76	All above ANZECC 2000 Trigger Values ¹	N/A
	Nitrite	0.01	10	<0.01	<0.01	No	N/A
	Nitrate	0.01	10	<0.01	2.76	2 above ANZECC 2000 Trigger Values ¹	N/A
	Ammonia	0.01	10	0.04	0.5	No	N/A
	Total Nitrogen	0.1	10	0.5	5.9	All above ANZECC 2000 Trigger Values ¹	N/A
	Total Hardness	1	10	9.0	41	No	N/A
	Total Dissolved Solids	1	10	96	438	No	N/A
	рН	0.01	10	4.46	6.21	All outside All above ANZECC 2000 Trigger range ¹ and drinking water guidelines	N/A
Dissolved	As	0.005-0.1	10	<0.001	0.003	No	N/A
Metals	В	0.005-0.1	10	<0.05	<0.05	No	N/A
	Ва	0.005-0.1	10	0.003	0.075	No	N/A
	Be	0.005-0.1	10	<0.001	<0.001	No	N/A
	Cd	0.005-0.1	10	<0.0001	<0.0001	No	N/A

Analytical Groupings	Analyte	Limit of reporting (mg/L)	Number of Samples	Minimum (mg/L)	Maximum (mg/L)	Criteria Exceeded	Relative to previous monitoring
	Cr	0.005-0.1	10	<0.001	0.002	4 above ANZECC 2000 Trigger Values ²	N/A
	Co	0.005-0.1	10	<0.001	0.003	No	N/A
	Cu	0.005-0.1	10	<0.001	0.002	2 above ANZECC 2000 Trigger Values ²	N/A
	Fe	0.005-0.1	10	0.06	4.84	6 above drinking water aesthetic criteria	N/A
	Mn	0.005-0.1	10	0.003	0.039	No	N/A
	Ni	0.005-0.1	10	0.001	0.053	2 above ANZECC 2000 Trigger Values ² , and 1 above NHMRC ADWG 6	N/A
	Pb	0.005-0.1	10	<0.001	<0.001	No	N/A
	Se	0.005-0.1	10	<0.01	<0.01	No	N/A
	V	0.005-0.1	10	<0.01	<0.01	No	N/A
	Zn	0.005-0.1	10	<0.005	0.031	5 above ANZECC 2000 Trigger Values ²	N/A
	Hg	0.0001	10	<0.0001	<0.0001	No	N/A
TRH – Silica	C ₆ -C ₁₀	0.02	10	<0.02	<0.02	No	N/A
Clean up	>C ₁₀ -C ₁₆	0.1	10	<0.1	<0.1	No	N/A
	>C ₁₆ -C ₃₄	0.1	10	<0.1	<0.1	No	N/A
	>C ₃₄ -C ₄₀	0.1	10	<0.1	<0.1	No	N/A
	Total >C ₁₀ -C ₄₀	0.1	10	<0.1	<0.1	No	N/A
	C ₆ -C ₁₀ minus BTEX (F1)	0.02	10	<0.02	<0.02	No	N/A

Analytical Groupings	Analyte	Limit of reporting (mg/L)	Number of Samples	Minimum (mg/L)	Maximum (mg/L)	Criteria Exceeded	Relative to previous monitoring
	>C ₁₀ -C ₁₆ minus Naphthalene (F2)	0.1	10	<0.1	<0.1	No	N/A
BTEX	Benzene	0.001-0.005	10	<0.001	<0.001	No	N/A
	Toluene	0.001-0.005	10	<0.002	<0.002	No	N/A
	Ethylbenzene	0.001-0.005	10	<0.002	<0.002	No	N/A
	Total Xylene	0.001-0.005	10	<0.002	<0.002	No	N/A
	Naphthalene	0.001	10	<0.005	<0.005	No	N/A
PFAS	PFOS	0.00001-0.0001	10	<0.00001	<0.00001	HEPA NEMP 2018*	N/A
	PFOA	0.00001-0.0001	10	<0.00001	<0.00001	No	N/A
	PFOS/PFHxS	0.00001-0.0001	10	<0.00001	<0.00001	No	N/A

^{*} The LOR is above the Heads of EPA Australia and New Zealand – National Environmental Management Plan (HEPA NEMP) 2018 99% Level of protection in freshwater. No concentrations were found to be above the LOR.

National Health and Medical Research Council Australian Drinking Water Guidelines (NHMRC ADWG) 6 2011 Version 3.5 Updated August 2018

¹Australian and New Zealand Environmental Conservation Council (ANZECC) 2000 Trigger Values – Default trigger values for physical and chemical stressors, for slightly disturbed ecosystems in lowland rivers, Southeast Australia (value is for base flow and not storm event)

²ANZECC 2000 Trigger Values – 95% Level of protection in freshwater

4. RAINWATER DATA

Table 4.5 presents the rainfall data from Williamtown RAAF base. The mean monthly rainfall indicates that there has been significantly less rainfall in January and February than the mean.

Table 4.5 2019 Rainfall data

2019	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
1st	2.0	0.8	0									
2nd	0	12.8	0									
3rd	0	0.4										
4th	0	0	0									
5th	0	0	0									
6th	0	0	0									
7th	5.0	0										
8th	0	0										
9th	0	6.6										
10th	0.2	0										
11th	0	0										
12th	3.0	0										
13th	0	0										
14th	0	0										
15th	0	0										
16th	0	0										
17th	0	0										
18th	0	0										
19th	0	0										
20th	2.4											
21st	1.0	1.4										
22nd	0	1.0										
23rd	0	1.4										
24th	0	9.2										
25th	0	0										
26th	0	0										
27th	0	0										
28th	1.0	0										
29th	0											
30th	0											
31st	0											
Monthly Total	14.6	33.6										
Mean	98.7	117.0	120.5	111.6	109.6	124.7	70.9	72.9	60.4	73.9	82.3	78.6

Based on the rainfall data, it is expected that the current groundwater and surface water levels would be low.

5. THANKYOU

We trust the information presented is acceptable. If you have any questions, please do not hesitate in contacting the undersigned.

