

## **APPENDIX 9. BORTOLO RADIATION SURVEY**

Ref: CTR Quarry Annual Review Year 2021.docx





Surface Gamma Radiation Survey of Part of Section 7 (7B & 7C) of the Sand Quarry Site, Cabbage Tree Road, Williamtown, NSW

6/04/2021

# Bartolo Safety Management Service

Laboratory, Radiation and Dangerous Goods Consultant



## Surface Gamma Radiation Survey of Part of Section 7 (7B & 7C) of the Sand Quarry Site, Cabbage Tree Road, Williamtown, NSW

#### March 2021

by Bartolo Safety Management Service PO Box 264 Jannali NSW 2226

Phone: 02 9528 7676 Mobile: 0427 287 630 Email: bartolo-safety@hotkey.net.au

#### Disclaimer

The material contained in this report is the professional opinion of the author based on the relevant Legislation, Australian Standards, Codes of Practice and experience. The author has taken all care with respect to the information contained in the report but takes no responsibility for any errors contained in it or arising from it.

This report has been prepared in accordance within the scope of services described, in consultation between the Newcastle Sand Pty Ltd and Bartolo Safety Management Service. The report may rely on information, data, surveys and results provided by the client and the client shall assume responsibility for the accuracy of the supplied information.

This document shall not be reproduced, except in full, without the written consent of Bartolo Safety Management Service.

| Author:   |                              | William C F Bartolo, B.Sc., M.Sc., M.A.R.P.S |
|-----------|------------------------------|----------------------------------------------|
| Signed:   |                              | es South                                     |
| Date:     | 6 <sup>th</sup> April, 2021. |                                              |
| Reviewer: |                              |                                              |
| Signed:   |                              |                                              |
| Date:     |                              |                                              |

### **Contents**

| 1.0   |        | Introduction                             | <br>1  |
|-------|--------|------------------------------------------|--------|
|       | 1.1    | Site Description                         | <br>1  |
|       | 1.2    | Purpose                                  | <br>2  |
|       | 1.3    | Scope                                    | <br>2  |
|       | 1.4    | Information and Reference Material       | <br>2  |
| 2.0   |        | Historic Aspects                         | <br>4  |
| 3.0   |        | Instruments and Measurement<br>Technique | <br>5  |
|       | 3.1    | Instruments                              | <br>5  |
|       | 3.2    | Measurement Techniques                   | <br>5  |
|       |        | Surface measurements                     | <br>5  |
|       |        | Cosmic Radiation Component               | <br>6  |
|       |        | Work H & S Risk Assessment               | <br>7  |
| 4.0   |        | Survey Results                           | <br>8  |
|       | 4.1    | General                                  | <br>8  |
| 5.0   |        | Discussion                               | <br>8  |
|       |        | References                               | <br>9  |
| Appei | ndix 1 | Location and Details                     | <br>10 |
|       | ndix 2 | Other States' Requirements               | <br>11 |
|       | ndix 3 | GPS & Transects                          | <br>13 |
|       | ndix 4 | Survey Data                              | <br>15 |
|       | ndix 5 | Exploranium Calibration Certificate      | <br>46 |
|       | ndix 6 | SEI RadAlert Calibration Certificate     | <br>49 |
| • • • |        |                                          |        |

#### 1.0 Introduction

#### Glossary

ARPANSA – Australian Radiation Protection Nuclear Science Agency

Becquerel – the SI unit for radioactive activity is defined as the number of disintegrations per second

EPA - Environmental Protection Agency

Gray – is the SI unit of absorbed dose). It is defined as an energy deposition of one joule per kilogram.

NORM - Naturally Occurring Radioactive Material

Sievert – is the SI unit of equivalent dose. Dose equivalent remains, by definition, the absorbed dose multiplied by the quality factor, Q.

TENORM – Technically Enhanced Naturally Occurring Radioactive Material

#### 1.1 Site Description

The site (see Appendix 1), Cabbage Tree Road site Williamtown, has been partly sand mined and is generally an undulating site.

The area Under consideration is deemed as part of Section 7 (7B & 7C) and is being quarried for the sand for use in construction etc.

The site has a total area of approx. 3.6 ha and the survey measurements were taken on  $24^{th}$  March 2021.

Additionally, there has been some import in the past of other material to form the access roads, etc.

#### 1.2 Purpose

The purpose of this project is to determine if there is any remaining deposits of heavy mineral sands and their associated radioactivity, either left as not being mined or due to man's activities such as stock-piling, vehicle wash-downs or track consolidation.

#### 1.3 Scope

The scope of the work being undertaken by Bartolo Safety Management Service is the Geotechnic Surface Gamma Radiation Survey (where the terrain and vegetation permits). Any situations elucidated during the survey will not be part of this work.

Radiological exposure of non-human species was not included within the scope of this assessment, nor was assessment of non-radiological contaminants.

#### 1.4 Information and Reference Material

#### General

Natural radionuclide content in soil can vary significantly as evidenced by the following ranges of global median values: 16-110 Bq/kg for uranium-238, 11-64 Bq/kg for thorium-232 and 140-850 Bq/kg for potassium-40[3]. Mineral sands can have enhanced concentrations of the naturally occurring radionuclides uranium-238 and thorium-232, as well as their associated decay progeny, which can result in elevated terrestrial air kerma rates. In-situ processing of mineral sands typically separates sands of varying mineralogy by mass, magnetic and electrostatic properties; the main constituents include rutile, ilmenite, zircon, garnet and monazite. A dataset of uranium-238 and thorium-232 concentrations in heavy mineral sands is listed in Table 1.

TABLE 1: Typical specific activity concentrations of uranium and thorium in commercially available South East Queensland mineral sands (adapted from Johnston, 1988)<sup>(4)</sup>.

| MINERAL PRODUCT | Uranium-238 (Bq/kg) | Thorium-232 (Bq/kg) |
|-----------------|---------------------|---------------------|
| Rutile          | 560 ± 50            | 70 ± 15             |
| Ilmenite        | 50 ± 20             | 64 ± 20             |
| Zircon          | 3900 ± 300          | 620 ± 30            |
| Monazite        | 21000 ± 2000        | 147000 ± 1900       |

(Note: while the radiation dose units in the different State regulations are

## variously quoted in $\mu$ Sv (microsievert) or $\mu$ Gy (microgray) these units are identical for gamma radiation in this situation)

The results of the radiation survey are compared to the limits as set in the following:

A surface radiation survey, as described in EPA Guideline 12 (see below), was conducted to better define radiation levels over the site. There is no justification under *Guideline 12* and *International Commission on Radiation Protection* guidelines for further investigation methods such as sub-surface bore and soil measurements. The process of accurate boring and bore radiation measurements is relatively expensive, with only a very few companies/authorities in Australia doing such work.

## The International Commission on Radiological Protection (ICRP) recommendations

The ICRP, an independent international body, recommends upper limits on acceptable radiation dose to occupationally exposed workers (20mSv/yr averaged over 5 years) and members of the public (1mSv/yr). These limits are accepted throughout the world and used as the basis of national laws and regulations. The most recent recommendations were published in 1991 (ICRP 1991) and have been reconfirmed in 2007 (ICRP 103).

This publication introduced a new concept that is relevant to this site; the concept of "intervention". Intervention applies to situations, such as abandoned contaminated sites, where "the sources of exposure and the exposure pathways are already present and the only type of action available is intervention".

These ICRP recommendations have been adopted by the National Health and Medical Research Council (NHMRC 1995) [now controlled by the Australian Radiation Protection and Nuclear Safety Agency (ARPANSA)] for use in Australia. ARPANSA has also updated and/or released a number of documents such as RPS 9 Code of Practice and Safety Guide for Radiation Protection and Radioactive Waste management in Mining and Mineral Processing (2005), and RPS 15 Safety Guide for the Management of Naturally Occurring Radioactive Material (NORM) (2008). The relevant Commonwealth and State laws and Codes of Practice in turn adopt the NHMRC/ARPANSA recommendations but not all ARPANSA codes have yet been gazetted/mandated or included in the legislation at this time.

#### **New South Wales**

NSW Radiation Control Branch Radiation Safety Information Series No 12: Cleanup and Disposal of Radioactive Residues from Commercial Operations Involving Mineral Sands.

This document is based on the 1984 recommendations of the NHMRC and so does not necessarily reflect current international recommendations or limits/constraints. It is also only aimed at active sand mining sites, not "out of control" situations (out of control meaning that the plant and/or company are no longer operational). The limits set in this document do not correlate with current ICRP and National radiation limits. The Radiation Branch of the NSW EPA, however, has not yet produced a revised version, nor does it include reference to the latest relevant ARPANSA Codes.

#### Action levels are set:

- For high occupancy areas such as dwellings, schools (including playground), businesses factories etc. where occupancies by the same individuals occur regularly on a day by day basis, the remedial action level should be 0.7 μGy/hr (700 nGy/hr) at 1 m above the ground.
- For intermediate occupancy areas where occupancies are for a few hours per week by the same individuals or by differing individuals and for garden areas, the remedial action level should be 1.0 μGy/hr (1000 nGy/hr)at 1 m above the ground.
- For roads paths, and other areas with intermittent occupancy the remedial action level should be 2.5  $\mu$ Gy/hr (2500 nGy/hr) at 1 m above the ground.

#### Other States

See Appendice 2

## 2.0 Historic Aspects

This land has been sand mined in an unusual pattern, probably following a natural depressions where the heavy mineral sands would accumulate due to transport mechanisms such as water run-off and wind erosion. A large portion of this survey area has not been sand mined, and as such contains natural vegetation at natural density for this area and type of ecological community.

The land does not appear to have been developed since the mining, other than a little sand quarrying.

#### 3.0 Instruments and Measurement Technique

#### 3.1 Instruments

- SAIC Exploranium Model No.: GR130 Serial No.: 9940+GM Gamma ray survey (calibration conducted in June 2020 [see attached sheets Appendix 5] and confirmed on the day by use of an educational Thorium Standard and stabilized using a Cs-137 source);
- As a confirmation of any "high" counts a Radiation Alert "Inspector" (Calibrated June 2020 - see Appendix 6), also used with the wipe test plate for the soil analysis;
- a Magellan eXplorist 110 GPS unit.

The SAIC equipment measures in Counts per Second, and hence measurements need to be converted to dose rate for comparison with the NSW Guidelines and other documents. To do this the following formula, which is based and derived from the data supplied with the calibration certificates, is used:

$$y = 1.0127x - 1E-11$$
  
 $R^2 = 1$ 

Where:

y - is dose rate in nGy/hr

x - is counts per second

#### 3.2 Measurement Techniques

#### **Surface Measurements**

The proposal was to measure each of the lots as discreet areas with each area measured at approximately 15 metre grid transect using the GPS for tracking of the measurement transects and any other deviations and paths. This whole approach was dependent on the conditions (vegetation, radiation activity, topography, obstructions, and structures), Work health and Safety (WHS) Risk Assessment and as such the measurement transect pattern varied significantly most;y due to terrain and vegetation density. This modification "on-the-run" would continually consider the necessity of accurate and reliable data, and the need for sufficient measurements to capture substantial contamination zones.

The transect patterns that were finalized "on-the-run" are displayed in the Appendix (Appendix 3).

The measurement process is to trek the transect line with the instrument above the ground at about the 1 metre level. Measurements were noted when the auditory level of the instrument changed. Any "high" measurements were defined by moving about the area to determine the limit of the contamination and the highest level. The measurements would then be confirmed by using the RadAlert instrument.

The SAIC Exploranium is set up to record the measurements every two seconds in unique data sets as determined by when the measurement activity is terminated. Two second measurement intervals would equate to approximately 3 metres of normal walking over an easy walking surface. Once the work or area under consideration is completed the Exploranium is then attached to a computer and the data downloaded as a CSV file for assessment and manipulation.

**NOTE**: the measurements as displayed in the relevant appendices **do not** indicate a length of transect but rather in this situation the time and thus difficulty of progress across the terrain.

The information contained in the header of the first column of the results is the following for example:

Using Transect P6-B3 the header is:

#### 3 16:05:25 10:20:28 cps Live time (s) 2.00

- The first number is the data set number (hence this is data set 3 for this site)
- The second set 16:05:25 is the date 25 May 2016
- The third set 10:20:28 is the time is 10.20.28 AM
- The fourth set of information is cps indicating that the results are in Counts
   Per Second
- The last piece of information is Live Time (s) 2.00 which means that the measurement and data record is set at 2 second intervals.

#### Cosmic Radiation Component

The cosmic radiation component of natural background is latitude, longitude and altitude dependent; and has been calculated using United States Federal Aviation Administration Civil Aerospace Medical Institute software 'CARI-6'. The mean cosmic surface air kerma rate for September was 40.6 nGy/h (0.0406 µSv/h) at 32°

48' 29.05"S 151° 48' 06.73"E, elevation of 18 m, using a dose conversion factor of 1SV/Gy.

This does not however take into account such things as heavy cloud, rain and dense vegetation canapy which acts as shielding.

The results in the relevant Appendices have not been adjusted by the reduction of the measurements by the 0.0406  $\mu$ Sv/h factor and this has been incorporated in the data contained in column 3 of the data sets of the relevant appendices.

#### Work, Health and Safety Risk Assessment

As this work is being conducted in a "remote" location and that there are various risks associated with this type of work (such as slips, trips and falls, snake/spider/tick/insect bites, cuts and abrasions due to vegetation, allergy reactions to plants and other things, and falling limbs and branches) then a risk assessment is required and that this risk assessment is "living" whilst the work is being conducted.

As the risk for some of the hazards are medium and high then the approach BSMS will conduct during the transect measurements will be to change the transects as needed to avoid or minimise such risks.

### 4.0 Survey Results

#### 4.1 General

All measurements were completed on the 24<sup>th</sup> March 2021, and the results for the transects that were measured, showed results that in general were not of concern in terms of radiation.

The areas that had the higher though still insignificant in terms of exposure were all associated with the material used for the making/consolidation of the access tracks. The areas that actually were above the general level for these section (but are below the Guideline 12 Limit and are only about 2-3 times the normal background) are highlighted in pale yellow for interest only. The transect that had the highest dose rate was the southern boundary and that coincided with the track./road.

As can be seen from the results the dose range was from 0.0 to 0.5  $\mu$ Sv/h, which is still reasonably below the 0.7  $\mu$ Sv/h limit for residential use. Hence there would be no radiological concerns for this area.

#### 5.0 Discussion

**NOTE:** The transects were not conducted as planned due to the very dense vegetation in places – this caused loss of direction and the rambling of the transects. It was extremely difficult to walk the planned transects and maintain direction.

On examining the results of the surface gamma radiation survey there are no radioactive concentrations or activities that are of any concern for the proposed use of the land/sand. All locations are below the level of 0.7  $\mu$ Sv/hr set by the NSW Guideline for residential use.

The results, even when compared to the most restrictive of the guidelines/legislation (WA in this instance), indicate that some of the results would

Page. 8

reach the level of 0.46  $\mu$ Gy/hr for dwellings (note 0.46  $\mu$ Gy/hr is equivalent to 0.46  $\mu$ Sv/hr in this situation; conversion factor of 1:1). These "high" results are very close to the 0.46  $\mu$ Gy/hr and as such there is no need for any remedial action or intervention.

#### References

- ICRP 2007. Recommendations of the International Commission on Radiological Protection. ICRP Publication 103. Elsevier 2007.
- NSW Dept of Health. Guidelines for the Clean-up and Disposal of Radioactive Residues from Commercial operations Involving Mineral Sands 1984. Available from NSW DECC (EPA).
- Qld Health Department. Radiation Dose Levels For Properties Where Mineral Sand Residues Are Deposited On The Ground. 1995
- ARPANSA RPS 9 Code of Practice and Safety Guide for Radiation Protection and Radioactive Waste management in Mining and Mineral Processing (2005)
- ARPANSA RPS 15 Safety Guide for the Management of Naturally Occurring Radioactive Material (NORM) (2008).

FAA's Civil Aerospace Medical Institute Radiobiology Research Team, *CARI-6*, 2004, United States of America Federal Aviation Administration. p. Computer Freeware.

## **APPENDIX 1** Location and details



| Reference | Latitude        | Longitude        |
|-----------|-----------------|------------------|
| SE corner | 32° 48' 30.57"S | 151° 48' 22.08"E |
| SW corner | 32° 48' 30.78"S | 151° 48' 06.10"E |
| NW corner | 32° 48' 29.05"S | 151° 48' 06.73"E |
| NE corner | 32° 48' 28.63"S | 151° 48' 21.53"E |
| Mkr1      | 32° 48' 29.85"S | 151° 48' 06.47"E |
| Mkr2      | 32° 48' 29.53"S | 151° 48' 21.81"E |
| N Brdr 1  | 32° 48' 29.57"S | 151° 48' 09.85"E |
| N Brdr 2  | 32° 48' 28.33"S | 151° 48' 12.98"E |
| N Brdr 3  | 32° 48' 28.96"S | 151° 48' 17.73"E |
| S Brdr 1  | 32° 48' 32.2"S  | 151° 48' 10.55"E |

Page. 10

### APPENDIX 2 Other States' Relevant Legislation

#### Queensland

Queensland Health Policy Document: Radiation Dose Levels for Properties where Mineral Sand Residues are Deposited on the Ground

This document is of relevance because it was written in 1995 and incorporates the more recent ICRP concept of "intervention". For some of its recommendations, however, it still refers back to a 1984 NHMRC document.

For practices under control, where technically enhanced radiation sources (TENORM) of mineral sands are deposited on the ground the limits are:

- 0.1 μSv/hr above the natural background level for dwellings, schools, etc. and
- 0.2 μSv/hr above the natural background level for parks etc.

Assuming a background level of  $0.1\mu Sv/hr$ , the action levels for dwellings, schools, etc. would be  $0.2~\mu Sv/hr$  and for parks etc. would be  $0.3~\mu Sv/hr$ . Practices under control refer to situations where the mining company is still operating and has responsibility for the land in question.

For an "out of control" practice (i.e. an intervention situation), where the mining company is not still operating and has no responsibility for the land in question, the action levels including background are:

- for dwellings, schools etc., 0.6 μSv/hr (600 nGy/hr),
- for parks etc., 1.0 μSv/hr (1000 nGy/hr) and
- for roads and footpaths, 2.5  $\mu$ Sv/hr (2500 nGy/hr). PTO

BSMS Radiation Survey of Newcastle Sand Quarry site Section 7 Part 1

#### Western Australia

#### Radiation Health Branch of WA Mines Department Guidelines

The Radiation Health Branch of the West Australian Mines Department set (in 1988) Guidelines for remedial action in areas of enhanced background gamma radiation levels. The action level criteria are:

- for dwellings, 0.46 μGy/hr,
- for schools, 0.57 μGy/hr,
- for other areas, 0.7 μGy/hr, and
- for roads, paths etc, 2.5 μGy/hr.

## **APPENDIX 4 GPS Coordinates, and transects**

Map datum WSG84; North Reference – Magnetic; Coordinate type – Degree minutes & seconds

| Reference | Latitude        | Longitude        |
|-----------|-----------------|------------------|
| SE corner | 32° 48′ 30.57″S | 151° 48' 22.08"E |
| SW corner | 32° 48' 30.78"S | 151° 48' 06.10"E |
| NW corner | 32° 48' 29.05"S | 151° 48' 06.73"E |
| NE corner | 32° 48' 28.63"S | 151° 48' 21.53"E |
| Mkr1      | 32° 48' 29.85"S | 151° 48' 06.47"E |
| Mkr2      | 32° 48' 29.53"S | 151° 48' 21.81"E |
| N Brdr 1  | 32° 48' 29.57"S | 151° 48' 09.85"E |
| N Brdr 2  | 32° 48' 28.33"S | 151° 48' 12.98"E |
| N Brdr 3  | 32° 48' 28.96"S | 151° 48' 17.73"E |
| S Brdr 1  | 32° 48' 32.2"S  | 151° 48' 10.55"E |

| Information Detail | Value                         |
|--------------------|-------------------------------|
| Distance traversed | Approx. 4 km                  |
| No. transects      | 15 (1 perimeter, 1 EW; 13 NS) |
| No. data Points    | Approx 2800                   |

The transects (P1, EW, & NS) conducted on the site for the Gamma Radiation Surface Survey (GPS error approx  $\pm$  3m)[light blue track – EW transect; green track – NS transects; Blue track - perimeter]



## **APPENDIX 4 Surface Gamma Radiation Results**

|                               | (North Bound | ary)            | 32 | 0.03 | 0.00 |
|-------------------------------|--------------|-----------------|----|------|------|
| 1                             |              |                 | 33 | 0.03 | 0.00 |
| 21:03:24                      |              |                 | 37 | 0.04 | 0.00 |
| 08:59:24 cps<br>Live time (s) | cps to micro |                 | 28 | 0.03 | 0.00 |
| 2.00                          | Sv/h         | solar corrected | 37 | 0.04 | 0.00 |
| 66                            | 0.07         | 0.02            | 35 | 0.03 | 0.00 |
| 57                            | 0.06         | 0.02            | 36 | 0.04 | 0.00 |
| 73                            | 0.07         | 0.03            | 38 | 0.04 | 0.00 |
| 60                            | 0.06         | 0.02            | 42 | 0.04 | 0.00 |
| 57                            | 0.06         | 0.02            | 38 | 0.04 | 0.00 |
| 58                            | 0.06         | 0.02            | 30 | 0.03 | 0.00 |
| 49                            | 0.05         | 0.01            | 38 | 0.04 | 0.00 |
| 56                            | 0.06         | 0.01            | 42 | 0.04 | 0.00 |
| 42                            | 0.04         | 0.00            | 38 | 0.04 | 0.00 |
| 48                            | 0.05         | 0.01            | 38 | 0.04 | 0.00 |
| 47                            | 0.05         | 0.01            | 30 | 0.03 | 0.00 |
| 51                            | 0.05         | 0.01            | 44 | 0.04 | 0.0  |
| 36                            | 0.04         | 0.00            | 35 | 0.03 | 0.0  |
| 36                            | 0.04         | 0.00            | 28 | 0.03 | 0.0  |
| 39                            | 0.04         | 0.00            | 41 | 0.04 | 0.0  |
| 34                            | 0.03         | 0.00            | 36 | 0.04 | 0.0  |
| 37                            | 0.04         | 0.00            | 42 | 0.04 | 0.0  |
| 41                            | 0.04         | 0.00            | 33 | 0.03 | 0.0  |
| 33                            | 0.03         | 0.00            | 40 | 0.04 | 0.0  |
| 31                            | 0.03         | 0.00            | 28 | 0.03 | 0.0  |
| 32                            | 0.03         | 0.00            | 37 | 0.04 | 0.0  |
| 38                            | 0.04         | 0.00            | 34 | 0.03 | 0.0  |
| 37                            | 0.04         | 0.00            | 46 | 0.05 | 0.0  |
| 30                            | 0.03         | 0.00            | 41 | 0.04 | 0.0  |
| 45                            | 0.04         | 0.00            | 38 | 0.04 | 0.0  |
| 27                            | 0.03         | 0.00            | 36 | 0.04 | 0.0  |
| 38                            | 0.04         | 0.00            | 44 | 0.04 | 0.0  |
| 40                            | 0.04         | 0.00            | 47 | 0.05 | 0.0  |
| 38                            | 0.04         | 0.00            | 34 | 0.03 | 0.0  |
| 38                            | 0.04         | 0.00            | 33 | 0.03 | 0.0  |
| 44                            | 0.04         | 0.00            | 34 | 0.03 | 0.0  |
| 39                            | 0.04         | 0.00            | 37 | 0.04 | 0.0  |
| 42                            | 0.04         | 0.00            | 30 | 0.03 | 0.0  |
| 35                            | 0.03         | 0.00            | 35 | 0.03 | 0.00 |
| 33                            | 0.03         | 0.00            | 39 | 0.04 | 0.00 |
| 38                            | 0.04         | 0.00            | 44 | 0.04 | 0.00 |

March 2021 Page. 15

|                   |              | 7                |    |      |      |
|-------------------|--------------|------------------|----|------|------|
| 35                | 0.03         | 0.00             | 26 | 0.03 | 0.00 |
| 34                | 0.03         | 0.00             | 34 | 0.03 | 0.00 |
| 36                | 0.04         | 0.00             | 35 | 0.03 | 0.00 |
| 34                | 0.03         | 0.00             | 40 | 0.04 | 0.00 |
| 28                | 0.03         | 0.00             | 43 | 0.04 | 0.00 |
| 35                | 0.03         | 0.00             | 40 | 0.04 | 0.00 |
| 37                | 0.04         | 0.00             | 43 | 0.04 | 0.00 |
| 33                | 0.03         | 0.00             | 43 | 0.04 | 0.00 |
| 30                | 0.03         | 0.00             | 45 | 0.04 | 0.00 |
| 30                | 0.03         | 0.00             | 45 | 0.04 | 0.00 |
| 32                | 0.03         | 0.00             | 42 | 0.04 | 0.00 |
| 26                | 0.03         | 0.00             | 39 | 0.04 | 0.00 |
| 28                | 0.03         | 0.00             | 49 | 0.05 | 0.01 |
| 27                | 0.03         | 0.00             | 38 | 0.04 | 0.00 |
| 34                | 0.03         | 0.00             | 40 | 0.04 | 0.00 |
| 36                | 0.04         | 0.00             | 42 | 0.04 | 0.00 |
| 23                | 0.02         | 0.00             | 44 | 0.04 | 0.00 |
| 38                | 0.04         | 0.00             | 32 | 0.03 | 0.00 |
| 32                | 0.03         | 0.00             | 36 | 0.04 | 0.00 |
| 28                | 0.03         | 0.00             | 42 | 0.04 | 0.00 |
| 30                | 0.03         | 0.00             | 38 | 0.04 | 0.00 |
| 30                | 0.03         | 0.00             | 45 | 0.04 | 0.00 |
| 29                | 0.03         | 0.00             | 43 | 0.04 | 0.00 |
| 29                | 0.03         | 0.00             | 37 | 0.04 | 0.00 |
| 28                | 0.03         | 0.00             | 45 | 0.04 | 0.00 |
| 31                | 0.03         | 0.00             | 46 | 0.05 | 0.00 |
| 35                | 0.03         | 0.00             | 41 | 0.04 | 0.00 |
| 33                | 0.03         | 0.00             | 39 | 0.04 | 0.00 |
| 42                | 0.04         | 0.00             | 41 | 0.04 | 0.00 |
|                   |              |                  | 39 | 0.04 | 0.00 |
|                   |              |                  | 44 | 0.04 | 0.00 |
| Nbrdr1 - Nbrdr2   | (North Boun  | dany             | 40 | 0.04 | 0.00 |
| 2                 | (North Bodin | uai y)           | 33 | 0.03 | 0.00 |
| 21:03:24 09:08:59 |              |                  | 39 | 0.04 | 0.00 |
| cps Live time (s) | cps to micro | Carrier Confi    | 42 | 0.04 | 0.00 |
| 2.00              | Sv/h         | solar correction | 51 | 0.05 | 0.01 |
| 29                | 0.03         | 0.00             | 39 | 0.04 | 0.00 |
| 34                | 0.03         | 0.00             | 43 | 0.04 | 0.00 |
| 36                | 0.04         | 0.00             | 44 | 0.04 | 0.00 |
| 31                | 0.03         | 0.00             | 39 | 0.04 | 0.00 |
| 43                | 0.04         | 0.00             | 51 | 0.05 | 0.01 |
| 44                | 0.04         | 0.00             | 46 | 0.05 | 0.00 |
| 33                | 0.03         | 0.00             | 41 | 0.04 | 0.00 |
| 31                | 0.03         | 0.00             | 42 | 0.04 | 0.00 |
| 28                | 0.03         | 0.00             | 43 | 0.04 | 0.00 |
| 37                | 0.04         | 0.00             | 33 | 0.03 | 0.00 |
|                   |              |                  | 45 | 0.04 | 0.00 |

| 4.4      | 0.04         | 0.00         | 22       | 0.03         | 0.00         |
|----------|--------------|--------------|----------|--------------|--------------|
| 44<br>50 | 0.04         | 0.00<br>0.01 | 32<br>42 | 0.03<br>0.04 | 0.00         |
| 30<br>37 | 0.03         | 0.00         | 49       | 0.04         | 0.00         |
| 42       | 0.04         | 0.00         | 42       | 0.04         | 0.01         |
| 42       | 0.04         | 0.00         | 38       | 0.04         | 0.00         |
| 48       | 0.05         |              | 45       |              | 0.00         |
| 44       | 0.03         | 0.01<br>0.00 | 1.9      | 0.04         |              |
| 44       | 0.04         | 0.00         | 46<br>52 | 0.05         | 0.00         |
| 44       |              |              |          | 0.05         | 0.01         |
|          | 0.04         | 0.00         | 57       | 0.06         | 0.02         |
| 45<br>47 | 0.04<br>0.05 | 0.00<br>0.01 | 45<br>45 | 0.04<br>0.04 | 0.00         |
| 48       | 0.05         | 0.01         | 46       | 0.05         | 0.00         |
| 46       | 0.05         | 0.00         | 42       | 0.04         |              |
| 39       | 0.03         | 0.00         | 49       | 0.05         | 0.00<br>0.01 |
|          |              |              | 3.51     |              |              |
| 42<br>50 | 0.04<br>0.05 | 0.00<br>0.01 | 45       | 0.04<br>0.05 | 0.00<br>0.01 |
|          | 0.04         |              | 50       |              |              |
| 39       | 0.04         | 0.00         | 40       | 0.04         | 0.00         |
| 43<br>40 | 0.04         | 0.00         | 38<br>54 | 0.04         | 0.00         |
| 42       | 0.04         | 0.00         |          | 0.05         | 0.01         |
|          |              |              | 47       | 0.05         | 0.01         |
| 46       | 0.05         | 0.00         | 45       | 0.04         | 0.00         |
| 34       | 0.03         | 0.00         | 48       | 0.05         | 0.01         |
| 39       | 0.04         | 0.00         | 57       | 0.06         | 0.02         |
| 42       | 0.04         | 0.00         | 56       | 0.06         | 0.01         |
| 42       | 0.04         | 0.00         | 56       | 0.06         | 0.01         |
| 40       | 0.04         | 0.00         | 62       | 0.06         | 0.02         |
| 48       | 0.05         | 0.01         | 41       | 0.04         | 0.00         |
| 44       | 0.04         | 0.00         | 41       | 0.04         | 0.00         |
| 43<br>52 | 0.04<br>0.05 | 0.00<br>0.01 | 46<br>52 | 0.05<br>0.05 | 0.00<br>0.01 |
|          |              |              | 15.5     |              |              |
| 43       | 0.04         | 0.00         | 57       | 0.06         | 0.02         |
| 52       | 0.05         | 0.01         | 49       | 0.05         | 0.01         |
| 42       | 0.04         | 0.00         | 49       | 0.05         | 0.01         |
| 48       | 0.05         | 0.01         | 47       | 0.05         | 0.01         |
| 45       | 0.04         | 0.00         | 58       | 0.06         | 0.02         |
| 54       | 0.05         | 0.01         | 47       | 0.05         | 0.01         |
| 43       | 0.04         | 0.00         | 61       | 0.06         | 0.02         |
| 53       | 0.05         | 0.01         | 53       | 0.05         | 0.01         |
| 48       | 0.05         | 0.01         | 45       | 0.04         | 0.00         |
| 51       | 0.05         | 0.01         | 50       | 0.05         | 0.01         |
| 45       | 0.04         | 0.00         | 55       | 0.05         | 0.01         |
| 41       | 0.04         | 0.00         | 52       | 0.05         | 0.01         |
| 44       | 0.04         | 0.00         | 52       | 0.05         | 0.01         |
| 49       | 0.05         | 0.01         | 47       | 0.05         | 0.01         |
| 43       | 0.04         | 0.00         | 43       | 0.04         | 0.00         |
| 45       | 0.04         | 0.00         | 54       | 0.05         | 0.01         |
| 41       | 0.04         | 0.00         | 48       | 0.05         | 0.01         |
|          |              |              |          |              |              |

| 50 | 0.05 | 0.01 | 55 | 0.05 | 0.01 |
|----|------|------|----|------|------|
| 56 | 0.06 | 0.01 | 57 | 0.06 | 0.02 |
| 54 | 0.05 | 0.01 | 68 | 0.07 | 0.03 |
| 42 | 0.04 | 0.00 | 62 | 0.06 | 0.02 |
| 59 | 0.06 | 0.02 | 54 | 0.05 | 0.01 |
| 52 | 0.05 | 0.01 | 52 | 0.05 | 0.01 |
| 54 | 0.05 | 0.01 | 59 | 0.06 | 0.02 |
| 47 | 0.05 | 0.01 | 49 | 0.05 | 0.01 |
| 53 | 0.05 | 0.01 | 57 | 0.06 | 0.02 |
| 62 | 0.06 | 0.02 | 49 | 0.05 | 0.01 |
| 45 | 0.04 | 0.00 | 53 | 0.05 | 0.01 |
| 56 | 0.06 | 0.01 | 52 | 0.05 | 0.01 |
| 52 | 0.05 | 0.01 | 55 | 0.05 | 0.01 |
| 56 | 0.06 | 0.01 | 58 | 0.06 | 0.02 |
| 49 | 0.05 | 0.01 | 47 | 0.05 | 0.01 |
| 48 | 0.05 | 0.01 | 46 | 0.05 | 0.00 |
| 48 | 0.05 | 0.01 | 47 | 0.05 | 0.01 |
| 61 | 0.06 | 0.02 | 55 | 0.05 | 0.01 |
| 54 | 0.05 | 0.01 | 49 | 0.05 | 0.01 |
| 54 | 0.05 | 0.01 | 52 | 0.05 | 0.01 |
| 65 | 0.06 | 0.02 | 54 | 0.05 | 0.01 |
| 66 | 0.07 | 0.02 | 43 | 0.04 | 0.00 |
| 60 | 0.06 | 0.02 | 46 | 0.05 | 0.00 |
| 50 | 0.05 | 0.01 | 49 | 0.05 | 0.01 |
| 56 | 0.06 | 0.01 | 43 | 0.04 | 0.00 |
| 62 | 0.06 | 0.02 | 47 | 0.05 | 0.01 |
| 57 | 0.06 | 0.02 | 44 | 0.04 | 0.00 |
| 55 | 0.05 | 0.01 | 54 | 0.05 | 0.01 |
| 52 | 0.05 | 0.01 | 48 | 0.05 | 0.01 |
| 53 | 0.05 | 0.01 | 44 | 0.04 | 0.00 |
| 58 | 0.06 | 0.02 | 58 | 0.06 | 0.02 |
| 63 | 0.06 | 0.02 | 50 | 0.05 | 0.01 |
| 50 | 0.05 | 0.01 | 52 | 0.05 | 0.01 |
| 51 | 0.05 | 0.01 | 53 | 0.05 | 0.01 |
| 55 | 0.05 | 0.01 | 46 | 0.05 | 0.00 |
| 59 | 0.06 | 0.02 | 45 | 0.04 | 0.00 |
| 50 | 0.05 | 0.01 | 46 | 0.05 | 0.00 |
| 63 | 0.06 | 0.02 | 57 | 0.06 | 0.02 |
| 56 | 0.06 | 0.01 | 46 | 0.05 | 0.00 |
| 64 | 0.06 | 0.02 | 43 | 0.04 | 0.00 |
| 53 | 0.05 | 0.01 | 52 | 0.05 | 0.01 |
| 54 | 0.05 | 0.01 | 43 | 0.04 | 0.00 |
| 63 | 0.06 | 0.02 | 54 | 0.05 | 0.01 |
| 57 | 0.06 | 0.02 | 53 | 0.05 | 0.01 |
| 56 | 0.06 | 0.01 | 51 | 0.05 | 0.01 |
| 50 | 0.05 | 0.01 | 47 | 0.05 | 0.01 |
| 58 | 0.06 | 0.02 | 48 | 0.05 | 0.01 |

| 43                     | 0.04           | 0.00       | 51 | 0.05 | 0.01 |
|------------------------|----------------|------------|----|------|------|
| 51                     | 0.04           | 0.00       | 38 | 0.04 | 0.00 |
| 46                     | 0.05           | 0.00       | 49 | 0.05 | 0.00 |
| 38                     | 0.04           | 0.00       | 48 | 0.05 | 0.01 |
| 47                     | 0.05           | 0.01       | 54 | 0.05 | 0.01 |
| 50                     | 0.05           | 0.01       | 45 | 0.04 | 0.00 |
| 44                     | 0.04           | 0.00       | 51 | 0.05 | 0.01 |
| 45                     | 0.04           | 0.00       | 54 | 0.05 | 0.01 |
| 49                     | 0.05           | 0.01       | 43 | 0.04 | 0.00 |
| 45                     | 0.04           | 0.00       | 52 | 0.05 | 0.01 |
| 42                     | 0.04           | 0.00       | 50 | 0.05 | 0.01 |
| 52                     | 0.05           | 0.01       | 67 | 0.07 | 0.03 |
| 43                     | 0.04           | 0.00       | 49 | 0.05 | 0.01 |
| 53                     | 0.05           | 0.01       | 58 | 0.06 | 0.02 |
| 42                     | 0.04           | 0.00       | 55 | 0.05 | 0.01 |
| 44                     | 0.04           | 0.00       | 51 | 0.05 | 0.01 |
| 54                     | 0.05           | 0.01       | 50 | 0.05 | 0.01 |
| 48                     | 0.05           | 0.01       | 42 | 0.04 | 0.00 |
| 48                     | 0.05           | 0.01       | 48 | 0.05 | 0.01 |
| 48                     | 0.05           | 0.01       | 45 | 0.04 | 0.00 |
| 50                     | 0.05           | 0.01       | 52 | 0.05 | 0.01 |
| 47                     | 0.05           | 0.01       | 37 | 0.04 | 0.00 |
| 55                     | 0.05           | 0.01       | 46 | 0.05 | 0.00 |
| 49                     | 0.05           | 0.01       | 56 | 0.06 | 0.01 |
| 32                     | 0.03           | 0.00       | 36 | 0.04 | 0.00 |
| 45                     | 0.04           | 0.00       | 44 | 0.04 | 0.00 |
| 35                     | 0.03           | 0.00       | 56 | 0.06 | 0.01 |
| 41                     | 0.04           | 0.00       | 49 | 0.05 | 0.01 |
| 41                     | 0.04           | 0.00       | 38 | 0.04 | 0.00 |
| 46                     | 0.05           | 0.00       | 51 | 0.05 | 0.01 |
| 42                     | 0.04           | 0.00       | 56 | 0.06 | 0.01 |
| 49                     | 0.05           | 0.01       | 52 | 0.05 | 0.01 |
| 53                     | 0.05           | 0.01       | 55 | 0.05 | 0.01 |
| 46                     | 0.05           | 0.00       | 58 | 0.06 | 0.02 |
| 51                     | 0.05           | 0.01       | 48 | 0.05 | 0.01 |
| 37                     | 0.04           | 0.00       | 49 | 0.05 | 0.01 |
| 55                     | 0.05           | 0.01       | 62 | 0.06 | 0.02 |
| 45                     | 0.04           | 0.00       | 49 | 0.05 | 0.01 |
| 49                     | 0.05           | 0.01       | 57 | 0.06 | 0.02 |
|                        |                | 110        | 52 | 0.05 | 0.01 |
|                        |                |            | 63 | 0.06 | 0.02 |
| Nbrdr2 – Nbrdr 3       | 3 (North Bound | ary)       | 56 | 0.06 | 0.01 |
| 3<br>21:03:24 09:23:12 |                |            | 54 | 0.05 | 0.01 |
| cps Live time (s)      | cps to micro   | solar      | 67 | 0.07 | 0.03 |
| 2.00                   | Sv/h           | correction | 54 | 0.05 | 0.01 |
| 49                     | 0.05           | 0.01       | 58 | 0.06 | 0.02 |
|                        |                |            | 56 | 0.06 | 0.01 |