Sincerely,

Kleinfelder Australia Pty Ltd

Tom Overton MSc, BSc (Hons), Dip

Senior Project Manager

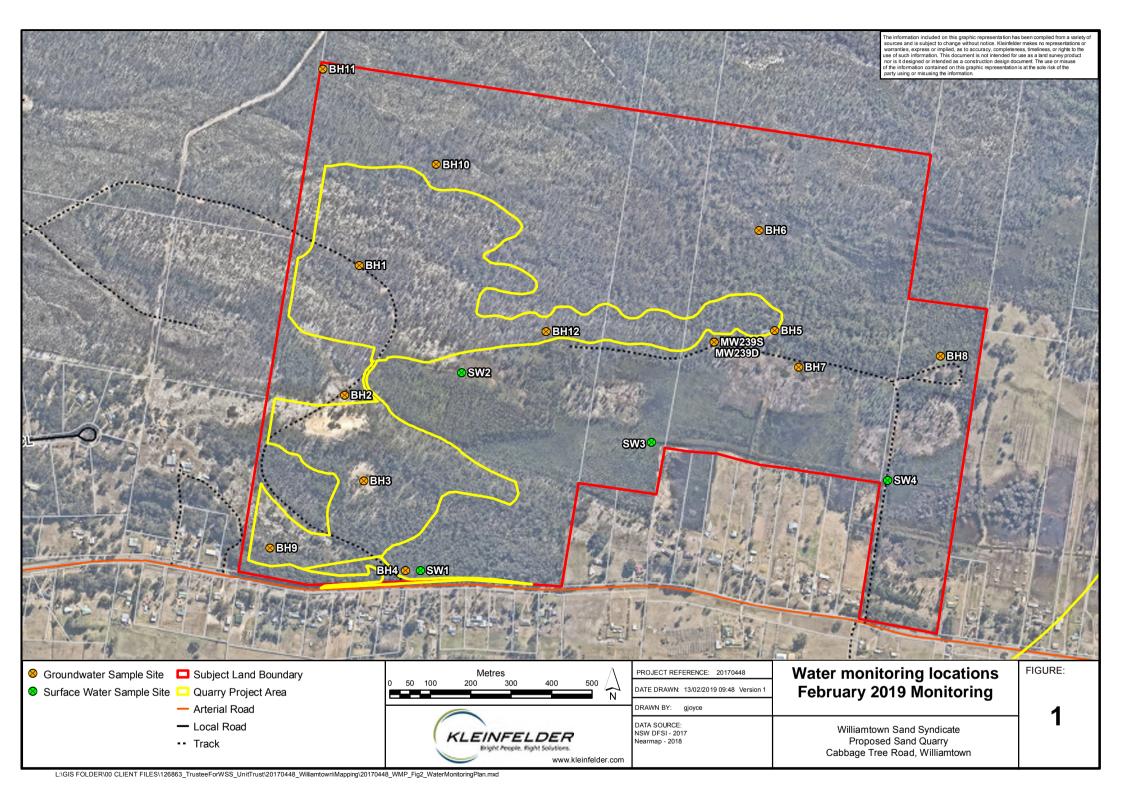
Contaminated Land Management

toverton@kleinfelder.com

Mobile: 0415 170 312

Attached:

Figure 1


Data Tables

Attachment A – Laboratory reports

FIGURE 1

Ref: NCA19R_20190320 11 March 2019

DATA TABLES

Ref: NCA19R_20190320 11 March 2019

Table BH01 Groundwater gauging data and field parameters Williamtown Sand Syndicate

Borehole	Easting (MGA)	Northing (MGA)	Ground Surface RL (mAHD)	Top of Casing (mAHD)	Bore Depth prior to monitoring (mBTOC)	Screen Top (mBG)	Screen Bottom (mBG)	Well Diameter (mm)
BH1	387741.2	6369495.8	8.21	8.64	9.45	6.45	8.6	50

Date	Depth to Water (mBTOC)	Water Elevation (mAHD)	Well Total Depth at point of sampling (mBTOC)	Well Base Elevation (mAHD)	Temp (°C)	EC (us/cm)	рН	Redox (mV)	Description
21/02/2019	5.776	2.864	8.89	-0.25	-	-	-	-	No water sample taken due to top of well being melted

Table BH02 Groundwater gauging data and field parameters Williamtown Sand Syndicate

Borehole	Easting (MGA)	Northing (MGA)	Ground Surface RL (mAHD)	Top of Casing (mAHD)	Bore Depth prior to monitoring (mBTOC)	Screen Top (mBG)	Screen Bottom (mBG)	Well Diameter (mm)
BH2	387704.7	6369175.1	7.4	7.79	9.45	5.6	8.6	50

Date	Depth to Water (mBTOC)	Water Elevation (mAHD)	Well Total Depth at point of sampling (mBTOC)	Well Base Elevation (mAHD)	Temp (°C)	EC (us/cm)	рН	Redox (mV)	Description
21/02/2019	5.674	2.116	8.93	-1.14	22.7	124.1	4.29	111	Slightly Cloudy, light brown, slight sulfur odour

Table BH03 Groundwater gauging data and field parameters Williamtown Sand Syndicate

Borehole	Easting (MGA)	Northing (MGA)	Ground Surface RL (mAHD)	Top of Casing (mAHD)	Bore Depth prior to monitoring (mBTOC)	Screen Top (mBG)	Screen Bottom (mBG)	Well Diameter (mm)
внз	387751.7	6368964.3	7.03	7.57	9.45	5.45	8.45	50

Date	Depth to Water (mBTOC)	Water Elevation (mAHD)	Well Total Depth at point of sampling (mBTOC)	Well Base Elevation (mAHD)	Temp (°C)	EC (us/cm)	рН	Redox (mV)	Description
21/02/2019	6.026	1.544	8.94	-1.37	22.1	82.4	4.54	94	Light Brown - No Odour

Table BH04 Groundwater gauging data and field parameters Williamtown Sand Syndicate

Borehole	Easting (MGA)	Northing (MGA)	Ground Surface RL (mAHD)	Top of Casing (mAHD)	Bore Depth prior to monitoring (mBTOC)	Screen Top (mBG)	Screen Bottom (mBG)	Well Diameter (mm)
BH4	387854.9	6368742.8	2.81	3.06	6.45	2.65	5.65	50

Date	Depth to Water (mBTOC)	Water Elevation (mAHD)	Well Total Depth at point of sampling (mBTOC)	Well Base Elevation (mAHD)	Temp (°C)	EC (us/cm)	рН	Redox (mV)	Description
21/02/2019	1.994	1.066	5.92	-2.86	20.4	129.2	3.85	135	light discolouration - Brown

Table BH05 Groundwater gauging data and field parameters Williamtown Sand Syndicate

Borehole	Easting (MGA)	Northing (MGA)	Ground Surface RL (mAHD)	Top of Casing (mAHD)	Bore Depth prior to monitoring (mBTOC)	Screen Top (mBG)	Screen Bottom (mBG)	Well Diameter (mm)
BH5	388768.5	6369334.7	6.76	7.36	9.28	8.1	5.1	50