| 57         | 0.06 | 0.02 | 47 | 0.05 | 0.01 |
|------------|------|------|----|------|------|
| 62         | 0.06 | 0.02 | 60 | 0.06 | 0.02 |
| 69         | 0.07 | 0.03 | 53 | 0.05 | 0.01 |
| 61         | 0.06 | 0.02 | 59 | 0.06 | 0.02 |
| 65         | 0.06 | 0.02 | 62 | 0.06 | 0.02 |
| 52         | 0.05 | 0.01 | 51 | 0.05 | 0.01 |
| 68         | 0.07 | 0.03 | 61 | 0.06 | 0.02 |
| 54         | 0.05 | 0.01 | 54 | 0.05 | 0.01 |
| 62         | 0.06 | 0.02 | 52 | 0.05 | 0.01 |
| 51         | 0.05 | 0.01 | 57 | 0.06 | 0.02 |
| 59         | 0.06 | 0.02 | 54 | 0.05 | 0.01 |
| 58         | 0.06 | 0.02 | 60 | 0.06 | 0.02 |
| 49         | 0.05 | 0.01 | 54 | 0.05 | 0.01 |
| 53         | 0.05 | 0.01 | 54 | 0.05 | 0.01 |
| 52         | 0.05 | 0.01 | 57 | 0.06 | 0.02 |
| 53         | 0.05 | 0.01 | 52 | 0.05 | 0.01 |
| 55         | 0.05 | 0.01 | 56 | 0.06 | 0.01 |
| 51         | 0.05 | 0.01 | 56 | 0.06 | 0.01 |
| 60         | 0.06 | 0.02 | 63 | 0.06 | 0.02 |
| 64         | 0.06 | 0.02 | 55 | 0.05 | 0.01 |
| 69         | 0.07 | 0.03 | 58 | 0.06 | 0.02 |
| 64         | 0.06 | 0.02 | 60 | 0.06 | 0.02 |
| 52         | 0.05 | 0.01 | 64 | 0.06 | 0.02 |
| 54         | 0.05 | 0.01 | 65 | 0.06 | 0.02 |
| 69         | 0.07 | 0.03 | 62 | 0.06 | 0.02 |
| 57         | 0.06 | 0.02 | 56 | 0.06 | 0.01 |
| 52         | 0.05 | 0.01 | 53 | 0.05 | 0.01 |
| 50         | 0.05 | 0.01 | 54 | 0.05 | 0.01 |
| 58         | 0.06 | 0.02 | 69 | 0.07 | 0.03 |
| 52         | 0.05 | 0.01 | 62 | 0.06 | 0.02 |
| 56         | 0.06 | 0.01 | 58 | 0.06 | 0.02 |
| 61         | 0.06 | 0.02 | 55 | 0.05 | 0.01 |
| 51         | 0.05 | 0.01 | 60 | 0.06 | 0.02 |
| 56         | 0.06 | 0.01 | 63 | 0.06 | 0.02 |
| 54         | 0.05 | 0.01 | 55 | 0.05 | 0.01 |
| 58         | 0.06 | 0.02 | 63 | 0.06 | 0.02 |
| 48         | 0.05 | 0.01 | 53 | 0.05 | 0.01 |
| 59         | 0.06 | 0.02 | 56 | 0.06 | 0.01 |
| 63         | 0.06 | 0.02 | 59 | 0.06 | 0.02 |
| 53         | 0.05 | 0.01 | 59 | 0.06 | 0.02 |
| 56         | 0.06 | 0.01 | 61 | 0.06 | 0.02 |
| 59         | 0.06 | 0.02 | 58 | 0.06 | 0.02 |
| 52         | 0.05 | 0.01 | 59 | 0.06 | 0.02 |
| 55         | 0.05 | 0.01 | 56 | 0.06 | 0.01 |
| 63         | 0.06 | 0.02 | 55 | 0.05 | 0.01 |
| 61         | 0.06 | 0.02 | 56 | 0.06 | 0.01 |
| 54         | 0.05 | 0.01 | 46 | 0.05 | 0.00 |
| <b>5</b> . | 0.05 | 0.01 | 10 | 0.00 | 0.00 |

| 52 | 0.05 | 0.01 | 51 | 0.05 | 0.01 |
|----|------|------|----|------|------|
| 58 | 0.06 | 0.02 | 52 | 0.05 | 0.01 |
| 53 | 0.05 | 0.01 | 60 | 0.06 | 0.02 |
| 57 | 0.06 | 0.02 | 61 | 0.06 | 0.02 |
| 58 | 0.06 | 0.02 | 50 | 0.05 | 0.01 |
| 60 | 0.06 | 0.02 | 54 | 0.05 | 0.01 |
| 54 | 0.05 | 0.01 | 56 | 0.06 | 0.01 |
| 53 | 0.05 | 0.01 | 55 | 0.05 | 0.01 |
| 47 | 0.05 | 0.01 | 55 | 0.05 | 0.01 |
| 50 | 0.05 | 0.01 | 56 | 0.06 | 0.01 |
| 49 | 0.05 | 0.01 | 69 | 0.07 | 0.03 |
| 48 | 0.05 | 0.01 | 51 | 0.05 | 0.01 |
| 53 | 0.05 | 0.01 | 44 | 0.04 | 0.00 |
| 56 | 0.06 | 0.01 | 60 | 0.06 | 0.02 |
| 61 | 0.06 | 0.02 | 63 | 0.06 | 0.02 |
| 54 | 0.05 | 0.02 | 52 | 0.05 | 0.02 |
| 47 | 0.05 | 0.01 | 68 | 0.07 | 0.03 |
| 51 | 0.05 | 0.01 | 52 | 0.05 | 0.03 |
| 55 | 0.05 | 0.01 | 58 | 0.06 | 0.01 |
| 60 | 0.06 | 0.02 | 66 | 0.07 |      |
|    |      |      | 57 |      | 0.02 |
| 53 | 0.05 | 0.01 |    | 0.06 | 0.02 |
| 59 | 0.06 | 0.02 | 61 | 0.06 | 0.02 |
| 53 | 0.05 | 0.01 | 59 | 0.06 | 0.02 |
| 54 | 0.05 | 0.01 | 62 | 0.06 | 0.02 |
| 64 | 0.06 | 0.02 | 63 | 0.06 | 0.02 |
| 56 | 0.06 | 0.01 | 74 | 0.07 | 0.03 |
| 56 | 0.06 | 0.01 | 69 | 0.07 | 0.03 |
| 55 | 0.05 | 0.01 | 71 | 0.07 | 0.03 |
| 57 | 0.06 | 0.02 | 87 | 0.09 | 0.04 |
| 61 | 0.06 | 0.02 | 80 | 0.08 | 0.04 |
| 47 | 0.05 | 0.01 | 92 | 0.09 | 0.05 |
| 55 | 0.05 | 0.01 | 72 | 0.07 | 0.03 |
| 67 | 0.07 | 0.03 | 72 | 0.07 | 0.03 |
| 52 | 0.05 | 0.01 | 86 | 0.08 | 0.04 |
| 56 | 0.06 | 0.01 | 83 | 0.08 | 0.04 |
| 44 | 0.04 | 0.00 | 77 | 0.08 | 0.03 |
| 48 | 0.05 | 0.01 | 77 | 0.08 | 0.03 |
| 64 | 0.06 | 0.02 | 88 | 0.09 | 0.05 |
| 59 | 0.06 | 0.02 | 88 | 0.09 | 0.05 |
| 62 | 0.06 | 0.02 | 82 | 0.08 | 0.04 |
| 58 | 0.06 | 0.02 | 72 | 0.07 | 0.03 |
| 58 | 0.06 | 0.02 | 79 | 0.08 | 0.04 |
| 63 | 0.06 | 0.02 | 73 | 0.07 | 0.03 |
| 47 | 0.05 | 0.01 | 92 | 0.09 | 0.05 |
| 46 | 0.05 | 0.00 | 81 | 0.08 | 0.04 |
| 51 | 0.05 | 0.01 | 78 | 0.08 | 0.04 |
| 50 | 0.05 | 0.01 | 79 | 0.08 | 0.04 |

| 70       | 0.07         | 0.03         | 72       | 0.07 | 0.03 |
|----------|--------------|--------------|----------|------|------|
| 93       | 0.09         | 0.05         | 67       | 0.07 | 0.03 |
| 82       | 0.08         | 0.04         | 68       | 0.07 | 0.03 |
| 92       | 0.09         | 0.05         | 75       | 0.07 | 0.03 |
| 83       | 0.08         | 0.04         | 64       | 0.06 | 0.02 |
| 82       | 0.08         | 0.04         | 65       | 0.06 | 0.02 |
| 84       | 0.08         | 0.04         | 79       | 0.08 | 0.04 |
| 79       | 0.08         | 0.04         | 68       | 0.07 | 0.03 |
| 67       | 0.07         | 0.03         | 68       | 0.07 | 0.03 |
| 64       | 0.06         | 0.02         | 60       | 0.06 | 0.02 |
| 67       | 0.07         | 0.03         | 67       | 0.07 | 0.03 |
| 69       | 0.07         | 0.03         | 61       | 0.06 | 0.02 |
| 79       | 0.08         | 0.04         | 55       | 0.05 | 0.01 |
| 71       | 0.07         | 0.03         | 67       | 0.07 | 0.03 |
| 73       | 0.07         | 0.03         | 63       | 0.06 | 0.02 |
| 72       | 0.07         | 0.03         | 63       | 0.06 | 0.02 |
| 83       | 0.08         | 0.04         | 66       | 0.07 | 0.02 |
| 84       | 0.08         | 0.04         | 72       | 0.07 | 0.03 |
| 89       | 0.09         | 0.05         | 60       | 0.06 | 0.02 |
| 74       | 0.07         | 0.03         | 63       | 0.06 | 0.02 |
| 73       | 0.07         | 0.03         | 64       | 0.06 | 0.02 |
| 76       | 0.07         | 0.03         | 55       | 0.05 | 0.02 |
| 74       | 0.07         | 0.03         | 63       | 0.06 | 0.01 |
| 80       | 0.08         | 0.04         | 59       | 0.06 | 0.02 |
| 80       | 0.08         | 0.04         | 63       | 0.06 | 0.02 |
| 67       | 0.07         | 0.03         | 55       | 0.05 | 0.02 |
| 68       | 0.07         | 0.03         | 77       | 0.08 |      |
|          |              |              | 67       | 0.08 | 0.03 |
| 62       | 0.06         | 0.02         |          |      | 0.03 |
| 69<br>64 | 0.07<br>0.06 | 0.03<br>0.02 | 64<br>59 | 0.06 | 0.02 |
|          |              |              |          | 0.06 | 0.02 |
| 54       | 0.05         | 0.01         | 75<br>70 | 0.07 | 0.03 |
| 61       | 0.06         | 0.02         | 70       | 0.07 | 0.03 |
| 55       | 0.05         | 0.01         | 73       | 0.07 | 0.03 |
| 54       | 0.05         | 0.01         | 65       | 0.06 | 0.02 |
| 67       | 0.07         | 0.03         | 61       | 0.06 | 0.02 |
| 62       | 0.06         | 0.02         | 69       | 0.07 | 0.03 |
| 63       | 0.06         | 0.02         | 56       | 0.06 | 0.01 |
| 65       | 0.06         | 0.02         | 73       | 0.07 | 0.03 |
| 60       | 0.06         | 0.02         | 77       | 0.08 | 0.03 |
| 63       | 0.06         | 0.02         | 60       | 0.06 | 0.02 |
| 64       | 0.06         | 0.02         | 62       | 0.06 | 0.02 |
| 70       | 0.07         | 0.03         | 70       | 0.07 | 0.03 |
| 62       | 0.06         | 0.02         | 78       | 0.08 | 0.04 |
| 60       | 0.06         | 0.02         | 68       | 0.07 | 0.03 |
| 66       | 0.07         | 0.02         | 59       | 0.06 | 0.02 |
| 70       | 0.07         | 0.03         | 59       | 0.06 | 0.02 |
| 69       | 0.07         | 0.03         | 68       | 0.07 | 0.03 |

| 57        | 0.06         | 0.02 | 72 | 0.07 | 0.03         |
|-----------|--------------|------|----|------|--------------|
| 70        | 0.07         | 0.03 | 67 | 0.07 | 0.03         |
| 70        | 0.07         | 0.03 | 63 | 0.06 | 0.02         |
| 53        | 0.05         | 0.01 | 63 | 0.06 | 0.02         |
| 68        | 0.07         | 0.03 | 65 | 0.06 | 0.02         |
| 69        | 0.07         | 0.03 | 61 | 0.06 | 0.02         |
| 59        | 0.06         | 0.02 | 74 | 0.07 | 0.03         |
| 61        | 0.06         | 0.02 | 66 | 0.07 | 0.02         |
| 58        | 0.06         | 0.02 | 54 | 0.05 | 0.01         |
| 66        | 0.07         | 0.02 | 61 | 0.06 | 0.02         |
| 60        | 0.06         | 0.02 | 70 | 0.07 | 0.03         |
| 57        | 0.06         | 0.02 | 61 | 0.06 | 0.02         |
| 63        | 0.06         | 0.02 | 57 | 0.06 | 0.02         |
| 63        | 0.06         | 0.02 | 62 | 0.06 | 0.02         |
| 49        | 0.05         | 0.01 | 76 | 0.07 | 0.03         |
| 62        | 0.06         | 0.02 | 62 | 0.06 | 0.02         |
| 71        | 0.07         | 0.03 | 58 | 0.06 | 0.02         |
| 67        | 0.07         | 0.03 | 56 | 0.06 | 0.02         |
| 67        | 0.07         | 0.03 | 53 | 0.05 | 0.01         |
| 66        | 0.07         | 0.02 | 62 |      | 0.01         |
|           |              |      |    | 0.06 | 0.02         |
| 69        | 0.07         | 0.03 | 69 | 0.07 |              |
| 63<br>72  | 0.06<br>0.07 | 0.02 | 61 | 0.06 | 0.02<br>0.03 |
|           |              | 0.03 | 73 | 0.07 |              |
| 64        | 0.06         | 0.02 | 58 | 0.06 | 0.02         |
| 68        | 0.07         | 0.03 | 75 | 0.07 | 0.03         |
| 63        | 0.06         | 0.02 | 57 | 0.06 | 0.02         |
| 69        | 0.07         | 0.03 | 54 | 0.05 | 0.01         |
| 74        | 0.07         | 0.03 | 59 | 0.06 | 0.02         |
| 65        | 0.06         | 0.02 | 52 | 0.05 | 0.01         |
| 76        | 0.07         | 0.03 | 62 | 0.06 | 0.02         |
| 66        | 0.07         | 0.02 | 63 | 0.06 | 0.02         |
| 63        | 0.06         | 0.02 | 60 | 0.06 | 0.02         |
| 59        | 0.06         | 0.02 | 52 | 0.05 | 0.01         |
| 62        | 0.06         | 0.02 | 61 | 0.06 | 0.02         |
| 71        | 0.07         | 0.03 | 60 | 0.06 | 0.02         |
| 62        | 0.06         | 0.02 | 66 | 0.07 | 0.02         |
| 60        | 0.06         | 0.02 | 67 | 0.07 | 0.03         |
| 60        | 0.06         | 0.02 | 55 | 0.05 | 0.01         |
| 60        | 0.06         | 0.02 | 67 | 0.07 | 0.03         |
| 58        | 0.06         | 0.02 | 66 | 0.07 | 0.02         |
| 62        | 0.06         | 0.02 | 65 | 0.06 | 0.02         |
| 61        | 0.06         | 0.02 | 63 | 0.06 | 0.02         |
| 61        | 0.06         | 0.02 | 66 | 0.07 | 0.02         |
| 66        | 0.07         | 0.02 | 63 | 0.06 | 0.02         |
| 61        | 0.06         | 0.02 | 61 | 0.06 | 0.02         |
| <b>01</b> |              |      |    |      |              |
| 71        | 0.07         | 0.03 | 51 | 0.05 | 0.01         |

| 52 | 0.05 | 0.01 | 69    | 0.07 | 0.03 |
|----|------|------|-------|------|------|
| 60 | 0.06 | 0.02 | 48    | 0.05 | 0.01 |
| 66 | 0.07 | 0.02 | 57    | 0.06 | 0.02 |
| 58 | 0.06 | 0.02 | 55    | 0.05 | 0.01 |
| 65 | 0.06 | 0.02 | 53    | 0.05 | 0.01 |
| 65 | 0.06 | 0.02 | 57    | 0.06 | 0.02 |
| 66 | 0.07 | 0.02 | 55    | 0.05 | 0.01 |
| 71 | 0.07 | 0.03 | 61    | 0.06 | 0.02 |
| 64 | 0.06 | 0.02 | 53    | 0.05 | 0.01 |
| 60 | 0.06 | 0.02 | 55    | 0.05 | 0.01 |
| 64 | 0.06 | 0.02 | 64    | 0.06 | 0.02 |
| 61 | 0.06 | 0.02 | 57    | 0.06 | 0.02 |
| 70 | 0.07 | 0.03 | 52    | 0.05 | 0.01 |
| 55 | 0.05 | 0.01 | 54    | 0.05 | 0.01 |
| 66 | 0.07 | 0.02 | 53    | 0.05 | 0.01 |
| 58 | 0.06 | 0.02 | 59    | 0.06 | 0.02 |
| 57 | 0.06 | 0.02 | 50    | 0.05 | 0.01 |
| 70 | 0.07 | 0.03 | 47    | 0.05 | 0.01 |
| 70 | 0.07 | 0.03 | 51    | 0.05 | 0.01 |
| 56 | 0.06 | 0.01 | 47    | 0.05 | 0.01 |
| 59 | 0.06 | 0.02 | 54    | 0.05 | 0.01 |
| 63 | 0.06 | 0.02 | 42    | 0.04 | 0.00 |
| 63 | 0.06 | 0.02 | 54    | 0.05 | 0.01 |
| 58 | 0.06 | 0.02 | 41    | 0.04 | 0.00 |
| 58 | 0.06 | 0.02 | 43    | 0.04 | 0.00 |
| 64 | 0.06 | 0.02 | 48    | 0.05 | 0.01 |
| 49 | 0.05 | 0.01 | 54    | 0.05 | 0.01 |
| 60 | 0.06 | 0.02 | 46    | 0.05 | 0.00 |
| 67 | 0.07 | 0.03 | 44    | 0.04 | 0.00 |
| 62 | 0.06 | 0.02 | 41    | 0.04 | 0.00 |
| 58 | 0.06 | 0.02 | 48    | 0.05 | 0.01 |
| 62 | 0.06 | 0.02 | 46    | 0.05 | 0.00 |
| 61 | 0.06 | 0.02 | 43    | 0.04 | 0.00 |
| 65 | 0.06 | 0.02 | 33    | 0.03 | 0.00 |
| 65 | 0.06 | 0.02 | 47    | 0.05 | 0.01 |
| 62 | 0.06 | 0.02 | 46    | 0.05 | 0.00 |
| 60 | 0.06 | 0.02 | 44    | 0.04 | 0.00 |
| 68 | 0.07 | 0.03 | 47    | 0.05 | 0.01 |
| 52 | 0.05 | 0.01 | 49    | 0.05 | 0.01 |
| 63 | 0.06 | 0.02 | 40    | 0.04 | 0.00 |
| 59 | 0.06 | 0.02 | 45    | 0.04 | 0.00 |
| 69 | 0.07 | 0.03 | 37    | 0.04 | 0.00 |
| 63 | 0.06 | 0.02 | 41    | 0.04 | 0.00 |
| 76 | 0.07 | 0.03 | 54    | 0.05 | 0.01 |
| 61 | 0.06 | 0.02 | 41    | 0.04 | 0.00 |
| 60 | 0.06 | 0.02 | 39    | 0.04 | 0.00 |
| 55 | 0.05 | 0.01 | 34    | 0.03 | 0.00 |
| 55 | 0.03 | 0.01 | ) J-T | 0.03 | 0.00 |
|    |      |      |       |      |      |