Date	Depth to Water (mBTOC)		Well Total Depth at point of sampling (mBTOC)	Well Base Elevation (mAHD)	Temp (°C)	EC (us/cm)	рН	Redox (mV)	Description
21/02/2019	6.063	1.297	8.63	-1.27	20.1	320	4.06	122	Roots evident. Brown slight sulfur odour

Table BH06 Groundwater gauging data and field parameters Williamtown Sand Syndicate

Borehole	Easting (MGA)	Northing (MGA)	Ground Surface RL (mAHD)	Top of Casing (mAHD)	Bore Depth prior to monitoring (mBTOC)	Screen Top (mBG)	Screen Bottom (mBG)	Well Diameter (mm)
BH6	388729.7	6369582.2	3.01	3.62	4.95	3.9	2.4	50

Date	Depth to Water (mBTOC)	Water Elevation (mAHD)	Well Total Depth at point of sampling (mBTOC)	Well Base Elevation (mAHD)	Temp (°C)	EC (us/cm)	рН	Redox (mV)	Description
21/02/2019	1.823	1.797	4.43	-0.81	23.1	228	4.28	111	Clear to slightly cloudy, sulfur odour
				_					

Table BH07 Groundwater gauging data and field parameters Williamtown Sand Syndicate

Borehole	Easting (MGA)	Northing (MGA)	Ground Surface RL (mAHD)	Top of Casing (mAHD)	Bore Depth prior to monitoring (mBTOC)	Screen Top (mBG)	Screen Bottom (mBG)	Well Diameter (mm)
BH7*	388827.7	6369245.3	2.6	2.98	4.95	2.6	4.1	50

Date	Depth to Water (mBTOC)	Water Elevation (mAHD)	Well Total Depth at point of sampling (mBTOC)	Well Base Elevation (mAHD)	Temp (°C)	EC (us/cm)	рН	Redox (mV)	Description
21/02/2019	1.938	1.042	4.42	-1.44	23.7	283	4.04	125	Slightly Cloudy, light brown, slight sulfur odour

Table BH08 Groundwater gauging data and field parameters Williamtown Sand Syndicate

Borehole	Easting (MGA)	Northing (MGA)	Ground Surface RL (mAHD)	Top of Casing (mAHD)	Bore Depth prior to monitoring (mBTOC)	Screen Top (mBG)	Screen Bottom (mBG)	Well Diameter (mm)
BH8	389178.2	6369271.6	3.28	3.88	6.28	3	5.5	50

Date	Depth to Water (mBTOC)	Water Elevation (mAHD)	Well Total Depth at point of sampling (mBTOC)	Well Base Elevation (mAHD)	Temp (°C)	EC (us/cm)	рН	Redox (mV)	Description
21/02/2019	2.78	1.1	6.08	-2.2	21.8	411	4.09	121	Sulfur smell - Dark Brown

Table BH09 Groundwater gauging data and field parameters Williamtown Sand Syndicate

Borehole	Easting (MGA)	Northing (MGA)	Ground Surface RL (mAHD)	Top of Casing (mAHD)	Bore Depth prior to monitoring (mBTOC)	Screen Top (mBG)	Screen Bottom (mBG)	Well Diameter (mm)
ВН9	387520.4	6368798.8	17.07	17.75	18.18	14.6	17.6	50

Date	Depth to Water (mBTOC)	Water Elevation (mAHD)	Well Total Depth at point of sampling (mBTOC)	Well Base Elevation (mAHD)	Temp (°C)	EC (us/cm)	рН	Redox (mV)	Description
21/02/2019	Dry	-	15.82	1.93	i	i	i	i	Well was dry

Table BH10 Groundwater gauging data and field parameters Williamtown Sand Syndicate

Borehole	Easting (MGA)	Northing (MGA)	Ground Surface RL (mAHD)	Top of Casing (mAHD)	Bore Depth prior to monitoring (mBTOC)	Screen Top (mBG)	Screen Bottom (mBG)	Well Diameter (mm)
BH10	387931.2	6369744.4	6.09	6.69	5.45	2	5	50

Date	Depth to Water (mBTOC)	Water Elevation (mAHD)	Well Total Depth at point of sampling (mBTOC)	Well Base Elevation (mAHD)	Temp (°C)	EC (us/cm)	рН	Redox (mV)	Description
21/02/2019	Dry	-	3.58	3.11	ı	i	ī	ı	Well was dry
							·	·	

Table BH11 Groundwater gauging data and field parameters Williamtown Sand Syndicate

Borehole	Easting (MGA)	Northing (MGA)	Ground Surface RL (mAHD)	Top of Casing (mAHD)	Bore Depth prior to monitoring (mBTOC)	Screen Top (mBG)	Screen Bottom (mBG)	Well Diameter (mm)
BH11	387650.6	6369979.7	6.02	6.63	5.95	1.6	4.6	50

Date	Depth to Water (mBTOC)	Water Elevation (mAHD)	Well Total Depth at point of sampling (mBTOC)	Well Base Elevation (mAHD)	Temp (°C)	EC (us/cm)	рН	Redox (mV)	Description
21/02/2019	3.02	3.61	5.21	1.42	22.3	402	3.78	136	Brown - No Odour

Table BH12 Groundwater gauging data and field parameters Williamtown Sand Syndicate

Borehole	Easting (MGA)	Northing (MGA)	Ground Surface RL (mAHD)	Top of Casing (mAHD)	Bore Depth prior to monitoring (mBTOC)	Screen Top (mBG)	Screen Bottom (mBG)	Well Diameter (mm)
BH12	388202.9	6369332.9	8.06	8.67	8.39	4.8	7.8	50

Date	Depth to Water (mBTOC)	Water Elevation (mAHD)	Well Total Depth at point of sampling (mBTOC)	Well Base Elevation (mAHD)	Temp (°C)	EC (us/cm)	рН	Redox (mV)	Description
21/02/2019	Dry	-	6.166	2.504	i	i	i	i	Well was dry
				`					
				·					

Table BH239S Groundwater gauging data and field parameters Williamtown Sand Syndicate

Borehole	Easting (MGA)	Northing (MGA)	Ground Surface RL (mAHD)	Top of Casing (mAHD)	Bore Depth prior to monitoring (mBTOC)	Screen Top (mBG)	Screen Bottom (mBG)	Well Diameter (mm)
MW239S	388619.1	-	2.98	3.04	4	1	4	50

Date	Depth to Water (mBTOC)	Water Elevation (mAHD)	Well Total Depth at point of sampling (mBTOC)	Well Base Elevation (mAHD)	Temp (°C)	EC (us/cm)	рН	Redox (mV)	Description
21/02/2019	1.529	1.511	3.89	-0.85	21.7	526	4.09	121	Light Brown - Slight Sulfur odour

Table BH239D Groundwater gauging data and field parameters Williamtown Sand Syndicate

Borehole	Easting (MGA)	Northing (MGA)	Ground Surface RL (mAHD)	Top of Casing (mAHD)	Bore Depth prior to monitoring (mBTOC)	Screen Top (mBG)	Screen Bottom (mBG)	Well Diameter (mm)
MW239D	388619.1	-	2.98	3.04	21	-	-	50

Date	Depth to Water (mBTOC)	Water Elevation (mAHD)	Well Total Depth at point of sampling (mBTOC)	Well Base Elevation (mAHD)	Description
21/02/2019	1.312	1.728	20.21	-17.17	

Table SW01 Groundwater gauging data and field parameters Williamtown Sand Syndicate

Location	Easting (MGA)	Northing (MGA)	Top of Measuring Tape (mAHD)
SW01	387886.7	6368734	2.5

Date	Water Lavel (Reading on tape)	Water Elevation (mAHD)	Temp (°C)	EC (us/cm)	рН	Redox (mV)	Description
21/02/2019	0	2.5	-	-	-	-	No water present
					_		

Table SW02 Groundwater gauging data and field parameters Williamtown Sand Syndicate

Location	Easting (MGA)	Northing (MGA)	Top of Measuring Tape (mAHD)
SW02	387988.3	6369234	3.3

Date	Water Lavel (Reading on tape)	Water Elevation (mAHD)	Temp (°C)	EC (us/cm)	рН	Redox (mV)	Description
21/02/2019	0	3.3	=	-	-	-	No water present
			·				
			·				

Table SW03 Groundwater gauging data and field parameters Williamtown Sand Syndicate

Location	Easting (MGA)	Northing (MGA)	Top of Measuring Tape (mAHD)
SW03	388464.6	6369057	2.1

Date	Water Lavel (Reading on tape)	Water Elevation (mAHD)	Temp (°C)	EC (us/cm)	рН	Redox (mV)	Description
21/02/2019	1.1	1	26	313	5.11	62	Water level low, slight sulfur odour
			•	·			

Table SW04 Groundwater gauging data and field parameters Williamtown Sand Syndicate

Location	Easting (MGA)	Northing (MGA)	Top of Measuring Tape (mAHD)
SW04	389049	6368969	2

Date	Water Lavel (Reading on tape)	Water Elevation (mAHD)	Temp (°C)	EC (us/cm)	рН	Redox (mV)	Description
21/02/2019	0	2	=	=	-	-	No water present

Ana	lute				BTEXM	١				Total Petroleum Hydrocarbons	Tota	al Petroleum Hydroca	rbons - Silcia Clean uţ	,		Recoverable rocarbons	Total Recoverable Hydrocarbons - Silcia Clean up					
,	,,	Benzene**	Toluene	Ethylbenzen e	meta- & para- Xylene	ortho- Xylene**	Total Xylenes	Naphthalene **	Sum of BTEX	C ₆ - C ₉	C ₁₀ -C ₁₄ - Silica Cleanup	C ₁₅ -C ₂₈ - Silica Cleanup	C ₂₉ -C ₃₆ - Silica Cleanup	C ₁₀ -C ₃₆ Sum - Silica Cleanup	C ₆ - C ₁₀	C ₆ - C ₁₀ minus BTEX (F1)	>C ₁₀ -C ₁₆ - Silica Cleanup	F2 - Silica Cleanup	>C ₁₆ -C ₃₄ - Silica Cleanup	>C ₃₄ -C ₄₀ - Silica Cleanup	>C ₁₀ -C ₄₀ - Silica Cleanup	
LC)R	1	2	2	2	2	2	5	1	20	50	100	50	50	20	20	100	100	100	100	100	
Un	its	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	
ANZECC 2000	Trigger Values	950	-	-	-	350		16														
NHMRC	ADWG 6	1	800	300	-	350	600															
Sample Name	Sample Date						•															
BH11	21-Feb-19	< 1.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 5.0	< 1.0	< 20	< 50	< 100	< 50	< 50	< 20	< 20	< 100	< 100	< 100	< 100	< 100	
BH2	22-Feb-19	< 1.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 5.0	< 1.0	< 20	< 50	< 100	< 50	< 50	< 20	< 20	< 100	< 100	< 100	< 100	< 100	
BH3	21-Feb-19	< 1.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 5.0	< 1.0	< 20	< 50	< 100	< 50	< 50	< 20	< 20	< 100	< 100	< 100	< 100	< 100	
BH4	21-Feb-19	< 1.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 5.0	< 1.0	< 20	< 50	< 100	< 50	< 50	< 20	< 20	< 100	< 100	< 100	< 100	< 100	
BH5	22-Feb-19	< 1.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 5.0	< 1.0	< 20	< 50	< 100	< 50	< 50	< 20	< 20	< 100	< 100	< 100	< 100	< 100	
BH6	22-Feb-19	< 1.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 5.0	< 1.0	< 20	< 50	< 100	< 50	< 50	< 20	< 20	< 100	< 100	< 100	< 100	< 100	
BH7	22-Feb-19	< 1.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 5.0	< 1.0	< 20	< 50	< 100	< 50	< 50	< 20	< 20	< 100	< 100	< 100	< 100	< 100	
BH8	21-Feb-19	< 1.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 5.0	< 1.0	< 20	< 50	< 100	< 50	< 50	< 20	< 20	< 100	< 100	< 100	< 100	< 100	
MW2395	22-Feb-19	< 1.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 5.0	< 1.0	< 20	< 50	< 100	< 50	< 50	< 20	< 20	< 100	< 100	< 100	< 100	< 100	
SW3	22-Feb-19						< 2.0	< 5.0	< 1.0	< 20	< 50	< 100	< 50	< 50	< 20	< 20	< 100	< 100	< 100	< 100	< 100	

Notes:
- Not analysed
- Less than laboratory limit of reporting
uq/L - Micrograms per litre
BTEXN - Berzene, toluene, ethylbenzene, xvlenes, naphthalene