| 39 |      |      |                  |                   |              |
|----|------|------|------------------|-------------------|--------------|
|    | 0.04 | 0.00 | 28               | 0.03              | 0.00         |
| 34 | 0.03 | 0.00 | 29               | 0.03              | 0.00         |
| 41 | 0.04 | 0.00 | 36               | 0.04              | 0.00         |
| 33 | 0.03 | 0.00 | 30               | 0.03              | 0.00         |
| 32 | 0.03 | 0.00 | 30               | 0.03              | 0.00         |
| 33 | 0.03 | 0.00 | 36               | 0.04              | 0.00         |
| 32 | 0.03 | 0.00 | 39               | 0.04              | 0.00         |
| 31 | 0.03 | 0.00 | 34               | 0.03              | 0.00         |
| 41 | 0.04 | 0.00 | 35               | 0.03              | 0.00         |
| 37 | 0.04 | 0.00 | 39               | 0.04              | 0.00         |
| 33 | 0.03 | 0.00 | 37               | 0.04              | 0.00         |
| 27 | 0.03 | 0.00 | 33               | 0.03              | 0.00         |
| 33 | 0.03 | 0.00 | 32               | 0.03              | 0.00         |
| 37 | 0.04 | 0.00 | 31               | 0.03              | 0.00         |
| 28 | 0.03 | 0.00 | 28               | 0.03              | 0.00         |
| 33 | 0.03 | 0.00 | 33               | 0.03              | 0.00         |
| 33 | 0.03 | 0.00 | 31               | 0.03              | 0.00         |
|    |      | 0.00 | 6.7%             |                   |              |
| 33 | 0.03 |      | 30               | 0.03              | 0.00         |
| 27 | 0.03 | 0.00 | 31               | 0.03              | 0.00         |
| 30 | 0.03 | 0.00 | 43               | 0.04              | 0.00         |
| 35 | 0.03 | 0.00 | 30               | 0.03              | 0.00         |
| 33 | 0.03 | 0.00 | 31               | 0.03              | 0.00         |
| 27 | 0.03 | 0.00 | 33               | 0.03              | 0.00         |
| 28 | 0.03 | 0.00 | 36               | 0.04              | 0.00         |
| 35 | 0.03 | 0.00 | 37               | 0.04              | 0.00         |
| 29 | 0.03 | 0.00 | 35               | 0.03              | 0.00         |
| 39 | 0.04 | 0.00 | 35               | 0.03              | 0.00         |
| 37 | 0.04 | 0.00 | 33               | 0.03              | 0.00         |
| 29 | 0.03 | 0.00 | 36               | 0.04              | 0.00         |
| 35 | 0.03 | 0.00 | 32               | 0.03              | 0.00         |
| 30 | 0.03 | 0.00 | 33               | 0.03              | 0.00         |
| 37 | 0.04 | 0.00 | 36               | 0.04              | 0.00         |
| 37 | 0.04 | 0.00 | 34               | 0.03              | 0.00         |
| 32 | 0.03 | 0.00 |                  |                   |              |
| 32 | 0.03 | 0.00 |                  |                   |              |
| 36 | 0.04 | 0.00 | Nhrdr 3 - NF     | enr (North Bounda | rvl          |
| 32 | 0.03 | 0.00 | 4                | in (North Bounda  | ч            |
| 36 | 0.04 | 0.00 | 21:03:24         |                   |              |
| 38 | 0.04 | 0.00 | 09:45:56 cps Liv | e                 | solar        |
| 33 | 0.03 | 0.00 | time (s) 2.00    | cps to micro Sv/h | correction   |
| 32 | 0.03 | 0.00 | 36               | 0.04              | 0.00         |
| 32 | 0.03 | 0.00 | 38               | 0.04              | 0.00         |
| 31 | 0.03 | 0.00 | 31               | 0.03              | 0.00         |
| 31 | 0.04 | 0.00 | 35               | 0.03              | 0.00         |
| 36 | 0.04 |      |                  |                   |              |
|    | 0.03 | 0.00 | 38               | 0.04              | 0.00         |
| 36 |      |      | 38<br>33         | 0.04<br>0.03      | 0.00<br>0.00 |

| 38         | 0.04         | 0.00         | 40       | 0.04         | 0.00 |
|------------|--------------|--------------|----------|--------------|------|
| 34         | 0.03         | 0.00         | 48       | 0.05         | 0.01 |
| 35         | 0.03         | 0.00         | 42       | 0.04         | 0.00 |
| 38         | 0.04         | 0.00         | 50       | 0.05         | 0.01 |
| 37         | 0.04         | 0.00         | 47       | 0.05         | 0.01 |
| 29         | 0.03         | 0.00         | 47       | 0.05         | 0.01 |
| 44         | 0.04         | 0.00         | 38       | 0.04         | 0.00 |
| 35         | 0.03         | 0.00         | 47       | 0.05         | 0.01 |
| 37         | 0.04         | 0.00         | 46       | 0.05         | 0.00 |
| 41         | 0.04         | 0.00         | 46       | 0.05         | 0.00 |
| 37         | 0.04         | 0.00         | 42       | 0.04         | 0.00 |
| 33         | 0.03         | 0.00         | 39       | 0.04         | 0.00 |
| 31         | 0.03         | 0.00         | 42       | 0.04         | 0.00 |
| 35         | 0.03         | 0.00         | 36       | 0.04         | 0.00 |
| 35         | 0.03         | 0.00         | 44       | 0.04         | 0.00 |
| 45         | 0.04         | 0.00         | 43       | 0.04         | 0.00 |
| 41         | 0.04         | 0.00         | 41       | 0.04         | 0.00 |
| 32         | 0.03         | 0.00         | 31       | 0.03         | 0.00 |
| 33         | 0.03         | 0.00         | 35       | 0.03         | 0.00 |
| 28         | 0.03         | 0.00         | 49       | 0.05         | 0.01 |
| 33         | 0.03         | 0.00         | 40       | 0.04         | 0.00 |
| 38         | 0.04         | 0.00         | 43       | 0.04         | 0.00 |
| 35         | 0.03         | 0.00         | 40       | 0.04         | 0.00 |
| 40         | 0.04         | 0.00         | 42       | 0.04         | 0.00 |
| 42         | 0.04         | 0.00         | 43       | 0.04         | 0.00 |
| 42         | 0.04         | 0.00         | 45       | 0.04         | 0.00 |
| 37         | 0.04         | 0.00         | 40       | 0.04         | 0.00 |
| 34         | 0.03         | 0.00         | 48       | 0.05         | 0.01 |
| 45         | 0.04         | 0.00         | 42       | 0.04         | 0.00 |
| 32         | 0.03         | 0.00         | 35       | 0.03         | 0.00 |
| 33         | 0.03         | 0.00         | 30       | 0.03         | 0.00 |
| 39         | 0.04         | 0.00         | 31       | 0.03         | 0.00 |
| 30         | 0.03         | 0.00         | 46       | 0.05         | 0.00 |
| 37         | 0.04         | 0.00         | 39       | 0.04         | 0.00 |
| 34         | 0.03         | 0.00         | 39       | 0.04         | 0.00 |
| 47         | 0.05         | 0.01         | 33       | 0.03         | 0.00 |
| 33         | 0.03         | 0.00         | 41       | 0.04         | 0.00 |
|            |              |              |          |              |      |
| 39<br>44   | 0.04<br>0.04 | 0.00<br>0.00 | 36<br>46 | 0.04<br>0.05 | 0.00 |
| 42         | 0.04         | 0.00         |          | 0.03         | 0.00 |
|            |              |              | 35       |              |      |
| 38         | 0.04         | 0.00         | 42       | 0.04         | 0.00 |
| 42         | 0.04         | 0.00         | 39       | 0.04         | 0.00 |
| 31         | 0.03         | 0.00         | 49       | 0.05         | 0.01 |
| 36         | 0.04         | 0.00         | 50       | 0.05         | 0.01 |
| 4 <u>2</u> | 0.04         | 0.00         | 57       | 0.06         | 0.02 |
| 36<br>43   | 0.04         | 0.00         | 60       | 0.06         | 0.02 |
| 43         | 0.04         | 0.00         | 53       | 0.05         | 0.01 |

| 45       | 0.04 | 0.00 | ME CONTRACTOR                     | (F - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - |                     |
|----------|------|------|-----------------------------------|------------------------------------------|---------------------|
| 44       | 0.04 | 0.00 | NE crnr - SE o                    | ernr (East Bounda                        | ry)                 |
| 45       | 0.04 | 0.00 | 21:03:24                          |                                          |                     |
| 46       | 0.05 | 0.00 | 09:54:40 cps Liv                  | e                                        | solar               |
| 35       | 0.03 | 0.00 | time (s) 2.00                     | cps to micro Sv/h                        | correction          |
| 40       | 0.04 | 0.00 | 163                               | 0.16                                     | 0.12                |
| 46       | 0.05 | 0.00 | 146                               | 0.14                                     | 0.10                |
| 37       | 0.04 | 0.00 | 162                               | 0.16                                     | 0.12                |
| 47       | 0.05 | 0.01 | 187                               | 0.18                                     | 0.14                |
| 48       | 0.05 | 0.01 | 186                               | 0.18                                     | 0.14                |
| 58       | 0.06 | 0.02 | 177                               | 0.17                                     | 0.13                |
| 49       | 0.05 | 0.01 | 182                               | 0.18                                     | 0.14                |
| 49       | 0.05 | 0.01 | 178                               | 0.18                                     | 0.13                |
| 38       | 0.04 | 0.00 | 171                               | 0.17                                     | 0.13                |
| 43       | 0.04 | 0.00 | 190                               | 0.19                                     | 0.15                |
| 45       | 0.04 | 0.00 | 177                               | 0.17                                     | 0.13                |
| 43       | 0.04 | 0.00 | 173                               | 0.17                                     | 0.13                |
| 33       | 0.03 | 0.00 | 174                               | 0.17                                     | 0.13                |
| 30       | 0.03 | 0.00 | 189                               | 0.19                                     | 0.15                |
| 28       | 0.03 | 0.00 | 170                               | 0.17                                     | 0.13                |
| 37       | 0.04 | 0.00 | 220                               | 0.22                                     | 0.18                |
| 36       | 0.04 | 0.00 | 167                               | 0.16                                     | 0.12                |
| 37       | 0.04 | 0.00 | 161                               | 0.16                                     | 0.12                |
| 34       | 0.03 | 0.00 | 154                               | 0.15                                     | 0.11                |
| 34       | 0.03 | 0.00 | 162                               | 0.16                                     | 0.12                |
| 32       | 0.03 | 0.00 | 157                               | 0.15                                     | 0.11                |
| 37       | 0.04 | 0.00 | 137                               | 0.15                                     | 0.11                |
| 32       | 0.03 | 0.00 |                                   |                                          |                     |
| 12       | 0.04 | 0.00 |                                   |                                          |                     |
| 33       | 0.03 | 0.00 |                                   | dr 1 (South Bound                        | ary)                |
| 37       | 0.04 | 0.00 | 6                                 |                                          |                     |
| 38       | 0.04 | 0.00 | 21:03:24                          | 10.                                      | color               |
| 43       | 0.04 | 0.00 | 09:56:46 cps Liv<br>time (s) 2.00 | cps to micro Sv/h                        | solar<br>correction |
| 40       | 0.04 | 0.00 | 178                               | 0.18                                     | 0.13                |
| 34       | 0.03 | 0.00 | 146                               | 0.14                                     | 0.13                |
| 37       | 0.04 | 0.00 | 180                               | 0.14                                     | 0.10                |
| 34       | 0.03 | 0.00 | 166                               | 0.16                                     | 0.14                |
| 29       | 0.03 | 0.00 | 169                               | 0.17                                     | 0.12                |
| 37       | 0.04 | 0.00 | 193                               | 0.19                                     | 0.15                |
| 32       | 0.03 | 0.00 | 193                               | 0.19                                     | 0.15                |
| 42<br>42 | 0.04 | 0.00 | 205                               | 0.19                                     | 0.15                |
| 34       | 0.03 | 0.00 | 157                               | 0.20                                     | 0.16                |
| 35       | 0.03 | 0.00 |                                   |                                          |                     |
| 30       | 0.03 | 0.00 | 154                               | 0.15                                     | 0.11                |
| 37       | 0.03 | 0.00 | 165                               | 0.16                                     | 0.12                |
| 37       | 0.04 | 0.00 | 165                               | 0.16                                     | 0.12                |
| ١,       | 0.04 | 0.00 | 151                               | 0.15                                     | 0.11                |

| 152 | 0.15 | 0.11 | 167 | 0.16 | 0.12 |
|-----|------|------|-----|------|------|
| 159 | 0.16 | 0.12 | 141 | 0.14 | 0.10 |
| 163 | 0.16 | 0.12 | 147 | 0.14 | 0.10 |
| 175 | 0.17 | 0.13 | 135 | 0.13 | 0.09 |
| 140 | 0.14 | 0.10 | 131 | 0.13 | 0.09 |
| 133 | 0.13 | 0.09 | 152 | 0.15 | 0.11 |
| 143 | 0.14 | 0.10 | 149 | 0.15 | 0.11 |
| 138 | 0.14 | 0.10 | 149 | 0.15 | 0.11 |
| 148 | 0.15 | 0.10 | 173 | 0.17 | 0.13 |
| 137 | 0.13 | 0.09 | 209 | 0.21 | 0.17 |
| 144 | 0.14 | 0.10 | 206 | 0.20 | 0.16 |
| 164 | 0.16 | 0.12 | 181 | 0.18 | 0.14 |
| 158 | 0.16 | 0.11 | 140 | 0.14 | 0.10 |
| 125 | 0.12 | 0.08 | 149 | 0.15 | 0.11 |
| 135 | 0.13 | 0.09 | 152 | 0.15 | 0.11 |
| 118 | 0.12 | 0.08 | 169 | 0.17 | 0.13 |
| 127 | 0.13 | 0.08 | 205 | 0.20 | 0.16 |
| 152 | 0.15 | 0.11 | 270 | 0.27 | 0.23 |
| 134 | 0.13 | 0.09 | 282 | 0.28 | 0.24 |
| 143 | 0.14 | 0.10 | 222 | 0.22 | 0.18 |
| 136 | 0.13 | 0.09 | 264 | 0.26 | 0.22 |
| 153 | 0.15 | 0.11 | 303 | 0.30 | 0.26 |
| 142 | 0.14 | 0.10 | 292 | 0.29 | 0.25 |
| 140 | 0.14 | 0.10 | 294 | 0.29 | 0.25 |
| 158 | 0.16 | 0.11 | 284 | 0.28 | 0.24 |
| 160 | 0.16 | 0.12 | 301 | 0.30 | 0.26 |
| 165 | 0.16 | 0.12 | 283 | 0.28 | 0.24 |
| 168 | 0.17 | 0.12 | 296 | 0.29 | 0.25 |
| 188 | 0.19 | 0.14 | 281 | 0.28 | 0.24 |
| 170 | 0.17 | 0.13 | 299 | 0.29 | 0.25 |
| 171 | 0.17 | 0.13 | 273 | 0.27 | 0.23 |
| 168 | 0.17 | 0.12 | 277 | 0.27 | 0.23 |
| 183 | 0.18 | 0.14 | 287 | 0.28 | 0.24 |
| 181 | 0.18 | 0.14 | 282 | 0.28 | 0.24 |
| 187 | 0.18 | 0.14 | 281 | 0.28 | 0.24 |
| 233 | 0.23 | 0.19 | 287 | 0.28 | 0.24 |
| 198 | 0.20 | 0.15 | 278 | 0.27 | 0.23 |
| 187 | 0.18 | 0.14 | 290 | 0.29 | 0.24 |
| 211 | 0.21 | 0.17 | 298 | 0.29 | 0.25 |
| 200 | 0.20 | 0.16 | 293 | 0.29 | 0.25 |
| 209 | 0.21 | 0.17 | 309 | 0.30 | 0.26 |
| 216 | 0.21 | 0.17 | 315 | 0.31 | 0.27 |
| 185 | 0.18 | 0.14 | 273 | 0.27 | 0.23 |
| 179 | 0.18 | 0.14 | 281 | 0.28 | 0.24 |
| 162 | 0.16 | 0.12 | 280 | 0.28 | 0.23 |
| 159 | 0.16 | 0.12 | 283 | 0.28 | 0.24 |
| 164 | 0.16 | 0.12 | 279 | 0.27 | 0.23 |
|     |      |      |     |      |      |