** 95% Level of protection in freshwater

20190803.001A Page 1 of 7

Table 2 Groundwater Analytical Data - Metals Williamtown Sand Syndicate

									Met	tals							
Ana	alyte	Arsenic**	Barium	Beryllium	Boron**	Cadmium**	Chromium**	Cobalt	Copper**	Iron	Lead**	Manganese*	Mercury** ²	Nickel**	Selenium**	Vanadium	Zinc**
LC	OR .	0.001	0.001	0.001	0.05	0.0001	0.001	0.001	0.001	0.05	0.001	0.001	0.0001	0.001	0.01	0.01	0.005
Un	nits	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L
ANZECC 2000	Trigger Values	0.013		-	0.37	0.0002	0.001	-	0.0014	-	0.0034	1.9	0.0006	0.011	0.011	-	0.008
NHMRC	ADWG 6	0.01		0.06	4	0.002	0.05	-	2	0.3 ³	0.01	0.5	0.001	0.02	0.01	-	33
Sample Name	Sample Date																
BH11	21-Feb-19	< 0.001	0.008	< 0.001	< 0.05	< 0.0001	0.002	0.001	< 0.001	0.26	< 0.001	0.003	< 0.0001	0.005	< 0.01	< 0.01	0.031
BH2	22-Feb-19	< 0.001	0.005	< 0.001	< 0.05	< 0.0001	< 0.001	< 0.001	0.002	0.14	< 0.001	0.021	< 0.0001	0.015	< 0.01	< 0.01	0.006
BH3	21-Feb-19	< 0.001	0.003	< 0.001	< 0.05	< 0.0001	0.002	< 0.001	< 0.001	0.06	< 0.001	0.005	< 0.0001	0.053	< 0.01	< 0.01	< 0.005
BH4	21-Feb-19	< 0.001	0.014	< 0.001	< 0.05	< 0.0001	< 0.001	< 0.001	0.002	0.16	< 0.001	0.039	< 0.0001	0.018	< 0.01	< 0.01	0.014
BH5	22-Feb-19	< 0.001	0.01	< 0.001	< 0.05	< 0.0001	0.001	< 0.001	< 0.001	1.4	< 0.001	0.005	< 0.0001	0.003	< 0.01	< 0.01	0.008
BH6	22-Feb-19	< 0.001	0.03	< 0.001	< 0.05	< 0.0001	< 0.001	< 0.001	< 0.001	1.03	< 0.001	0.014	< 0.0001	0.001	< 0.01	< 0.01	0.019
BH7	22-Feb-19	< 0.001	0.004	< 0.001	< 0.05	< 0.0001	0.002	0.003	< 0.001	1.8	< 0.001	0.026	< 0.0001	0.004	< 0.01	< 0.01	0.019
BH8	21-Feb-19	0.001 *	0.011	< 0.001	< 0.05	< 0.0001	0.001	< 0.001	< 0.001	4.1	< 0.001	0.012	< 0.0001	0.002	< 0.01	< 0.01	0.006
MW2395	22-Feb-19	< 0.001	0.007	< 0.001	< 0.05	< 0.0001	0.002	< 0.001	< 0.001	1.11	< 0.001	0.003	< 0.0001	0.001	< 0.01	< 0.01	0.006
SW3	22-Feb-19	0.003	0.075	< 0.001	< 0.05	< 0.0001	< 0.001	< 0.001	< 0.001	4.84	< 0.001	0.033	< 0.0001	0.002	< 0.01	< 0.01	0.016

Notes:

- - Not analysed

< - Less than laboratory limit of reporting

mg/L - Milligrams per litre **Bold** indicates a detection above the laboratory limit of reporting

"*" denotes duplicate/triplicate sample result adopted for analytical use due to RPD >50%

RPD - Relative Percentage Difference

** 95% Level of protection in freshwater

1 value for CR VI

² as inorganioc

³ Aesthetic

20190803.001A Page 2 of 7

			Dee	Bungaalkal Sulfanic Aci				Perfluerealist Carbonilis Acids												David Control	Gurano Soul SulYano	midea			(n:2) Fluorotelomer Sulfonic Acids					Sum of PFAS	
Ani	ilyte	Perfluorobutane sulfonic acid (PFBS)			Perfluorohepta	Perfluorosctane sulfonic acid (PFOS)	Perfluorobutancic acid (PFSA)	Perfluoropentan oic acid (PFPeA)	Perfluorohexanoic acid (PFHxA)	Perfluoroheptan oic acid (PFHpA)		Perfluorononanoic acid (PFNA)	Perfluorodecanoic acid (PFDA)		Perfluorododecan oic acid (PFDoDA)	Perfluorotridecan oic acid (PFTrDA)	Perfluorotetradecan oic acid (PFTeDA)	Perfluorooctane sulfonamide (FOSA)	N-Methyl- perfluorcoctane sulfonamide (MeFOSA)	N-Ethyl perfluorooctane sulfonamide /FHEGSA	N-Methyl perfluoroctane sulfonamidoetha mel/MeEOSE)	N-Ethyl perfluorooctane suffonamidoetha	N-Methyl perfluorooctane sulfonamidoacetic acid (MaROCAL)	N-Ethyl perfluorooctane sulfonamidoacetic arid (FHTOSAA)	4:2 Fluorotelomer sulfonic acid (4:2 FT5)	6:2 Fluorotelomer sulfonic acid (6:2 FT5)	8:2 Fluorotelomer sulfonic acid (8:2 FTS)	10:2 Fluorotelomer sulfonic acid (10:2 FTS)	Sum of PFHxS and PFOS	Sum of PFAS (WA DER List)	Sum of PTAS
)R	0.62	0.02	0.02	0.02	0.01	0.1	0.02	0.02	0.02	0.01	0.02	0.02	0.02	0.02	0.02	0.65	0.02	0.05	0.05	0.05	0.05	0.02	0.02	0.05	0.05	0.05	0.65	0.01	0.01	0.01
Ur Ur		µg/L	μg/L	pg/L	µg/L	pg/L	pg/L	µg/L	pg/L	pg/L	pg/L	pg/L	μg/L	pg/L	pg/L	pg/L	μg/L	pg/L	µg/L	μg/L	μg/L	pg/L	µg/L	pg/L	pg/L	pg/L	pg/L	µg/L	pg/L	pg/L	pg/L
NHMRC	ADWG 6										0.56																		0.07		
HEPA NEN	IP 2018***					0.00023					19																				4
HEPA NE	MP 2018 ⁴										5.6																		0.7		4
Sample Name	Sample Date																														
BH11	21-Feb-19	< 0.02	< 0.02	< 0.02	< 0.02	< 0.01	< 0.1	< 0.02	< 0.02	< 0.02	< 0.01	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.05	< 0.02	< 0.05	< 0.05	< 0.05	< 0.05	< 0.02	< 0.02	< 0.05	< 0.05	< 0.05	< 0.05	< 0.01	< 0.01	< 0.01
BH2	22-Feb-19	< 0.02	< 0.02	< 0.02	< 0.02	< 0.01	< 0.1	< 0.02	< 0.02	< 0.02	< 0.01	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.05	< 0.02	< 0.05	< 0.05	< 0.05	< 0.05	< 0.02	< 0.02	< 0.05	< 0.05	< 0.05	< 0.05	< 0.01	< 0.01	< 0.01
BH3	21-Feb-19	< 0.02	< 0.02	< 0.02	< 0.02	< 0.01	< 0.1	< 0.02	< 0.02	< 0.02	< 0.01	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.05	< 0.02	< 0.05	< 0.05	< 0.05	< 0.05	< 0.02	< 0.02	< 0.05	< 0.05	< 0.05	< 0.05	< 0.01	< 0.01	< 0.01
BH4	21-Feb-19	< 0.02	< 0.02	< 0.02	< 0.02	< 0.01	< 0.1	< 0.02	< 0.02	< 0.02	< 0.01	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.05	< 0.02	< 0.05	< 0.05	< 0.05	< 0.05	< 0.02	< 0.02	< 0.05	< 0.05	< 0.05	< 0.05	< 0.01	< 0.01	< 0.01
BH5	22-Feb-19	< 0.02	< 0.02	< 0.02	< 0.02	< 0.01	< 0.1	< 0.02	< 0.02	< 0.02	< 0.01	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.05	< 0.02	< 0.05	< 0.05	< 0.05	< 0.05	< 0.02	< 0.02	< 0.05	< 0.05	< 0.05	< 0.05	< 0.01	< 0.01	< 0.01
BH6	22-Feb-19	< 0.02	< 0.02	< 0.02	< 0.02	< 0.01	< 0.1	< 0.02	< 0.02	< 0.02	< 0.01	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.05	< 0.02	< 0.05	< 0.05	< 0.05	< 0.05	< 0.02	< 0.02	< 0.05	< 0.05	< 0.05	< 0.05	< 0.01	< 0.01	< 0.01
BH7	22-Feb-19	< 0.02	< 0.02	< 0.02	< 0.02	< 0.01	< 0.1	< 0.02	< 0.02	< 0.02	< 0.01	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.05	< 0.02	< 0.05	< 0.05	< 0.05	< 0.05	< 0.02	< 0.02	< 0.05	< 0.05	< 0.05	< 0.05	< 0.01	< 0.01	< 0.01
BHS	21-řeb-19	< 0.02	< 0.02	< 0.02	< 0.02	< 0.01	< 0.1	< 0.02	< 0.02	< 0.02	< 0.01	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.05	< 0.02	< 0.05	< 0.05	< 0.05	< 0.05	< 0.02	< 0.02	< 0.05	< 0.05	< 0.05	< 0.05	< 0.01	< 0.01	< 0.01
MW2395	22-Feb-19	< 0.02	< 0.02	< 0.02	< 0.02	< 0.01	< 0.1	< 0.02	< 0.02	< 0.02	< 0.01	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.05	< 0.02	< 0.05	< 0.05	< 0.05	< 0.05	< 0.02	< 0.02	< 0.05	< 0.05	< 0.05	< 0.05	< 0.01	< 0.01	< 0.01
SW3	22-Feb-19	< 0.02	< 0.02	< 0.02	< 0.02	< 0.01	< 0.1	< 0.02	< 0.02	< 0.02	< 0.01	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.05	< 0.02	< 0.05	< 0.05	< 0.05	< 0.05	< 0.02	< 0.02	< 0.05	< 0.05	< 0.05	< 0.05	< 0.01	< 0.01	< 0.01

Notes: -- Not analysed

- Less than laboratory limit of reporting

*** 99% Level of protection in freshwats *** Surrelation water

0199803.001A

		Antons and Cations																										
	L								Anions and	Cations														Inorganics				
Anal	lyte	Sodium	Calcium	Magnesium	Potassium	Sulphate	Chloride	Fluoride	Reactive phosphorus as P	Total Phosphorus	Nitrite as N	Nitrate as N	Nitrite + Nitrate as N	Ammonia as N	Total Nitrogen as N	Total Kjeldahl Nitrogen as N	Total Cations	s Total Anions	Ionic Balance	Sodium Adsorption Ratio	Bicarbonate Alkalinity as CaCO3	Carbonate Alkalinity as CaCO3	Hydroxide Alkalinity as CaCO3	Total Alkalinity as CaCO3	Total Hardness as CaCO3	Electrical Conductivity @ 25°C	Total Dissolved Solids	pH
LO	R	1	1	1	1	1	1	0.1	0.01	0.01	0.01	0.01	0.01	0.01	0.1	0.1	0.01	0.01		0.01	1	1	1	1	1	1	1	0.01
Uni	its	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	meq/L	meq/L	%		mg/L	mg/L	mg/L	mg/L	mg/L	μS/cm	mg/L	pH units
ANZECC 2000	Trigger Values								0.02*	0.025*		0.7**		0.9**	0.35*											125-2200		6.5 - 8.0*
NHMRC	ADWG 6	180 ³				250 ³	250 ³	1.5			3	50		0.53											200 ³		600 ³	6.5-8.5 ³
Sample Name																												
BH11	21-Feb-19	48	< 1.0	10	< 1.0	24	80	0.1	< 0.01	0.03	< 0.01	0.04	0.04	0.06	1.8	1.8	2.91	2.76	-	3.21	< 1.0	< 1.0	< 1.0	< 1.0	41	346	278	4.67
BH2	22-Feb-19	12	2.0	2.0	< 1.0	6.0	22	0.1	< 0.01	0.28	< 0.01	2.76	2.76	0.05	4.0	1.2	0.79	0.74		1.44	< 1.0	< 1.0	< 1.0	< 1.0	13	91	128	4.87
BH3	21-Feb-19	4.0	4.0	1.0	< 1.0	4.0	10	< 0.1	< 0.01	2.76	< 0.01	0.78	0.78	0.3	5.9	5.1	0.46	0.54	-	0.46	9.0	< 1.0	< 1.0	9.0	14	60	438	5.55
BH4	21-Feb-19	8.0	2.0	1.0	1.0	5.0	17	< 0.1	< 0.01	0.19	< 0.01	0.35	0.35	0.04	0.6	0.3	0.56	0.7	-	1.15	6.0	< 1.0	< 1.0	6.0	9.0	73	96	5.4
BH5	22-Feb-19	42	< 1.0	6.0	1.0	19	69	0.2	< 0.01	0.34	< 0.01	< 0.01	< 0.01	0.09	3.0	3.0	2.35	2.34	-	3.59	< 1.0	< 1.0	< 1.0	< 1.0	25	250	211	4.87
BH6	22-Feb-19	28	3.0	4.0	1.0	28	42	< 0.1	< 0.01	0.05	< 0.01	0.09	0.09	0.14	0.5	0.4	1.72	1.77	-	2.49	< 1.0	< 1.0	< 1.0	< 1.0	24	177	144	4.37
BH7	22-Feb-19	34	< 1.0	5.0	2.0	12	64	0.2	< 0.01	0.13	< 0.01	0.02	0.02	0.34	2.2	2.2	1.94	2.06	-	3.16	< 1.0	< 1.0	< 1.0	< 1.0	20	213	196	4.76
BH8	21-Feb-19	52	< 1.0	6.0	< 1.0	11	90	< 0.1	< 0.01	1.97	< 0.01	< 0.01	< 0.01	0.5	2.4	2.4	2.76	2.77		4.44	< 1.0	< 1.0	< 1.0	< 1.0	25	352	258	4.46
MW2395	22-Feb-19	61	< 1.0	6.0	< 1.0	6.0	104	< 0.1	< 0.01	0.56	< 0.01	< 0.01	< 0.01	0.18	3.9	3.9	3.15	3.06	1.43	5.21	< 1.0	< 1.0	< 1.0	< 1.0	25	329	234	4.89
SW3	22-Feb-19	40	4.0	4.0	1.0	16	82	< 0.1	< 0.01	0.06	< 0.01	< 0.01	< 0.01	0.16	1.0	1.0	2.55	2.87		3,38	11	< 1.0	< 1.0	11	26	262	228	6.21