March 2021 Page. 28

| 292        | 0.29         | 0.25         | 361        | 0.36         | 0.31             |
|------------|--------------|--------------|------------|--------------|------------------|
| 282        | 0.28         | 0.24         | 378        | 0.37         | 0.33             |
| 283        | 0.28         | 0.24         | 353        | 0.35         | 0.31             |
| 270        | 0.27         | 0.23         | 348        | 0.34         | 0.30             |
| 286        | 0.28         | 0.24         | 347        | 0.34         | 0.30             |
| 286        | 0.28         | 0.24         | 345        | 0.34         | 0.30             |
| 312        | 0.31         | 0.27         | 347        | 0.34         | 0.30             |
| 280        | 0.28         | 0.23         | 378        | 0.37         | 0.33             |
| 287        | 0.28         | 0.24         | 353        | 0.35         | 0.31             |
| 287        | 0.28         | 0.24         | 371        | 0.37         | 0.32             |
| 286        | 0.28         | 0.24         | 362        | 0.36         | 0.32             |
| 302        | 0.30         | 0.26         | 378        | 0.37         | 0.33             |
| 291        | 0.29         | 0.25         | 357        | 0.35         | 0.31             |
| 303        | 0.30         | 0.26         | 372        | 0.37         | 0.33             |
| 287        | 0.28         | 0.24         | 379        | 0.37         | 0.33             |
| 281        | 0.28         | 0.24         | 360        | 0.35         | 0.31             |
| 315        | 0.31         | 0.27         | 361        | 0.36         | 0.31             |
| 266        | 0.26         | 0.22         | 354        | 0.35         | 0.31             |
| 262        | 0.26         | 0.22         | 396        | 0.39         | 0.35             |
| 172        | 0.17         | 0.13         | 444        | 0.44         | 0.40             |
| 170        | 0.17         | 0.13         | 414        | 0.41         | 0.37             |
| 184        | 0.18         | 0.14         | 435        | 0.43         | 0.39             |
| 151        | 0.15         | 0.11         | 479        | 0.47         | 0.43             |
| 165        | 0.16         | 0.12         | 480        | 0.47         | 0.43             |
| 212        | 0.21         | 0.17         | 433        | 0.43         | 0.39             |
| 205        | 0.20         | 0.16         | 447        | 0.44         | 0.40             |
| 184        | 0.18         | 0.14         | 425        | 0.42         | 0.38             |
| 224        | 0.22         | 0.18         | 487        | 0.48         | 0.44             |
| 346        | 0.34         | 0.30         | 506        | 0.50         | 0.46             |
| 377        | 0.37         | 0.33         | 500        | 0.49         | 0.45             |
| 365        | 0.36         | 0.32         | 469        | 0.46         | 0.42             |
| 356        | 0.35         | 0.31         | 487        | 0.48         | 0.44             |
| 345        | 0.34         | 0.30         | 495        | 0.49         | 0.45             |
| 365        | 0.36         | 0.32         | 501        | 0.49         | 0.45             |
| 358        | 0.35         | 0.31         | 511        | 0.50         | 0.46             |
| 361        | 0.36         | 0.31         | 471        | 0.46         | 0.42             |
| 369        | 0.36         | 0.32         | 459        | 0.45         | 0.41             |
| 368<br>345 | 0.36<br>0.34 | 0.32<br>0.30 | 484<br>445 | 0.48<br>0.44 | 0.44             |
| 369        |              |              | 495        | 0.49         | 0.40<br>0.45     |
|            | 0.36         | 0.32         |            |              |                  |
| 354<br>368 | 0.35<br>0.36 | 0.31<br>0.32 | 500<br>484 | 0.49<br>0.48 | 0.45<br>0.44     |
| 342        | 0.34         | 0.32         | 486        | 0.48         | 0.44             |
| 362        | 0.36         | 0.30         | 486        | 0.48         | 0.44             |
| 370        | 0.36         | 0.32         | 492        | 0.48         | 0.44             |
| 373        | 0.37         | 0.33         | 486        | 0.48         | 0.44             |
| 345        | 0.34         | 0.30         | 490        | 0.48         | 0.44             |
| J+J        | 0.04         | 0.50         | 430        | 0.40         | U. <del>11</del> |

| 461 | 0.45 | 0.41 | 57 | 0.06 | 0.02 |
|-----|------|------|----|------|------|
| 467 | 0.46 | 0.42 | 61 | 0.06 | 0.02 |
| 501 | 0.49 | 0.45 | 63 | 0.06 | 0.02 |
| 471 | 0.46 | 0.42 | 56 | 0.06 | 0.01 |
| 510 | 0.50 | 0.46 | 45 | 0.04 | 0.00 |
| 487 | 0.48 | 0.44 | 61 | 0.06 | 0.02 |
| 453 | 0.45 | 0.41 | 49 | 0.05 | 0.01 |
| 401 | 0.40 | 0.35 | 58 | 0.06 | 0.02 |
| 397 | 0.39 | 0.35 | 60 | 0.06 | 0.02 |
| 368 | 0.36 | 0.32 | 59 | 0.06 | 0.02 |
| 330 | 0.33 | 0.28 | 64 | 0.06 | 0.02 |
| 292 | 0.29 | 0.25 | 74 | 0.07 | 0.03 |
| 313 | 0.31 | 0.27 | 49 | 0.05 | 0.01 |
| 344 | 0.34 | 0.30 | 55 | 0.05 | 0.01 |
| 314 | 0.31 | 0.27 | 53 | 0.05 | 0.01 |
| 354 | 0.35 | 0.31 | 55 | 0.05 | 0.01 |
| 360 | 0.35 | 0.31 | 52 | 0.05 | 0.01 |
| 359 | 0.35 | 0.31 | 61 | 0.06 | 0.02 |
| 358 | 0.35 | 0.31 | 67 | 0.07 | 0.03 |
| 338 | 0.33 | 0.29 | 61 | 0.06 | 0.02 |
| 353 | 0.35 | 0.31 | 59 | 0.06 | 0.02 |
| 299 | 0.29 | 0.25 | 64 | 0.06 | 0.02 |
| 281 | 0.28 | 0.24 | 55 | 0.05 | 0.01 |
| 259 | 0.26 | 0.21 | 51 | 0.05 | 0.01 |
| 273 | 0.27 | 0.23 | 55 | 0.05 | 0.01 |
| 223 | 0.22 | 0.18 | 60 | 0.06 | 0.02 |
| 216 | 0.21 | 0.17 | 61 | 0.06 | 0.02 |
| 199 | 0.20 | 0.16 | 65 | 0.06 | 0.02 |
| 224 | 0.22 | 0.18 | 61 | 0.06 | 0.02 |
| 196 | 0.19 | 0.15 | 54 | 0.05 | 0.01 |
| 159 | 0.16 | 0.12 | 74 | 0.07 | 0.03 |
| 117 | 0.12 | 0.07 | 59 | 0.06 | 0.02 |
| 88  | 0.09 | 0.05 | 64 | 0.06 | 0.02 |
| 102 | 0.10 | 0.06 | 52 | 0.05 | 0.01 |
| 91  | 0.09 | 0.05 | 51 | 0.05 | 0.01 |
| 95  | 0.09 | 0.05 | 57 | 0.06 | 0.02 |
| 104 | 0.10 | 0.06 | 72 | 0.07 | 0.03 |
| 131 | 0.13 | 0.09 | 64 | 0.06 | 0.02 |
| 157 | 0.15 | 0.11 | 75 | 0.07 | 0.03 |
| 131 | 0.13 | 0.09 | 55 | 0.05 | 0.01 |
| 163 | 0.16 | 0.12 | 68 | 0.07 | 0.03 |
| 144 | 0.14 | 0.10 | 66 | 0.07 | 0.02 |
| 121 | 0.12 | 0.08 | 53 | 0.05 | 0.01 |
| 86  | 0.08 | 0.04 | 63 | 0.06 | 0.02 |
| 62  | 0.06 | 0.02 | 56 | 0.06 | 0.01 |
| 59  | 0.06 | 0.02 | 56 | 0.06 | 0.01 |
| 54  | 0.05 | 0.01 | 63 | 0.06 | 0.02 |

| 60                | 0.06              | 0.02       | 30 | 0.04 | 0.00 |
|-------------------|-------------------|------------|----|------|------|
| 63                | 0.06              | 0.02       | 48 | 0.05 | 0.01 |
| 55                | 0.05              | 0.01       | 45 | 0.04 | 0.00 |
| 63                | 0.06              | 0.02       | 52 | 0.05 | 0.01 |
| 56                | 0.06              | 0.01       | 48 | 0.05 | 0.01 |
| 59                | 0.06              | 0.02       | 42 | 0.04 | 0.00 |
| 53                | 0.05              | 0.01       | 50 | 0.05 | 0.01 |
| 55                | 0.05              | 0.01       | 58 | 0.06 | 0.02 |
| 59                | 0.06              | 0.02       | 62 | 0.06 | 0.02 |
| 53                | 0.05              | 0.01       | 51 | 0.05 | 0.01 |
| 59                | 0.06              | 0.02       | 56 | 0.06 | 0.01 |
|                   |                   |            | 53 | 0.05 | 0.01 |
|                   |                   |            | 55 | 0.05 | 0.01 |
| 01 1 1 0111       | (2) II 2          |            | 61 | 0.06 | 0.02 |
| Sbrar 1 – SW 0    | ernr (South Bound | iary)      | 60 | 0.06 | 0.02 |
| 21:03:24          |                   |            | 54 | 0.05 | 0.01 |
| 10:09:08 cps Live | e                 | solar      | 56 | 0.06 | 0.01 |
| time (s) 2.00     | cps to micro Sv/h | correction | 61 | 0.06 | 0.02 |
| 56                | 0.06              | 0.01       | 54 | 0.05 | 0.01 |
| 65                | 0.06              | 0.02       | 53 | 0.05 | 0.01 |
| 62                | 0.06              | 0.02       | 50 | 0.05 | 0.01 |
| 58                | 0.06              | 0.02       | 55 | 0.05 | 0.01 |
| 69                | 0.07              | 0.03       | 53 | 0.05 | 0.01 |
| 71                | 0.07              | 0.03       | 43 | 0.04 | 0.00 |
| 61                | 0.06              | 0.02       | 45 | 0.04 | 0.00 |
| 55                | 0.05              | 0.01       | 47 | 0.05 | 0.01 |
| 59                | 0.06              | 0.02       | 51 | 0.05 | 0.01 |
| 66                | 0.07              | 0.02       | 46 | 0.05 | 0.00 |
| 74                | 0.07              | 0.03       | 47 | 0.05 | 0.01 |
| 59                | 0.06              | 0.02       | 50 | 0.05 | 0.01 |
| 67                | 0.07              | 0.03       | 44 | 0.04 | 0.00 |
| 67                | 0.07              | 0.03       | 48 | 0.05 | 0.01 |
| 64                | 0.06              | 0.02       | 42 | 0.04 | 0.00 |
| 59                | 0.06              | 0.02       | 45 | 0.04 | 0.00 |
| 62                | 0.06              | 0.02       | 46 | 0.05 | 0.00 |
| 61                | 0.06              | 0.02       | 48 | 0.05 | 0.01 |
| 58                | 0.06              | 0.02       | 44 | 0.04 | 0.00 |
| 65                | 0.06              | 0.02       | 44 | 0.04 | 0.00 |
| 55                | 0.05              | 0.01       | 53 | 0.05 | 0.01 |
| 63                | 0.06              | 0.02       | 46 | 0.05 | 0.00 |
| 57                | 0.06              | 0.02       | 46 | 0.05 | 0.00 |
| 53                | 0.05              | 0.01       | 44 | 0.04 | 0.00 |
| 58                | 0.06              | 0.02       | 44 | 0.04 | 0.00 |
| 57                | 0.06              | 0.02       | 51 | 0.05 | 0.01 |
| 52                | 0.05              | 0.01       | 57 | 0.06 | 0.02 |
| 48                | 0.05              | 0.01       | 65 | 0.06 | 0.02 |
|                   |                   |            |    |      |      |

60

0.06

0.02

38

0.04

0.00

| 84  | 0.08 | 0.04 |
|-----|------|------|
| 94  | 0.09 | 0.05 |
| 102 | 0.10 | 0.06 |
| 99  | 0.10 | 0.06 |
| 82  | 0.08 | 0.04 |
| 85  | 0.08 | 0.04 |
| 93  | 0.09 | 0.05 |
| 101 | 0.10 | 0.06 |
| 95  | 0.09 | 0.05 |
| 97  | 0.10 | 0.05 |
| 86  | 0.08 | 0.04 |
| 95  | 0.09 | 0.05 |
| 99  | 0.10 | 0.06 |
| 102 | 0.10 | 0.06 |
| 88  | 0.09 | 0.05 |
| 92  | 0.09 | 0.05 |
| 88  | 0.09 | 0.05 |
| 99  | 0.10 | 0.06 |
| 90  | 0.09 | 0.05 |
| 85  | 0.08 | 0.04 |
| 88  | 0.09 | 0.05 |
| 87  | 0.09 | 0.04 |
| 98  | 0.10 | 0.06 |

| 84 | 0.08 | 0.04 |
|----|------|------|
| 70 | 0.07 | 0.03 |
| 63 | 0.06 | 0.02 |
| 66 | 0.07 | 0.02 |
| 73 | 0.07 | 0.03 |
| 72 | 0.07 | 0.03 |
| 66 | 0.07 | 0.02 |
|    |      |      |

| 1:03:24     |                   | PR-5-17    |
|-------------|-------------------|------------|
| :23 cps Liv |                   | solar      |
| ie (s) 2.00 | cps to micro Sv/h | correction |
| 89          | 0.09              | 0.05       |
| 74          | 0.07              | 0.03       |
| 91          | 0.09              | 0.05       |
| 69          | 0.07              | 0.03       |
| 79          | 0.08              | 0.04       |
| 72          | 0.07              | 0.03       |
| 52          | 0.05              | 0.01       |
| 45          | 0.04              | 0.00       |
| 42          | 0.04              | 0.00       |
| 37          | 0.04              | 0.00       |
| 39          | 0.04              | 0.00       |
| 44          | 0.04              | 0.00       |
| 33          | 0.03              | 0.00       |
| 31          | 0.03              | 0.00       |
| 39          | 0.04              | 0.00       |
| 42          | 0.04              | 0.00       |
| 33          | 0.03              | 0.00       |
| 40          | 0.04              | 0.00       |
| 32          | 0.03              | 0.00       |
| 25          | 0.02              | 0.00       |
| 36          | 0.04              | 0.00       |
| 37          | 0.04              | 0.00       |
| 32          | 0.03              | 0.00       |
| 29          | 0.03              | 0.00       |
| 30          | 0.03              | 0.00       |
| 31          | 0.03              | 0.00       |
| 35          | 0.03              | 0.00       |
| 41          | 0.04              | 0.00       |
| 31          | 0.03              | 0.00       |
| 32          | 0.03              | 0.00       |
| 36          | 0.04              | 0.00       |
| 34          | 0.03              | 0.00       |
| 36          | 0.04              | 0.00       |
| 49          | 0.05              | 0.01       |
| 40          | 0.04              | 0.00       |
|             |                   |            |

0.04

0.04

| SW crnr - NW     | crnr (West Bound  | lary)      |
|------------------|-------------------|------------|
| 8                |                   |            |
| 21:03:24         |                   |            |
| 10:12:30 cps Liv | e                 | solar      |
| time (s) 2.00    | cps to micro Sv/h | correction |
| 78               | 0.08              | 0.04       |
| 82               | 0.08              | 0.04       |
| 97               | 0.10              | 0.05       |
| 97               | 0.10              | 0.05       |
| 101              | 0.10              | 0.06       |
| 97               | 0.10              | 0.05       |
| 102              | 0.10              | 0.06       |
| 96               | 0.09              | 0.05       |
| 80               | 0.08              | 0.04       |
| 95               | 0.09              | 0.05       |
| 98               | 0.10              | 0.06       |
| 114              | 0.11              | 0.07       |
| 92               | 0.09              | 0.05       |
| 98               | 0.10              | 0.06       |
| 83               | 0.08              | 0.04       |
| 87               | 0.09              | 0.04       |

44

43

0.00

0.00

| 40       | 0.04         | 0.00         | 01         | 0.00         | 0.05         |
|----------|--------------|--------------|------------|--------------|--------------|
| 43       | 0.04         | 0.00         | 91         | 0.09         | 0.05         |
| 39       | 0.04         | 0.00         | 80         | 80.0         | 0.04         |
| 43       | 0.04         | 0.00         | 75         | 0.07         | 0.03         |
| 38       | 0.04         | 0.00         | 73         | 0.07         | 0.03         |
| 49       | 0.05         | 0.01         | 63         | 0.06         | 0.02         |
| 38       | 0.04         | 0.00         | 76         | 0.07         | 0.03         |
| 46       | 0.05         | 0.00         | 83         | 0.08         | 0.04         |
| 48       | 0.05         | 0.01         | 79         | 0.08         | 0.04         |
| 46       | 0.05         | 0.00         | 85         | 80.0         | 0.04         |
| 50       | 0.05         | 0.01         | 75         | 0.07         | 0.03         |
| 45       | 0.04         | 0.00         | 82         | 0.08         | 0.04         |
| 54       | 0.05         | 0.01         | 89         | 0.09         | 0.05         |
| 52       | 0.05         | 0.01         | 90         | 0.09         | 0.05         |
| 44       | 0.04         | 0.00         | 89         | 0.09         | 0.05         |
| 51       | 0.05         | 0.01         | 93         | 0.09         | 0.05         |
| 55       | 0.05         | 0.01         | 88         | 0.09         | 0.05         |
| 54       | 0.05         | 0.01         | 105        | 0.10         | 0.06         |
| 49       | 0.05         | 0.01         | 139        | 0.14         | 0.10         |
| 55       | 0.05         | 0.01         | 173        | 0.17         | 0.13         |
| 50       | 0.05         | 0.01         | 152        | 0.15         | 0.11         |
| 57       | 0.06         | 0.02         | 111        | 0.11         | 0.07         |
| 66       | 0.07         | 0.02         | 99         | 0.10         | 0.06         |
| 53       | 0.05         | 0.01         | 109        | 0.11         | 0.07         |
| 62       | 0.06         | 0.02         | 145        | 0.14         | 0.10         |
| 49       | 0.05         | 0.01         | 129        | 0.13         | 0.09         |
| 46       | 0.05         | 0.00         | 152        | 0.15         | 0.11         |
| 55       | 0.05         | 0.01         | 171        | 0.17         | 0.13         |
| 56       | 0.06         | 0.01         | 206        | 0.20         | 0.16         |
| 58       | 0.06         | 0.02         | 222        | 0.22         | 0.18         |
| 51       | 0.05         | 0.01         | 211        | 0.21         | 0.17         |
| 49       | 0.05         | 0.01         | 230        | 0.23         | 0.19         |
| 55       | 0.05         | 0.01         | 222        | 0.22         | 0.18         |
| 64       | 0.06         | 0.02         | 245        | 0.24         | 0.20         |
| 60       | 0.06         | 0.02         | 253        | 0.25         | 0.21         |
| 55<br>67 | 0.05<br>0.07 | 0.01         | 286        | 0.28         | 0.24         |
|          |              | 0.03         | 303<br>326 | 0.30<br>0.32 | 0.26         |
| 68       | 0.07         | 0.03<br>0.02 | 285        | 0.28         | 0.28<br>0.24 |
| 61<br>49 | 0.06<br>0.05 | 0.02         | 300        | 0.30         | 0.25         |
| 60       | 0.06         | 0.02         | 297        | 0.29         | 0.25         |
| 54       | 0.05         | 0.02         | 299        | 0.29         | 0.25         |
| 65       | 0.06         | 0.02         | 291        | 0.29         | 0.25         |
| 54       | 0.05         | 0.02         | 309        | 0.30         | 0.26         |
| 65       | 0.05         | 0.02         | 296        | 0.29         | 0.25         |
| 72       | 0.07         | 0.02         | 286        | 0.28         | 0.24         |
| 79       | 0.07         | 0.03         | 288        | 0.28         | 0.24         |
| 75<br>75 | 0.07         | 0.03         | 285        | 0.28         | 0.24         |
| 123      | 0.12         | 0.03         | 295        | 0.29         | 0.25         |
| 136      | 0.12         | 0.09         | 297        | 0.29         | 0.25         |
| 95       | 0.09         | 0.05         | 278        | 0.27         | 0.23         |
| 89       | 0.09         | 0.05         | 300        | 0.30         | 0.25         |
| 78       | 0.08         | 0.04         | 289        | 0.28         | 0.24         |
| 93       | 0.09         | 0.05         | 297        | 0.29         | 0.25         |
| 100      | 0.10         | 0.06         | 299        | 0.29         | 0.25         |
| 100      | 0.10         | 0.00         | 200        | 0.23         | 0.20         |