Notes:

- Not analysed
- Less then absorator limit of recorting

- Less then bloomed of recorting

most - Milliorans are life

solid - Milliorans are life

Bold indicates a detection above the laboratory limit of reporting

Default trigger values for physical and chemical stressors, for slightly disturbed ecosystems in lowland rivers, Southeast Australia (value is for base flow and not storm event)
 ** 59% Level of ordection in freshwater
 ** 25% Level of ordection in freshwater
 ** 36% Level of ordection in freshwater

20190803.001A Page 4 of 7

						BTEX	(N					Total P	etroleum Hydr	ocarbons		Tot	tal Petroleum Hydroca	rbons - Silcia Clean u	P		T	otal Recoverab	le Hydrocarbons			Total Recoverable Hydrocarbons - Silcia Clean up					
	Benzene	Toluene	Ethylbenzer e	meta- & para- Xylene	ortho-Xylene	Total Xylenes	Naphthalene	Sum of BTEX		C ₁₀ - C ₁₄	C ₁₅ - C ₂₈	C ₂₀ - C ₃₆	C ₁₀ - C ₃₆ sum	C ₁₀ -C ₁₄ - Silica Cleanup	C ₁₅ -C ₂₈ - Silica Cleanup	C ₂₉ -C ₃₆ - Silica Cleanup	C ₁₀ -C ₂₆ Sum - Silica Cleanup	C ₆ - C ₁₀	C ₆ - C ₁₀ minus BTEX (F1)	>C ₁₀ - C ₁₆	minus Naphthalene	>C ₁₆ - C ₃₄	>C ₃₄ - C ₄₀	>C ₁₀ -C ₁₆ - Silica Cleanup	F2 - Silica Cleanup	>C ₁₆ -C ₃₄ - Silica Cleanup	>C ₃₄ -C ₄₀ - Silica Cleanup	>C ₁₀ -C ₄₀ - Silica Cleanup			
	Units		ug/L	ua/L	ug/L	ug/L	ug/L	ug/L	ug/L	ua/L	ua/L	ua/L	ug/L	ua/L	ug/L	ug/L	ug/L	ug/L	ua/L	ug/L	ua/L	ug/L	ua/L	ug/L	ua/L	ug/L	ua/L	ug/L	na/F	ua/L	
Sample Name	Sample Date	Sample Type																													
TRIP BLANK_13022019	13-Feb-19	Trip Blank	< 1.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 5.0	< 1.0	< 20	-	-			< 50	< 100	< 50	< 50	< 20	< 20			-	-	< 100	< 100	< 100	< 100	< 100	
RINSATE01_21022019	21-Feb-19	Rinsate	< 1.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 5.0	< 1.0	< 20	-	-	-	-	< 50	< 100	< 50	< 50	< 20	< 20	-	-	-	-	< 100	< 100	< 100	< 100	< 100	
BH8_21022019	21-Feb-19	Primary	< 1.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 5.0	< 1.0	< 20	-	-	-	-	< 50	< 100	< 50	< 50	< 20	< 20	-	-	-	-	< 100	< 100	< 100	< 100	< 100	
DUP01_21022019	21-Feb-19	Duplicate	< 1.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 5.0	< 1.0	< 20	-	-	-	-	< 50	< 100	< 50	< 50	< 20	< 20	-	-	-	-	< 100	< 100	< 100	< 100	< 100	
Relative P	ercentage Differer	108	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	
BH8_21022019	21-Feb-19	Primary	< 1.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 5.0	< 1.0	< 20	-	-	-	-	< 50	< 100	< 50	< 50	< 20	< 20	-		-		< 100	< 100	< 100	< 100	< 100	
TRIP01_21022019	21-Feb-19	Triplicate	< 1.0	< 1.0	< 1.0	< 2.0	< 1.0	< 3.0	< 10	-	< 20	< 50	< 100	< 100	< 100	< 50	< 100	< 100	< 400	< 20	< 20	< 50	< 50	< 100	< 100	< 50		< 100	< 100	< 100	
Relative P	ercentage Differer	nce	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	