| 0.28 0.27 0.29 0.29 0.28 0.30 0.27 0.26 0.25 0.24 0.20 0.19 0.21 0.19 0.18 0.20 0.23 0.19 0.19               | 0.24 0.23 0.25 0.25 0.23 0.26 0.23 0.21 0.21 0.20 0.16 0.15 0.17 0.15 0.14 0.16 0.18                         | 80<br>68<br>84<br>68<br>90<br>80<br>68<br>75<br>61<br>75<br>67<br>71<br>77<br>77                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.08<br>0.07<br>0.08<br>0.07<br>0.09<br>0.08<br>0.07<br>0.07<br>0.06<br>0.07<br>0.07<br>0.07<br>0.08<br>0.08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.04<br>0.03<br>0.04<br>0.03<br>0.05<br>0.04<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|--------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0.29 0.29 0.28 0.30 0.27 0.26 0.25 0.24 0.20 0.19 0.21 0.19 0.18 0.20 0.23 0.19 0.19                         | 0.25<br>0.25<br>0.23<br>0.26<br>0.23<br>0.21<br>0.21<br>0.20<br>0.16<br>0.15<br>0.17<br>0.15<br>0.14<br>0.16 | 84<br>68<br>90<br>80<br>68<br>75<br>61<br>75<br>67<br>71<br>77                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.08<br>0.07<br>0.09<br>0.08<br>0.07<br>0.07<br>0.06<br>0.07<br>0.07<br>0.07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.04<br>0.03<br>0.05<br>0.04<br>0.03<br>0.03<br>0.02<br>0.03<br>0.03<br>0.03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 0.29 0.28 0.30 0.27 0.26 0.25 0.24 0.20 0.19 0.19 0.19 0.18 0.20 0.23 0.19 0.19                              | 0.25<br>0.23<br>0.26<br>0.23<br>0.21<br>0.21<br>0.20<br>0.16<br>0.15<br>0.17<br>0.15<br>0.14<br>0.16         | 68<br>90<br>80<br>68<br>75<br>61<br>75<br>67<br>71<br>77                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.07<br>0.09<br>0.08<br>0.07<br>0.07<br>0.06<br>0.07<br>0.07<br>0.07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.03<br>0.05<br>0.04<br>0.03<br>0.03<br>0.02<br>0.03<br>0.03<br>0.03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 0.28<br>0.30<br>0.27<br>0.26<br>0.25<br>0.24<br>0.20<br>0.19<br>0.19<br>0.18<br>0.20<br>0.23<br>0.19<br>0.19 | 0.23<br>0.26<br>0.23<br>0.21<br>0.21<br>0.20<br>0.16<br>0.15<br>0.17<br>0.15<br>0.14<br>0.16                 | 90<br>80<br>68<br>75<br>61<br>75<br>67<br>71<br>77                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.09<br>0.08<br>0.07<br>0.07<br>0.06<br>0.07<br>0.07<br>0.07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.05<br>0.04<br>0.03<br>0.03<br>0.02<br>0.03<br>0.03<br>0.03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 0.30<br>0.27<br>0.26<br>0.25<br>0.24<br>0.20<br>0.19<br>0.21<br>0.19<br>0.18<br>0.20<br>0.23<br>0.19<br>0.19 | 0.26<br>0.23<br>0.21<br>0.21<br>0.20<br>0.16<br>0.15<br>0.17<br>0.15<br>0.14<br>0.16                         | 80<br>68<br>75<br>61<br>75<br>67<br>71<br>77                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.08<br>0.07<br>0.07<br>0.06<br>0.07<br>0.07<br>0.07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.04<br>0.03<br>0.03<br>0.02<br>0.03<br>0.03<br>0.03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 0.27<br>0.26<br>0.25<br>0.24<br>0.20<br>0.19<br>0.21<br>0.19<br>0.18<br>0.20<br>0.23<br>0.19<br>0.19         | 0.23<br>0.21<br>0.21<br>0.20<br>0.16<br>0.15<br>0.17<br>0.15<br>0.14<br>0.16                                 | 68<br>75<br>61<br>75<br>67<br>71<br>77                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.08<br>0.07<br>0.07<br>0.06<br>0.07<br>0.07<br>0.07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.04<br>0.03<br>0.03<br>0.02<br>0.03<br>0.03<br>0.03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 0.27<br>0.26<br>0.25<br>0.24<br>0.20<br>0.19<br>0.21<br>0.19<br>0.18<br>0.20<br>0.23<br>0.19<br>0.19         | 0.23<br>0.21<br>0.21<br>0.20<br>0.16<br>0.15<br>0.17<br>0.15<br>0.14<br>0.16                                 | 68<br>75<br>61<br>75<br>67<br>71<br>77                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.07<br>0.07<br>0.06<br>0.07<br>0.07<br>0.07<br>0.08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.03<br>0.03<br>0.02<br>0.03<br>0.03<br>0.03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 0.26<br>0.25<br>0.24<br>0.20<br>0.19<br>0.21<br>0.19<br>0.18<br>0.20<br>0.23<br>0.19<br>0.19                 | 0.21<br>0.20<br>0.16<br>0.15<br>0.17<br>0.15<br>0.14<br>0.16                                                 | 75<br>61<br>75<br>67<br>71<br>77                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.07<br>0.06<br>0.07<br>0.07<br>0.07<br>0.08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.03<br>0.02<br>0.03<br>0.03<br>0.03<br>0.03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 0.25<br>0.24<br>0.20<br>0.19<br>0.21<br>0.19<br>0.18<br>0.20<br>0.23<br>0.19<br>0.19                         | 0.21<br>0.20<br>0.16<br>0.15<br>0.17<br>0.15<br>0.14<br>0.16                                                 | 61<br>75<br>67<br>71<br>77<br>77                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.06<br>0.07<br>0.07<br>0.07<br>0.08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.02<br>0.03<br>0.03<br>0.03<br>0.03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 0.24<br>0.20<br>0.19<br>0.21<br>0.19<br>0.18<br>0.20<br>0.23<br>0.19<br>0.19                                 | 0.20<br>0.16<br>0.15<br>0.17<br>0.15<br>0.14<br>0.16                                                         | 75<br>67<br>71<br>77<br>77                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.07<br>0.07<br>0.07<br>0.08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.03<br>0.03<br>0.03<br>0.03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 0.20<br>0.19<br>0.21<br>0.19<br>0.18<br>0.20<br>0.23<br>0.19                                                 | 0.16<br>0.15<br>0.17<br>0.15<br>0.14<br>0.16                                                                 | 67<br>71<br>77<br>77                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.07<br>0.07<br>0.08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.03<br>0.03<br>0.03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 0.19<br>0.21<br>0.19<br>0.18<br>0.20<br>0.23<br>0.19<br>0.19                                                 | 0.15<br>0.17<br>0.15<br>0.14<br>0.16                                                                         | 71<br>77<br>77                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.07<br>0.08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.03<br>0.03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 0.21<br>0.19<br>0.18<br>0.20<br>0.23<br>0.19<br>0.19                                                         | 0.17<br>0.15<br>0.14<br>0.16                                                                                 | 77<br>77                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 0.19<br>0.18<br>0.20<br>0.23<br>0.19<br>0.19                                                                 | 0.15<br>0.14<br>0.16                                                                                         | 77                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 0.18<br>0.20<br>0.23<br>0.19<br>0.19                                                                         | 0.14<br>0.16                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 0.20<br>0.23<br>0.19<br>0.19                                                                                 | 0.16                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 0.23<br>0.19<br>0.19                                                                                         |                                                                                                              | 83                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 0.19<br>0.19                                                                                                 |                                                                                                              | 72                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 0.19                                                                                                         | 0.15                                                                                                         | 72                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                                                              | 0.15                                                                                                         | 87                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 0.10                                                                                                         | 0.15                                                                                                         | 70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 0.19<br>0.21                                                                                                 | 0.17                                                                                                         | 67                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 0.21                                                                                                         |                                                                                                              | 71                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                                                              | 0.15                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 0.22                                                                                                         | 0.18                                                                                                         | 73                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 0.18                                                                                                         | 0.14                                                                                                         | 74                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 0.19                                                                                                         | 0.15                                                                                                         | 76<br>70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 0.18                                                                                                         | 0.14                                                                                                         | 70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 0.15                                                                                                         | 0.10                                                                                                         | 73                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 0.11                                                                                                         | 0.07                                                                                                         | 70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                                                              |                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                                                              |                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                                                              |                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                                                              |                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                                                              |                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                                                              |                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                                                              |                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                                                              |                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                                                              |                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                                                              |                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                                                              |                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                                                              |                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                                                              |                                                                                                              | Auto-Cont.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                                                              |                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                                                              |                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                                                              |                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                                                              |                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                                                              |                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 0.08                                                                                                         | 0.04                                                                                                         | 72                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 0.07                                                                                                         | 0.03                                                                                                         | 76                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 0.08                                                                                                         | 0.04                                                                                                         | 65                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 0.08                                                                                                         | 0.04                                                                                                         | 70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 0.09                                                                                                         | 0.04                                                                                                         | 67                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 80.0                                                                                                         | 0.04                                                                                                         | 87                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                                                              | 0.04                                                                                                         | 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                                                                              | 0.07<br>0.08<br>0.08<br>0.09                                                                                 | 0.09       0.05         0.07       0.03         0.08       0.04         0.08       0.04         0.08       0.04         0.08       0.04         0.08       0.04         0.09       0.05         0.07       0.03         0.08       0.04         0.07       0.03         0.07       0.03         0.07       0.03         0.08       0.04         0.07       0.03         0.08       0.04         0.07       0.03         0.08       0.04         0.07       0.03         0.08       0.04         0.09       0.04         0.09       0.04         0.09       0.04         0.08       0.04         0.09       0.04         0.08       0.04 | 0.09       0.05       69         0.07       0.03       70         0.09       0.05       68         0.08       0.04       64         0.08       0.04       71         0.08       0.04       89         0.08       0.04       87         0.09       0.05       85         0.07       0.03       79         0.08       0.04       67         0.08       0.04       71         0.07       0.03       78         0.07       0.03       89         0.08       0.04       73         0.07       0.03       75         0.08       0.04       72         0.07       0.03       76         0.08       0.04       65         0.08       0.04       70         0.09       0.04       67 | 0.09         0.05         69         0.07           0.07         0.03         70         0.07           0.09         0.05         68         0.07           0.08         0.04         64         0.06           0.08         0.04         71         0.07           0.08         0.04         89         0.09           0.08         0.04         87         0.09           0.09         0.05         85         0.08           0.07         0.03         79         0.08           0.08         0.04         67         0.07           0.08         0.04         71         0.07           0.08         0.04         71         0.07           0.08         0.04         71         0.07           0.07         0.03         78         0.08           0.07         0.03         78         0.08           0.07         0.03         72         0.07           0.07         0.03         75         0.07           0.07         0.03         75         0.07           0.08         0.04         72         0.07           0.08         0.04 </td |

| 101<br>108 | 0.10         |              | 5/1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.05         | 0.01         |
|------------|--------------|--------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|--------------|
|            | 0.11         | 0.06<br>0.07 | 54<br>63                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.05         | 0.01<br>0.02 |
|            |              |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.06         |              |
| 100<br>120 | 0.10<br>0.12 | 0.06<br>0.08 | 68<br>69                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.07<br>0.07 | 0.03         |
| 117        | 0.12         | 0.07         | 68                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.07         | 0.03         |
|            | 0.12         | 0.07         | 64                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.06         | 0.03         |
| 116        |              |              | and the same of th |              |              |
| 103        | 0.10         | 0.06         | 65                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.06         | 0.02         |
| 86         | 0.08         | 0.04         | 73                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.07         | 0.03         |
| 82         | 80.0         | 0.04         | 69                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.07         | 0.03         |
| 64         | 0.06         | 0.02         | 65                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.06         | 0.02         |
| 64         | 0.06         | 0.02         | 63                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.06         | 0.02         |
| 67         | 0.07         | 0.03         | 68                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.07         | 0.03         |
| 58         | 0.06         | 0.02         | 58                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.06         | 0.02         |
| 69         | 0.07         | 0.03         | 71                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.07         | 0.03         |
| 78         | 0.08         | 0.04         | 78                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.08         | 0.04         |
| 72         | 0.07         | 0.03         | 72                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.07         | 0.03         |
| 68         | 0.07         | 0.03         | 64                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.06         | 0.02         |
| 66         | 0.07         | 0.02         | 80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.08         | 0.04         |
| 67         | 0.07         | 0.03         | 64                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.06         | 0.02         |
| 59         | 0.06         | 0.02         | 70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.07         | 0.03         |
| 63         | 0.06         | 0.02         | 72                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.07         | 0.03         |
| 65         | 0.06         | 0.02         | 86                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.08         | 0.04         |
| 69         | 0.07         | 0.03         | 72                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.07         | 0.03         |
| 61         | 0.06         | 0.02         | 66                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.07         | 0.02         |
| 69         | 0.07         | 0.03         | 60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.06         | 0.02         |
| 72         | 0.07         | 0.03         | 65                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.06         | 0.02         |
| 79         | 0.08         | 0.04         | 55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.05         | 0.01         |
| 71         | 0.07         | 0.03         | 58                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.06         | 0.02         |
| 66         | 0.07         | 0.02         | 58                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.06         | 0.02         |
| 66         | 0.07         | 0.02         | 52                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.05         | 0.01         |
| 68         | 0.07         | 0.03         | 55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.05         | 0.01         |
| 62         | 0.06         | 0.02         | 57                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.06         | 0.02         |
| 77         | 0.08         | 0.03         | 64                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.06         | 0.02         |
| 65         | 0.06         | 0.02         | 59                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.06         | 0.02         |
| 75         | 0.07         | 0.03         | 59                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.06         | 0.02         |
| 80         | 0.08         | 0.04         | 58                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.06         | 0.02         |
| 70         | 0.07         | 0.03         | 67                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.07         | 0.03         |
| 85         | 0.08         | 0.04         | 58                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.06         | 0.02         |
| 58         | 0.06         | 0.02         | 53                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.05         | 0.01         |
| 70         | 0.07         | 0.03         | 54                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.05         | 0.01         |
| 58         | 0.06         | 0.02         | 59                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.06         | 0.02         |
| 62         | 0.06         | 0.02         | 58                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.06         | 0.02         |
| 68         | 0.07         | 0.03         | 54                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.05         | 0.01         |
| 53         | 0.05         | 0.01         | 54                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.05         | 0.01         |
| 71         | 0.07         | 0.03         | 56                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.06         | 0.01         |
| 58         | 0.06         | 0.02         | 58                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.06         | 0.02         |
| 67         | 0.07         | 0.03         | 58                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.06         | 0.02         |
| 69         | 0.07         | 0.03         | 62                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.06         | 0.02         |
| 62         | 0.06         | 0.02         | 56                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.06         | 0.01         |
| 58         | 0.06         | 0.02         | 57                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.06         | 0.02         |
| 71         | 0.07         | 0.03         | 59                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.06         | 0.02         |
| 60         | 0.06         | 0.02         | 57                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.06         | 0.02         |
| 69         | 0.07         | 0.03         | 54                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.05         | 0.01         |
| 66         | 0.07         | 0.02         | 69                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.07         | 0.03         |

| 53       | 0.05         | 0.01 | 36       | 0.04         | 0.00         |
|----------|--------------|------|----------|--------------|--------------|
|          |              |      | 40       |              |              |
| 63       | 0.06         | 0.02 |          | 0.04         | 0.00         |
| 57       | 0.06         | 0.02 | 46       | 0.05         | 0.00         |
| 47<br>61 | 0.05         | 0.01 | 37<br>51 | 0.04         | 0.00<br>0.01 |
|          | 0.06<br>0.06 | 0.02 | 41       | 0.05<br>0.04 | 0.00         |
| 59       |              | 0.02 |          |              |              |
| 62       | 0.06         | 0.02 | 41       | 0.04         | 0.00         |
| 61       | 0.06         | 0.02 | 47       | 0.05         | 0.01         |
| 58       | 0.06         | 0.02 | 42       | 0.04         | 0.00         |
| 56       | 0.06         | 0.01 | 42       | 0.04         | 0.00         |
| 47       | 0.05         | 0.01 | 49       | 0.05         | 0.01         |
| 54       | 0.05         | 0.01 | 49       | 0.05         | 0.01         |
| 44       | 0.04         | 0.00 | 39       | 0.04         | 0.00         |
| 62       | 0.06         | 0.02 | 50       | 0.05         | 0.01         |
| 56       | 0.06         | 0.01 | 43       | 0.04         | 0.00         |
| 59       | 0.06         | 0.02 | 50       | 0.05         | 0.01         |
| 55       | 0.05         | 0.01 | 46       | 0.05         | 0.00         |
| 46       | 0.05         | 0.00 | 47       | 0.05         | 0.01         |
| 49       | 0.05         | 0.01 | 42       | 0.04         | 0.00         |
| 46       | 0.05         | 0.00 | 47       | 0.05         | 0.01         |
| 40       | 0.04         | 0.00 | 39       | 0.04         | 0.00         |
| 56       | 0.06         | 0.01 | 45       | 0.04         | 0.00         |
| 45       | 0.04         | 0.00 | 42       | 0.04         | 0.00         |
| 53       | 0.05         | 0.01 | 44       | 0.04         | 0.00         |
| 46       | 0.05         | 0.00 | 51       | 0.05         | 0.01         |
| 54       | 0.05         | 0.01 | 37       | 0.04         | 0.00         |
| 59       | 0.06         | 0.02 | 40       | 0.04         | 0.00         |
| 48       | 0.05         | 0.01 | 46       | 0.05         | 0.00         |
| 39       | 0.04         | 0.00 | 39       | 0.04         | 0.00         |
| 47       | 0.05         | 0.01 | 32       | 0.03         | 0.00         |
| 44       | 0.04         | 0.00 | 44       | 0.04         | 0.00         |
| 49       | 0.05         | 0.01 | 40       | 0.04         | 0.00         |
| 47       | 0.05         | 0.01 | 31       | 0.03         | 0.00         |
| 43       | 0.04         | 0.00 | 39       | 0.04         | 0.00         |
| 47       | 0.05         | 0.01 | 40       | 0.04         | 0.00         |
| 46       | 0.05         | 0.00 | 34       | 0.03         | 0.00         |
| 53       | 0.05         | 0.01 | 37       | 0.04         | 0.00         |
| 46       | 0.05         | 0.00 | 36       | 0.04         | 0.00         |
| 43       | 0.04         | 0.00 | 40       | 0.04         | 0.00         |
| 52       | 0.05         | 0.01 | 40       | 0.04         | 0.00         |
| 47       | 0.05         | 0.01 | 32       | 0.03         | 0.00         |
| 46       | 0.05         | 0.00 | 34       | 0.03         | 0.00         |
| 59       | 0.06         | 0.02 | 29       | 0.03         | 0.00         |
| 46       | 0.05         | 0.00 | 31       | 0.03         | 0.00         |
| 65       | 0.06         | 0.02 | 42       | 0.04         | 0.00         |
| 41       | 0.04         | 0.00 | 38       | 0.04         | 0.00         |
| 53       | 0.05         | 0.01 | 38       | 0.04         | 0.00         |
| 42       | 0.04         | 0.00 | 43       | 0.04<br>0.04 | 0.00         |
| 43       | 0.04         | 0.00 | 38       |              | 0.00         |
| 50       | 0.05         | 0.01 | 40       | 0.04         | 0.00         |
| 45<br>50 | 0.04         | 0.00 | 48       | 0.05         | 0.01         |
| 50<br>40 | 0.05         | 0.01 |          |              |              |
| 40       | 0.04         | 0.00 |          |              |              |
| 48       | 0.05         | 0.01 |          |              |              |

| Not               |                   |            | 44 | 0.04   | 0.00 |
|-------------------|-------------------|------------|----|--------|------|
| NS1               |                   |            | 44 | 0.04   | 0.00 |
| 2                 |                   |            | 40 | 0.04   | 0.00 |
| 21:03:24          |                   | 100        | 39 | 0.04   | 0.00 |
| 11:15:49 cps Live |                   | solar      | 34 | 0.03   | 0.00 |
| time (s) 2.00     | cps to micro Sv/h | correction | 40 | 0.04   | 0.00 |
| 147               | 0.14              | 0.10       | 39 | 0.04   | 0.00 |
| 153               | 0.15              | 0.11       | 31 | 0.03   | 0.00 |
| 112               | 0.11              | 0.07       | 37 | 0.04   | 0.00 |
| 125               | 0.12              | 0.08       | 39 | 0.04   | 0.00 |
| 106               | 0.10              | 0.06       | 39 | 0.04   | 0.00 |
| 110               | 0.11              | 0.07       | 30 | 0.03   | 0.00 |
| 96                | 0.09              | 0.05       | 42 | 0.04   | 0.00 |
| 97                | 0.10              | 0.05       | 33 | 0.03   | 0.00 |
| 87                | 0.09              | 0.04       | 32 | 0.03   | 0.00 |
| 88                | 0.09              | 0.05       | 39 | 0.04   | 0.00 |
| 75                | 0.07              | 0.03       | 36 | 0.04   | 0.00 |
| 62                | 0.06              | 0.02       | 40 | 0.04   | 0.00 |
| 64                | 0.06              | 0.02       | 32 | 0.03   | 0.00 |
| 53                | 0.05              | 0.01       | 28 | 0.03   | 0.00 |
| 56                | 0.06              | 0.01       | 36 | 0.04   | 0.00 |
| 52                | 0.05              | 0.01       | 34 | 0.03   | 0.00 |
| 51                | 0.05              | 0.01       | 35 | 0.03   | 0.00 |
| 53                | 0.05              | 0.01       | 33 | 0.03   | 0.00 |
| 51                | 0.05              | 0.01       | 34 | 0.03   | 0.00 |
| 52                | 0.05              | 0.01       | 27 | 0.03   | 0.00 |
| 64                | 0.06              | 0.02       | 42 | 0.04   | 0.00 |
| 46                | 0.05              | 0.00       | 34 | 0.03   | 0.00 |
| 48                | 0.05              | 0.01       | 37 | 0.04   | 0.00 |
| 53                | 0.05              | 0.01       | 37 | 0.04   | 0.00 |
| 46                | 0.05              | 0.00       | 36 | 0.04   | 0.00 |
| 56                | 0.06              | 0.01       | 36 | 0.04   | 0.00 |
| 61                | 0.06              | 0.02       | 42 | 0.04   | 0.00 |
| 47                | 0.05              | 0.01       | 35 | 0.03   | 0.00 |
| 54                | 0.05              | 0.01       | 27 | 0.03   | 0.00 |
| 46                | 0.05              | 0.00       | 38 | 0.04   | 0.00 |
| 45                | 0.04              | 0.00       | 24 | 0.02   | 0.00 |
| 50                | 0.05              | 0.01       | 37 | 0.04   | 0.00 |
| 42                | 0.04              | 0.00       | 33 | 0.03   | 0.00 |
| 50                | 0.05              | 0.01       | 42 | 0.04   | 0.00 |
| 58                | 0.06              | 0.02       | 41 | 0.04   | 0.00 |
| 48                | 0.05              | 0.01       | 38 | 0.04   | 0.00 |
| 53                | 0.05              | 0.01       | 45 | 0.04   | 0.00 |
| 46                | 0.05              | 0.00       | 39 | 0.04   | 0.00 |
| 50                | 0.05              | 0.01       | 31 | 0.03   | 0.00 |
| 54                | 0.05              | 0.01       | 29 | 0.03   | 0.00 |
| 51                | 0.05              | 0.01       | 40 | 0.04   | 0.00 |
| 45                | 0.04              | 0.00       | 32 | 0.03   | 0.00 |
| 54                | 0.05              | 0.01       | 39 | 0.04   | 0.00 |
| 41                | 0.04              | 0.00       |    | 5.0577 |      |
| 57                | 0.06              | 0.02       |    |        |      |
| 49                | 0.05              | 0.01       |    |        |      |
| 44                | 0.04              | 0.00       |    |        |      |
| 42                | 0.04              | 0.00       |    |        |      |

| EV-1-            |                   |              | 59                   | 0.06                      | 0.02       |
|------------------|-------------------|--------------|----------------------|---------------------------|------------|
| NS2              |                   |              | 66                   | 0.07                      | 0.02       |
| 3                |                   |              | 58                   | 0.06                      | 0.02       |
| 21:03:24         |                   | 4.72-2       | 50                   | 0.05                      | 0.01       |
| 11:19:39 cps Liv |                   | solar        | 78                   | 0.08                      | 0.04       |
| time (s) 2.00    | cps to micro Sv/h | correction   | 73                   | 0.07                      | 0.03       |
| 29               | 0.03              | 0.00         | 76                   | 0.07                      | 0.03       |
| 31               | 0.03              | 0.00         | 81                   | 0.08                      | 0.04       |
| 30               | 0.03              | 0.00         | 77                   | 0.08                      | 0.03       |
| 40               | 0.04              | 0.00         | 76                   | 0.07                      | 0.03       |
| 36               | 0.04              | 0.00         | 77                   | 0.08                      | 0.03       |
| 39               | 0.04              | 0.00         | 67                   | 0.07                      | 0.03       |
| 31               | 0.03              | 0.00         | 75                   | 0.07                      | 0.03       |
| 33               | 0.03              | 0.00         | 81                   | 0.08                      | 0.04       |
| 35               | 0.03              | 0.00         | 87                   | 0.09                      | 0.04       |
| 34               | 0.03              | 0.00         | 107                  | 0.11                      | 0.06       |
| 41               | 0.04              | 0.00         | 81                   | 0.08                      | 0.04       |
| 35               | 0.03              | 0.00         | 100                  | 0.10                      | 0.06       |
| 38               | 0.04              | 0.00         | 107                  | 0.11                      | 0.06       |
| 45               | 0.04              | 0.00         | 119                  | 0.12                      | 0.08       |
| 43               | 0.04              | 0.00         | 127                  | 0.13                      | 0.08       |
| 51               | 0.05              | 0.01         | 144                  | 0.14                      | 0.10       |
| 42               | 0.04              | 0.00         | 196                  | 0.19                      | 0.15       |
| 36               | 0.04              | 0.00         | 179                  | 0.18                      | 0.14       |
| 48               | 0.05              | 0.01         | 17.5                 | 0.10                      | 0.14       |
| 45               | 0.04              | 0.00         |                      |                           |            |
| 46               | 0.05              | 0.00         |                      |                           |            |
| 46               | 0.05              | 0.00         | NS3                  |                           |            |
| 45               | 0.04              | 0.00         | 4                    |                           |            |
| 52               | 0.05              | 0.01         | 21:03:24             |                           |            |
| 49               | 0.05              | 0.01         | 11:22:58 cps Liv     |                           | solar      |
| 42               | 0.04              | 0.00         |                      |                           | correction |
| 56               | 0.06              | 0.00         | time (s) 2.00<br>102 | cps to micro Sv/h<br>0.10 | 0.06       |
| 44               | 0.04              | 0.00         | 110                  | 0.10                      | 0.00       |
| 47               | 0.05              | 0.00         |                      |                           |            |
|                  |                   |              | 85                   | 0.08                      | 0.04       |
| 50               | 0.05              | 0.01         | 86                   | 0.08                      | 0.04       |
| 37               | 0.04              | 0.00         | 80                   | 0.08                      | 0.04       |
| 48               | 0.05              | 0.01         | 84                   | 0.08                      | 0.04       |
| 44               | 0.04              | 0.00         | 85                   | 0.08                      | 0.04       |
| 58               | 0.06              | 0.02         | 74                   | 0.07                      | 0.03       |
| 51               | 0.05              | 0.01         | 78                   | 0.08                      | 0.04       |
| 58               | 0.06              | 0.02         | 81                   | 0.08                      | 0.04       |
| 54               | 0.05              | 0.01         | 85                   | 0.08                      | 0.04       |
| 61               | 0.06              | 0.02         | 73                   | 0.07                      | 0.03       |
| 52               | 0.05              | 0.01         | 80                   | 0.08                      | 0.04       |
| 65               | 0.06              | 0.02         | 75                   | 0.07                      | 0.03       |
| 61               | 0.06              | 0.02         | 89                   | 0.09                      | 0.05       |
| 71               | 0.07              | 0.03         | 112                  | 0.11                      | 0.07       |
| 50               | 0.05              | 0.01         | 105                  | 0.10                      | 0.06       |
|                  | 0.06              | 0.02         | 94                   | 0.09                      | 0.05       |
| 58               |                   |              | 1.2.2.1              | 0.00                      | 0.05       |
| 60               | 0.06              | 0.02         | 93                   | 0.09                      | 0.05       |
| 60<br>62         |                   | 0.02<br>0.02 | 93<br>91             | 0.09                      | 0.05       |
| 60               | 0.06              |              |                      |                           |            |

| 02       | 0.00         | 0.05         | EC       | 0.06         | 0.01         |
|----------|--------------|--------------|----------|--------------|--------------|
| 92       | 0.09         | 0.05         | 56<br>49 | 0.06         | 0.01         |
| 80       | 0.08         | 0.04         |          | 0.05         | 0.01         |
| 81       | 0.08         | 0.04         | 47       | 0.05         | 0.01         |
| 85<br>73 | 0.08<br>0.07 | 0.04<br>0.03 | 46<br>56 | 0.05         | 0.00<br>0.01 |
| 67       | 0.07         | 0.03         | 49       | 0.06<br>0.05 |              |
|          |              |              |          |              | 0.01         |
| 65<br>76 | 0.06         | 0.02         | 51       | 0.05         | 0.01         |
| 76       | 0.07         | 0.03         | 47<br>53 | 0.05         | 0.01         |
| 77       | 0.08         | 0.03         | 7.5.5    | 0.05         | 0.01         |
| 71       | 0.07         | 0.03         | 52       | 0.05         | 0.01         |
| 65       | 0.06         | 0.02<br>0.03 | 48<br>57 | 0.05         | 0.01         |
| 75<br>62 | 0.07<br>0.06 | 0.02         | 49       | 0.06<br>0.05 | 0.02<br>0.01 |
| 57       | 0.06         | 0.02         | 57       | 0.06         | 0.01         |
| 62       |              |              | 61       |              | 0.02         |
| 62       | 0.06<br>0.06 | 0.02<br>0.02 | 59       | 0.06<br>0.06 | 0.02         |
| 66       | 0.07         | 0.02         | 59       | 0.06         | 0.02         |
|          |              |              | 52       |              | 0.02         |
| 73       | 0.07         | 0.03         | 60       | 0.05         |              |
| 69       | 0.07         | 0.03         | 60       | 0.06         | 0.02         |
| 60       | 0.06         | 0.02         |          | 0.06         | 0.02         |
| 60       | 0.06         | 0.02         | 54       | 0.05         | 0.01         |
| 57<br>59 | 0.06         | 0.02<br>0.02 | 57<br>56 | 0.06<br>0.06 | 0.02<br>0.01 |
| 65       | 0.06         |              | 64       |              | 0.01         |
| 61       | 0.06<br>0.06 | 0.02<br>0.02 | 42       | 0.06<br>0.04 | 0.02         |
| 62       | 0.06         | 0.02         | 63       | 0.04         | 0.00         |
| 52       | 0.05         | 0.01         | 59       | 0.06         | 0.02         |
| 59       | 0.06         | 0.01         | 53       | 0.05         | 0.02         |
| 61       | 0.06         | 0.02         | 59       | 0.06         | 0.01         |
| 53       | 0.05         | 0.02         | 54       | 0.05         | 0.02         |
| 58       | 0.06         | 0.02         | 57       | 0.06         | 0.01         |
| 58       | 0.06         | 0.02         | 53       | 0.05         | 0.02         |
| 52       | 0.05         | 0.02         | 41       | 0.04         | 0.00         |
| 60       | 0.06         | 0.02         | 53       | 0.05         | 0.00         |
| 56       | 0.06         | 0.01         | 65       | 0.06         | 0.02         |
| 58       | 0.06         | 0.02         | 55       | 0.05         | 0.01         |
| 56       | 0.06         | 0.01         | 61       | 0.06         | 0.02         |
| 50       | 0.05         | 0.01         | 50       | 0.05         | 0.01         |
| 44       | 0.04         | 0.00         | 52       | 0.05         | 0.01         |
| 56       | 0.06         | 0.01         | 51       | 0.05         | 0.01         |
| 51       | 0.05         | 0.01         | 50       | 0.05         | 0.01         |
| 48       | 0.05         | 0.01         | 58       | 0.06         | 0.02         |
| 50       | 0.05         | 0.01         | 47       | 0.05         | 0.01         |
| 54       | 0.05         | 0.01         | 46       | 0.05         | 0.00         |
| 44       | 0.04         | 0.00         | 43       | 0.04         | 0.00         |
| 49       | 0.05         | 0.01         | 52       | 0.05         | 0.01         |
| 53       | 0.05         | 0.01         | 53       | 0.05         | 0.01         |
| 48       | 0.05         | 0.01         | 57       | 0.06         | 0.02         |
| 51       | 0.05         | 0.01         | 58       | 0.06         | 0.02         |
| 48       | 0.05         | 0.01         | 66       | 0.07         | 0.02         |
| 52       | 0.05         | 0.01         | 59       | 0.06         | 0.02         |
| 54       | 0.05         | 0.01         | -        | 0.00         | 0.02         |
| 47       | 0.05         | 0.01         |          |              |              |
| 60       | 0.06         | 0.02         |          |              |              |
|          |              |              | II.      |              |              |

| NCA              |                   |            | 62                | 0.06              | 0.02         |
|------------------|-------------------|------------|-------------------|-------------------|--------------|
| <b>NS4</b> 5     |                   |            | 104               | 0.10              | 0.06         |
|                  |                   |            | 100               | 0.10              | 0.06         |
| 21:03:24         |                   | solar      | 117               | 0.12              | 0.07         |
| 11:27:27 cps Liv |                   |            | 134               | 0.13              | 0.09         |
| time (s) 2.00    | cps to micro Sv/h | correction | 149               | 0.15              | 0.11         |
| 57               | 0.06              | 0.02       | 145               | 0.14              | 0.10         |
| 66               | 0.07              | 0.02       |                   |                   |              |
| 62               | 0.06              | 0.02       |                   |                   |              |
| 45               | 0.04              | 0.00       |                   |                   |              |
| 52               | 0.05              | 0.01       | NS5               |                   |              |
| 65               | 0.06              | 0.02       | 6                 |                   |              |
| 55               | 0.05              | 0.01       | 21:03:24          |                   |              |
| 56               | 0.06              | 0.01       | 11:31:38 cps Live |                   | solar        |
| 47               | 0.05              | 0.01       | time (s) 2.00     | cps to micro Sv/h | correction   |
| 64               | 0.06              | 0.02       | 133               | 0.13              | 0.09         |
| 55               | 0.05              | 0.01       | 141               | 0.14              | 0.10         |
| 48               | 0.05              | 0.01       | 135               | 0.13              | 0.09         |
| 66               | 0.07              | 0.02       | 125               | 0.12              | 0.08         |
| 56               | 0.06              | 0.01       | 134               | 0.13              | 0.09         |
| 63               | 0.06              | 0.02       | 128               | 0.13              | 0.09         |
| 63               | 0.06              | 0.02       | 111               | 0.11              | 0.07         |
| 50               | 0.05              | 0.01       | 121               | 0.12              | 0.08         |
| 55               | 0.05              | 0.01       | 88                | 0.09              | 0.05         |
| 50               | 0.05              | 0.01       | 92                | 0.09              | 0.05         |
| 46               | 0.05              | 0.00       | 76                | 0.07              | 0.03         |
| 68               | 0.07              | 0.03       | 70                | 0.07              | 0.03         |
| 67               | 0.07              | 0.03       | 67                | 0.07              | 0.03         |
| 65               | 0.06              | 0.02       | 76                | 0.07              | 0.03         |
| 70               | 0.07              | 0.03       | 64                | 0.06              | 0.03         |
| 61               | 0.06              | 0.02       | 60                |                   |              |
| 59               | 0.06              | 0.02       |                   | 0.06              | 0.02         |
| 69               | 0.07              | 0.02       | 60                | 0.06              | 0.02         |
| 56               | 0.06              | 0.03       | 60                | 0.06              | 0.02         |
| 60               | 0.06              | 0.01       | 64                | 0.06              | 0.02         |
|                  |                   |            | 63                | 0.06              | 0.02         |
| 63               | 0.06              | 0.02       | 65                | 0.06              | 0.02         |
| 55               | 0.05              | 0.01       | 54                | 0.05              | 0.01         |
| 52               | 0.05              | 0.01       | 45                | 0.04              | 0.00         |
| 57               | 0.06              | 0.02       | 59                | 0.06              | 0.02         |
| 55               | 0.05              | 0.01       | 48                | 0.05              | 0.01         |
| 71               | 0.07              | 0.03       | 58                | 0.06              | 0.02         |
| 60               | 0.06              | 0.02       | 46                | 0.05              | 0.00         |
| 62               | 0.06              | 0.02       | 52                | 0.05              | 0.01         |
| 61               | 0.06              | 0.02       | 46                | 0.05              | 0.00         |
| 63               | 0.06              | 0.02       | 63                | 0.06              | 0.02         |
| 81               | 0.08              | 0.04       | 50                | 0.05              | 0.01         |
| 67               | 0.07              | 0.03       | 56                | 0.06              | 0.01         |
| 63               | 0.06              | 0.02       | 42                | 0.04              | 0.00         |
| 63               | 0.06              | 0.02       | 50                | 0.05              | 0.01         |
| 76               | 0.07              | 0.03       | 54                | 0.05              | 0.01         |
| 59               | 0.06              | 0.02       | 52                | 0.05              | 0.01         |
| 61               | 0.06              | 0.02       | 58                | 0.06              | 0.02         |
| 63               | 0.06              | 0.02       | 54                | 0.05              | 0.01         |
| 60               | 0.06              | 0.02       |                   |                   | <del>-</del> |

| 52 | 0.05 | 0.01 | 60  | 0.06 | 0.02 |
|----|------|------|-----|------|------|
| 50 | 0.05 | 0.01 | 60  | 0.06 | 0.02 |
| 53 | 0.05 | 0.01 | 62  | 0.06 | 0.02 |
| 64 | 0.06 | 0.02 | 68  | 0.07 | 0.03 |
| 52 | 0.05 | 0.01 | 77  | 0.08 | 0.03 |
| 53 | 0.05 | 0.01 | 78  | 0.08 | 0.04 |
| 43 | 0.04 | 0.00 | 64  | 0.06 | 0.02 |
| 53 | 0.05 | 0.01 | 60  | 0.06 | 0.02 |
| 50 | 0.05 | 0.01 | 78  | 0.08 | 0.04 |
| 51 | 0.05 | 0.01 | 74  | 0.07 | 0.03 |
| 50 | 0.05 | 0.01 | 81  | 0.08 | 0.04 |
| 51 | 0.05 | 0.01 | 84  | 0.08 | 0.04 |
| 41 | 0.04 | 0.00 | 74  | 0.07 | 0.03 |
| 41 | 0.04 | 0.00 | 93  | 0.09 | 0.05 |
| 48 | 0.05 | 0.01 | 99  | 0.10 | 0.06 |
| 43 | 0.04 | 0.00 | 147 | 0.14 | 0.10 |
| 48 | 0.05 | 0.01 | 156 | 0.15 | 0.11 |
| 46 | 0.05 | 0.00 | 160 | 0.16 | 0.12 |
| 41 | 0.04 | 0.00 | 145 | 0.14 | 0.10 |
| 38 | 0.04 | 0.00 | 165 | 0.16 | 0.12 |
| 45 | 0.04 | 0.00 | 158 | 0.16 | 0.11 |
| 38 | 0.04 | 0.00 | 156 | 0.15 | 0.11 |
| 46 | 0.05 | 0.00 | 175 | 0.17 | 0.13 |
| 49 | 0.05 | 0.01 | 167 | 0.16 | 0.12 |
| 53 | 0.05 | 0.01 | 177 | 0.17 | 0.13 |
| 42 | 0.04 | 0.00 | 167 | 0.16 | 0.12 |
|    |      |      | 164 | 0.16 | 0.12 |
|    |      |      | 174 | 0.17 | 0.13 |
|    |      |      | 162 | 0.16 | 0.12 |
|    |      |      |     |      |      |