- - Not an

< - Less than laboratory limit of reporting

NC - Not calculated

BTEXN - Benzene, toluene, ethylbenzene, xylenes, naphthale

20190803.001A Page 5 of 7

Table 6 Quality Control Sample Analysis - Metals Williamtown Sand Syndicate

											Metals								
	Analyte		Arsenic	Barium	Beryllium	Boron	Cadmium	Chromium	Chromium VI	Cobalt	Copper	Iron	Lead	Manganese	Mercury	Nickel	Selenium	Vanadium	Zinc
	Units		mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L
Sample Name	Sample Date	Sample Type																	
TRIP BLANK_13022019	13-Feb-19	Trip Blank	< 0.001	< 0.001	< 0.001	< 0.05	< 0.0001	< 0.001	-	< 0.001	< 0.001	< 0.05	< 0.001	< 0.001	< 0.0001	< 0.001	< 0.01	< 0.01	< 0.005
RINSATE01_21022019	21-Feb-19	Rinsate	< 0.001	< 0.001	< 0.001	< 0.05	< 0.0001	< 0.001	-	< 0.001	< 0.001	< 0.05	< 0.001	< 0.001	< 0.0001	< 0.001	< 0.01	< 0.01	< 0.005
BH8_21022019	2019 21-Feb-19 Primary		< 0.001	0.011	< 0.001	< 0.05	< 0.0001	0.001	-	< 0.001	< 0.001	4.1	< 0.001	0.012	< 0.0001	0.002	< 0.01	< 0.01	0.005
DUP01_21022019	DUP01 21022019 21-Feb-19 Duplicate		0.001	0.014	< 0.001	< 0.05	< 0.0001	0.001	-	< 0.001	< 0.001	4.09	< 0.001	0.012	< 0.0001	0.003	< 0.01	< 0.01	0.015
Relative P	Relative Percentage Difference				NC	NC	NC	0%	NC	NC	NC	0%	NC	0%	NC	40%	NC	NC	100%
BH8_21022019	21-Feb-19	Primary	< 0.001	0.011	< 0.001	< 0.05	< 0.0001	0.001	-	< 0.001	< 0.001	4.1	< 0.001	0.012	< 0.0001	0.002	< 0.01	< 0.01	0.005
TRIP01_21022019	21-Feb-19	Triplicate	0.001	< 0.02	< 0.001	< 0.05	< 0.0002	< 0.005	< 0.005	< 0.001	< 0.001	4.5	< 0.001	0.012	< 0.0001	0.003	-	< 0.005	0.006
Relative P	Relative Percentage Difference				NC	NC	NC	86%	NC	NC	NC	9%	NC	0%	NC	40%	NC	NC	18%

Notes: - - Not analysed

< - Less than laboratory limit of reporting NC - Not calculated

mg/L - Milligrams per litre Half the laboratory limit of reporting used when calculating RPD

RPD - Relative Percentage Difference

20190803.001A Page 6 of 7

			Perfit	seroalkyl Sulfenic Ac	ids			Perforoalityi Carboxyic Acida										Perfluorowikył Sulfonamides								(n:2) Fluorotelomer Sulfonic Acids					
Analyte		Perfluorobutane sulfonic acid (PFBS)	Perfluoropentan e sulfonic acid (PFPeS)	Perfluorohexane sulfonic acid (PFH±S)	Perflucrohepta ne sulfonate (PFHpS)	Perfluorocctane sulfonic acid (PFOS)	Perfluorobutanoic acid (PFBA)	Perfluoropenta noic acid (PFPeA)	Perfluorohexanoic acid (PFHxA)	Perfluorohepta noic acid (PFHpA)	Perfluorooctanoic acid (PFOA)	Perfluorononanoic acid (PFNA)	Perfluorodecanoic acid (PFDA)	Perfluoroundeca noic acid (PFUnDA)	Perfluerododec noic acid (PFDoDA)	Perfluorotrideca noic acid (PFTrDA)	Perfluorotetradeca noic acid (PFTeDA)	Perfluorooctane sulfonamide (FOSA)	N-Methyl- perfluorooctane sulfonamide (MeEOSA)	N-Ethyl perfluorooctane sulfonamide (FHOSA)	N-Methyl perfluorooctane sulfonamidoeth anol (MeEOSE)	N-Ethyl perfluorooctane sulfonamidoeth and (FHOSE)	N-Methyl perfluoroctane sulfonamidoacetic arid (MeFOSAA)	N-Ethyl perfluorooctane sulfonamidoacetic acid (FREDSAA)	4:2 Fluorotelomer sulfonic acid (4:2 FTS)	6:2 Fluorotelomer sulfonio acid (6:2 FTS)	8:2 Fluoretelomer sulfenic acid (8:2 FTS)	10:2 Fluorotelomer sulfonic acid (10-2 FTS)	Sum of PFHxS and PFOS	Sum of PFAS (Wa DER List)	Sum of PFAS
Units		m/I	mall		un/I	ma/I	ma/I	me/I		ma/i	100/1		un/I	Itan	un/l	ma/I	mn/l	/I		mafi	10/1				ma/I		un/I		Rest		nes/I
Sample Name Sample Date Sa	arnole Type																														
TRIP BLANK 13022019 13-Feb-19 1	Trio Slank	< 0.02	< 0.02	< 0.02	< 0.02	< 0.01	< 0.1	< 0.02	< 0.02	< 0.02	10.0 >	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.05	< 0.02	< 0.05	< 0.05	< 0.05	< 0.05	< 0.02	< 0.02	< 0.05	< 0.05	< 0.05	< 0.05	< 0.01	< 0.01	< 0.01
RINSATE01_21022019 21-Feb-19	Rinsate	< 0.02	< 0.02	< 0.02	< 0.02	< 0.01	< 0.1	< 0.02	< 0.02	< 0.02	10.0 >	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.05		< 0.05	< 0.05	< 0.05	< 0.05	< 0.02	< 0.02	< 0.05	< 0.05	< 0.05	< 0.05	< 0.01	< 0.01	< 0.01
	Primary	< 0.02	< 0.02	< 0.02	< 0.02	< 0.01	< 0.1	< 0.02	< 0.02	< 0.02	10.0 >	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.05	< 0.02	< 0.05	< 0.05	< 0.05	< 0.05	< 0.02	< 0.02	< 0.05	< 0.05	< 0.05	< 0.05	< 0.01	< 0.01	< 0.01
DUP01_21022019 21-Feb-19 Elelative Percentage Difference	Duplicate	< 0.02	< 0.02	< 0.02	< 0.02	< 0.01	< 0.1	< 0.02	< 0.02	< 0.02	> 0.01	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.05	< 0.02	< 0.05	< 0.05	< 0.05	20.0 >	< 0.02	< 0.02	> 0.05	< 0.05	< 0.05	< 0.05	< 0.01	< 0.01	< 0.01
Relative Percentage Difference		NC	NC	NC	NC	NC	NC NC	NC NC	NC	NC	NC	NC	NC NC	NC	NC NC	NC	NC	NC	NC NC	NC NC	NC NC	NC	NC	NC NC	NC	NC	NC NC	NC	NC NC	NC NC	NC
	Primary	< 0.02	< 0.02	< 0.02	< 0.02	< 0.01	< 0.1	< 0.02	< 0.02	< 0.02	10.0 >	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.05	> 0.02	< 0.05	< 0.05	< 0.05	< 0.05	< 0.02	< 0.02	< 0.05	< 0.05	< 0.05	< 0.05	< 0.01	< 0.01	< 0.01
TRIP01_21022019 21-Feb-19	Triplicate	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.05	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.01	< 0.05	< 0.01	< 0.01	< 0.01	< 0.05	< 0.1
Relative Percentage Difference		NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC NC	NC NC	NC NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC NC	NC	NC NC	NC NC	NC

Notes: < - Less than laboratory limit of reporting NC - Not calculated unit. - Micrograms per litre

0199803.001A