|    |    | 7  |
|----|----|----|
| 21 | :0 | 3: |

| 21:03:24<br>11:37:14 cps Live | P                 | solar      | NS7               |                   |            |
|-------------------------------|-------------------|------------|-------------------|-------------------|------------|
| time (s) 2.00                 | cps to micro Sv/h | correction | 8                 |                   |            |
| 45                            | 0.04              | 0.00       | 21:03:24          |                   |            |
| 59                            | 0.06              | 0.02       | 11:39:51 cps Live | 2                 | solar      |
| 55                            | 0.05              | 0.01       | time (s) 2.00     | cps to micro Sv/h | correction |
| 50                            | 0.05              | 0.01       | 336               | 0.33              | 0.29       |
| 49                            | 0.05              | 0.01       | 321               | 0.32              | 0.28       |
| 51                            | 0.05              | 0.01       | 268               | 0.26              | 0.22       |
| 52                            | 0.05              | 0.01       | 238               | 0.23              | 0.19       |
| 52                            | 0.05              | 0.01       | 234               | 0.23              | 0.19       |
| 48                            | 0.05              | 0.01       | 243               | 0.24              | 0.20       |
| 54                            | 0.05              | 0.01       | 314               | 0.31              | 0.27       |
| 55                            | 0.05              | 0.01       | 308               | 0.30              | 0.26       |
| 58                            | 0.06              | 0.02       | 164               | 0.16              | 0.12       |
| 54                            | 0.05              | 0.01       | 113               | 0.11              | 0.07       |
| 54                            | 0.05              | 0.01       | 113               | 0.11              | 0.07       |
| 62                            | 0.06              | 0.02       | 97                | 0.10              | 0.05       |
| 62                            | 0.06              | 0.02       | 70                | 0.07              | 0.03       |
| 57                            | 0.06              | 0.02       | 94                | 0.09              | 0.05       |
| 50                            | 0.05              | 0.01       | 77                | 80.0              | 0.03       |
| 58                            | 0.06              | 0.02       | 82                | 0.08              | 0.04       |

| 82               | 0.08              | 0.04       | 45                | 0.04              | 0.00       |
|------------------|-------------------|------------|-------------------|-------------------|------------|
| 65               | 0.06              | 0.02       | 40                | 0.04              | 0.00       |
| 65               | 0.06              | 0.02       | 50                | 0.05              | 0.01       |
| 66               | 0.07              | 0.02       | 42                | 0.04              | 0.00       |
| 75               | 0.07              | 0.03       | 50                | 0.05              | 0.01       |
| 72               | 0.07              | 0.03       | 55                | 0.05              | 0.01       |
| 73               | 0.07              | 0.03       | 38                | 0.04              | 0.00       |
| 79               | 0.08              | 0.04       | 53                | 0.05              | 0.01       |
| 72               | 0.07              | 0.03       | 43                | 0.04              | 0.00       |
| 70               | 0.07              | 0.03       | 47                | 0.05              | 0.01       |
| 86               | 0.08              | 0.04       | 40                | 0.04              | 0.00       |
| 74               | 0.07              | 0.03       | 43                | 0.04              | 0.00       |
| 70               | 0.07              | 0.03       | 43                | 0.04              | 0.00       |
| 73               | 0.07              | 0.03       | 37                | 0.04              | 0.00       |
| 68               | 0.07              | 0.03       | 42                | 0.04              | 0.00       |
| 75               | 0.07              | 0.03       | 46                | 0.05              | 0.00       |
| 68               | 0.07              | 0.03       | 43                | 0.03              | 0.00       |
| 74               | 0.07              | 0.03       | 50                | 0.05              | 0.00       |
| 83               | 0.08              | 0.03       | 50                | 0.05              | 0.01       |
|                  |                   |            |                   |                   |            |
| 80               | 0.08              | 0.04       | 48                | 0.05              | 0.01       |
| 79               | 0.08              | 0.04       | 45                | 0.04              | 0.00       |
| 77               | 0.08              | 0.03       | 49                | 0.05              | 0.01       |
| 73               | 0.07              | 0.03       | 48                | 0.05              | 0.01       |
| 78               | 0.08              | 0.04       | 63                | 0.06              | 0.02       |
| 60               | 0.06              | 0.02       | 71                | 0.07              | 0.03       |
| 84               | 0.08              | 0.04       | 67                | 0.07              | 0.03       |
| 92               | 0.09              | 0.05       | 76                | 0.07              | 0.03       |
| 76               | 0.07              | 0.03       | 75                | 0.07              | 0.03       |
| 81               | 80.0              | 0.04       | 63                | 0.06              | 0.02       |
| 73               | 0.07              | 0.03       | 57                | 0.06              | 0.02       |
| 68               | 0.07              | 0.03       | 58                | 0.06              | 0.02       |
| 62               | 0.06              | 0.02       | 75                | 0.07              | 0.03       |
| 80               | 0.08              | 0.04       | 96                | 0.09              | 0.05       |
| 80               | 0.08              | 0.04       | 168               | 0.17              | 0.12       |
| 74               | 0.07              | 0.03       | 233               | 0.23              | 0.19       |
| 64               | 0.06              | 0.02       | 286               | 0.28              | 0.24       |
| 64               | 0.06              | 0.02       | 303               | 0.30              | 0.26       |
| 57               | 0.06              | 0.02       |                   |                   |            |
| 71               | 0.07              | 0.03       |                   |                   |            |
| 76               | 0.07              | 0.03       |                   |                   |            |
| 64               | 0.06              | 0.02       | NS9               |                   |            |
| 63               | 0.06              | 0.02       | 10                |                   |            |
| 65               | 0.06              | 0.02       | 21:03:24          |                   |            |
| 73               | 0.07              | 0.03       | 11:45:39 cps Live |                   | solar      |
| 72               | 0.07              | 0.03       | time (s) 2.00     | cps to micro Sv/h | correction |
|                  | 250               | 2.00       | 135               | 0.13              | 0.09       |
|                  |                   |            | 146               | 0.14              | 0.10       |
| IS8              |                   |            | 164               | 0.16              | 0.12       |
| 9                |                   |            | 152               | 0.15              | 0.11       |
| 21:03:24         |                   |            | 102               | 0.10              | 0.06       |
| 1:43:27 cps Live |                   | solar      | 71                | 0.07              | 0.03       |
|                  | cps to micro Sv/h | correction | 69                | 0.07              | 0.03       |
| 57               | 0.06              | 0.02       | 61                | 0.06              | 0.03       |
|                  |                   |            |                   |                   |            |

| 61                | 0.06              | 0.02       | 31               | 0.03              | 0.00       |
|-------------------|-------------------|------------|------------------|-------------------|------------|
| 56                | 0.06              | 0.01       | 36               | 0.04              | 0.00       |
| 53                | 0.05              | 0.01       | 36               | 0.04              | 0.00       |
| 49                | 0.05              | 0.01       | 26               | 0.03              | 0.00       |
| 49                | 0.05              | 0.01       | 34               | 0.03              | 0.00       |
| 48                | 0.05              | 0.01       | 36               | 0.04              | 0.00       |
| 42                | 0.04              | 0.00       | 42               | 0.04              | 0.00       |
| 44                | 0.04              | 0.00       | 41               | 0.04              | 0.00       |
| 44                | 0.04              | 0.00       | 44               | 0.04              | 0.00       |
| 49                | 0.05              | 0.01       | 41               | 0.04              | 0.00       |
| 42                | 0.04              | 0.00       | 46               | 0.05              | 0.00       |
| 41                | 0.04              | 0.00       | 47               | 0.05              | 0.01       |
| 45                | 0.04              | 0.00       | 47               | 0.05              | 0.01       |
| 44                | 0.04              | 0.00       | 38               | 0.04              | 0.00       |
| 39                | 0.04              | 0.00       | 42               | 0.04              | 0.00       |
| 45                | 0.04              | 0.00       | 54               | 0.05              | 0.01       |
| 40                | 0.04              | 0.00       | 48               | 0.05              | 0.01       |
| 42                | 0.04              | 0.00       | 45               | 0.04              | 0.00       |
| 43                | 0.04              | 0.00       | 47               | 0.05              | 0.01       |
| 44                | 0.04              | 0.00       | 47               | 0.05              | 0.01       |
| 42                | 0.04              | 0.00       | 43               | 0.04              | 0.00       |
| 43                | 0.04              | 0.00       | 48               | 0.05              | 0.01       |
| 45                | 0.04              | 0.00       | 51               | 0.05              | 0.01       |
| 46                | 0.05              | 0.00       | 48               | 0.05              | 0.01       |
| 40                | 0.04              | 0.00       | 59               | 0.06              | 0.02       |
| 40                | 0.04              | 0.00       | 45               | 0.04              | 0.00       |
| 34                | 0.03              | 0.00       | 44               | 0.04              | 0.00       |
| 45                | 0.04              | 0.00       | 67               | 0.07              | 0.03       |
| 40                | 0.04              | 0.00       | 58               | 0.06              | 0.02       |
| 43                | 0.04              | 0.00       | 58               | 0.06              | 0.02       |
| 42                | 0.04              | 0.00       | 65               | 0.06              | 0.02       |
| 44                | 0.04              | 0.00       | 51               | 0.05              | 0.01       |
| 45                | 0.04              | 0.00       | 60               | 0.06              | 0.02       |
| 38                | 0.04              | 0.00       | 58               | 0.06              | 0.02       |
| 38                | 0.04              | 0.00       | 41               | 0.04              | 0.00       |
| 37                | 0.04              | 0.00       |                  |                   |            |
| 35                | 0.03              | 0.00       |                  |                   |            |
| 37                | 0.04              | 0.00       |                  |                   |            |
| 40                | 0.04              | 0.00       | NS11             |                   |            |
| 35                | 0.03              | 0.00       | 12               |                   |            |
| 33                | 0.03              | 0.00       | 21:03:24         |                   | 1574 6     |
| 32                | 0.03              | 0.00       | 11:52:20 cps Liv |                   | solar      |
|                   |                   |            | time (s) 2.00    | cps to micro Sv/h | correction |
|                   |                   |            | 46               | 0.05              | 0.00       |
|                   |                   |            | 44               | 0.04              | 0.00       |
| NS10              |                   |            | 53               | 0.05              | 0.01       |
| 11                |                   |            | 73               | 0.07              | 0.03       |
| 21:03:24          |                   | 4.4        | 57               | 0.06              | 0.02       |
| 11:49:24 cps Live |                   | solar      | 60               | 0.06              | 0.02       |
| time (s) 2.00     | cps to micro Sv/h | correction | 56               | 0.06              | 0.01       |
| 33                | 0.03              | 0.00       | 42               | 0.04              | 0.00       |
| 36                | 0.04              | 0.00       | 49               | 0.05              | 0.01       |
| 34                | 0.03              | 0.00       | 53               | 0.05              | 0.01       |
| 30                | 0.03              | 0.00       | 54               | 0.05              | 0.01       |

| 45       | 0.04 | 0.00 | 32                                 | 0.03              | 0.00       |
|----------|------|------|------------------------------------|-------------------|------------|
| 45<br>45 | 0.04 | 0.00 | 32                                 | 0.03              | 0.00       |
| 43<br>44 | 0.04 | 0.00 | 37                                 | 0.03              | 0.00       |
| 34       | 0.03 | 0.00 | 32                                 | 0.03              | 0.00       |
| 52       | 0.05 | 0.00 | 34                                 | 0.03              | 0.00       |
| 45       | 0.03 | 0.00 | 43                                 | 0.03              | 0.00       |
| 53       | 0.05 | 0.00 | 32                                 | 0.03              | 0.00       |
| 43       | 0.03 | 0.00 | 38                                 | 0.03              | 0.00       |
| 53       | 0.05 | 0.00 | 33                                 | 0.03              | 0.00       |
| 48       | 0.05 | 0.01 | 38                                 | 0.03              | 0.00       |
|          |      |      |                                    |                   |            |
| 32       | 0.03 | 0.00 | 40                                 | 0.04              | 0.00       |
| 51<br>47 | 0.05 | 0.01 | 41<br>34                           | 0.04<br>0.03      | 0.00       |
| 47       | 0.05 | 0.01 |                                    |                   |            |
|          | 0.05 | 0.01 | 36                                 | 0.04              | 0.00       |
| 50       | 0.05 | 0.01 | 37                                 | 0.04              | 0.00       |
| 42       | 0.04 | 0.00 | 36                                 | 0.04              | 0.00       |
| 43       | 0.04 | 0.00 | 34                                 | 0.03              | 0.00       |
| 49       | 0.05 | 0.01 | 39                                 | 0.04              | 0.00       |
| 39       | 0.04 | 0.00 | 35                                 | 0.03              | 0.00       |
| 48       | 0.05 | 0.01 |                                    |                   |            |
| 43       | 0.04 | 0.00 | NS12                               |                   |            |
| 41       | 0.04 | 0.00 | 13                                 |                   |            |
| 43       | 0.04 | 0.00 | 21:03:24                           |                   |            |
| 41       | 0.04 | 0.00 |                                    |                   | solar      |
| 34       | 0.03 | 0.00 | 11:56:46 cps Live<br>time (s) 2.00 | cps to micro Sv/h | correction |
| 48       | 0.05 | 0.01 | 31                                 | 0.03              | 0.00       |
| 38       | 0.04 | 0.00 |                                    |                   | 0.00       |
| 29       | 0.03 | 0.00 | 24                                 | 0.02              | 0.00       |
| 43       | 0.04 | 0.00 | 24                                 | 0.02<br>0.03      | 0.00       |
| 32       | 0.03 | 0.00 | 28<br>33                           | 0.03              | 0.00       |
| 37       | 0.04 | 0.00 | 29                                 | 0.03              | 0.00       |
| 44       | 0.04 | 0.00 |                                    | 0.03              | 0.00       |
| 54       | 0.05 | 0.01 | 30<br>38                           | 0.03              | 0.00       |
| 46       | 0.05 | 0.00 | 32                                 | 0.03              | 0.00       |
| 36       | 0.04 | 0.00 | 37                                 | 0.03              | 0.00       |
| 38       | 0.04 | 0.00 | 39                                 | 0.04              | 0.00       |
| 43       | 0.04 | 0.00 |                                    | 0.04              | 0.00       |
| 34       | 0.03 | 0.00 | 37                                 |                   | 0.00       |
| 39       | 0.04 | 0.00 | 34                                 | 0.03              |            |
| 33       | 0.03 | 0.00 | 26<br>37                           | 0.03<br>0.04      | 0.00       |
| 38       | 0.04 | 0.00 |                                    | 0.03              | 0.00       |
| 32       | 0.03 | 0.00 | 32                                 |                   |            |
| 33       | 0.03 | 0.00 | 38                                 | 0.04              | 0.00       |
| 36       | 0.04 | 0.00 | 37                                 | 0.04              | 0.00       |
| 29       | 0.03 | 0.00 | 33                                 | 0.03              | 0.00       |
| 39       | 0.04 | 0.00 | 41                                 | 0.04              | 0.00       |
| 26       | 0.03 | 0.00 | 35                                 | 0.03              | 0.00       |
| 25       | 0.02 | 0.00 | 31                                 | 0.03              | 0.00       |
| 33       | 0.03 | 0.00 | 30                                 | 0.03              | 0.00       |
| 31       | 0.03 | 0.00 | 46                                 | 0.05              | 0.00       |
| 28       | 0.03 | 0.00 | 37                                 | 0.04              | 0.00       |
| 36       | 0.04 | 0.00 | 29                                 | 0.03              | 0.00       |
| 32       | 0.03 | 0.00 | 34                                 | 0.03              | 0.00       |
| 28       | 0.03 | 0.00 | 32                                 | 0.03              | 0.00       |

| 40                                           | 0.04                                                         | 0.00                                                        | 37                               | 0.04                                                 | 0.00                     |
|----------------------------------------------|--------------------------------------------------------------|-------------------------------------------------------------|----------------------------------|------------------------------------------------------|--------------------------|
| 33                                           | 0.03                                                         | 0.00                                                        | 40                               | 0.04                                                 | 0.00                     |
| 33<br>40                                     | 0.03                                                         | 0.00                                                        | 40                               |                                                      |                          |
| 37                                           | 0.04                                                         | 0.00                                                        | 46                               | 0.04<br>0.05                                         | 0.00                     |
|                                              |                                                              |                                                             |                                  |                                                      |                          |
| 29                                           | 0.03                                                         | 0.00                                                        | 33                               | 0.03                                                 | 0.00                     |
| 33                                           | 0.03                                                         | 0.00                                                        | 36                               | 0.04                                                 | 0.00                     |
| 39                                           | 0.04                                                         | 0.00                                                        | 30                               | 0.03                                                 | 0.00                     |
| 39<br>37                                     | 0.04<br>0.04                                                 | 0.00                                                        | 29<br>36                         | 0.03<br>0.04                                         | 0.00                     |
| 34                                           | 0.04                                                         | 0.00                                                        | 32                               | 0.04                                                 | 0.00                     |
| 36                                           | 0.03                                                         | 0.00                                                        | 36                               | 0.03                                                 | 0.00                     |
| 40                                           | 0.04                                                         | 0.00                                                        | 33                               | 0.04                                                 | 0.00                     |
| 30                                           | 0.03                                                         | 0.00                                                        | 38                               | 0.04                                                 | 0.00                     |
| 31                                           | 0.03                                                         | 0.00                                                        | 40                               | 0.04                                                 | 0.00                     |
| 29                                           | 0.03                                                         | 0.00                                                        | 31                               | 0.04                                                 | 0.00                     |
| 34                                           | 0.03                                                         | 0.00                                                        | 37                               | 0.03                                                 | 0.00                     |
| 42                                           | 0.03                                                         | 0.00                                                        | 37                               |                                                      | 0.00                     |
|                                              |                                                              |                                                             | 34                               | 0.04                                                 | 0.00                     |
| 36                                           | 0.04                                                         | 0.00                                                        |                                  | 0.03                                                 |                          |
| 31                                           | 0.03                                                         | 0.00                                                        | 35                               | 0.03                                                 | 0.00                     |
| 46                                           | 0.05                                                         | 0.00                                                        | 37                               | 0.04                                                 | 0.00                     |
| 51                                           | 0.05                                                         | 0.01                                                        | 35                               | 0.03                                                 | 0.00                     |
| 44                                           | 0.04                                                         | 0.00                                                        | 38                               | 0.04                                                 | 0.00                     |
| 50<br>55                                     | 0.05<br>0.05                                                 | 0.01<br>0.01                                                | 40<br>37                         | 0.04<br>0.04                                         | 0.00                     |
| 57                                           | 0.06                                                         |                                                             |                                  |                                                      | 0.00                     |
| 54                                           | 0.05                                                         | 0.02<br>0.01                                                | 33<br>28                         | 0.03                                                 | 0.00                     |
| 34                                           | 0.05                                                         | 0.01                                                        | 32                               | 0.03<br>0.03                                         | 0.00                     |
|                                              |                                                              |                                                             | 43                               | 0.03                                                 | 0.00                     |
| NS13                                         |                                                              |                                                             | 38                               | 0.04                                                 | 0.00                     |
| 14                                           |                                                              |                                                             | 38                               | 0.04                                                 | 0.00                     |
| 21:03:24                                     |                                                              |                                                             | 37                               | 0.04                                                 | 0.00                     |
| 11:59:30 cps Liv                             | 0                                                            | solar                                                       | 38                               | 0.04                                                 | 0.00                     |
| time (s) 2.00                                | cps to micro Sv/h                                            | correction                                                  | 44                               | 0.04                                                 | 0.00                     |
| 32                                           | 0.03                                                         | 0.00                                                        | 37                               | 0.04                                                 | 0.00                     |
| 45                                           | 0.04                                                         | 0.00                                                        | 48                               | 0.05                                                 | 0.01                     |
| 43                                           | 0.04                                                         | 0.00                                                        | 39                               | 0.04                                                 | 0.00                     |
| 45                                           | 0.04                                                         | 0.00                                                        | 32                               | 0.03                                                 | 0.00                     |
| 53                                           | 0.05                                                         | 0.01                                                        | 38                               | 0.04                                                 | 0.00                     |
| 43                                           | 0.04                                                         | 0.00                                                        | 38                               | 0.04                                                 | 0.00                     |
| 45                                           | 0.04                                                         | 0.00                                                        | 41                               | 0.04                                                 | 0.00                     |
| 39                                           | 0.04                                                         | 0.00                                                        | 45                               | 0.04                                                 | 0.00                     |
| 37                                           | 0.04                                                         | 0.00                                                        | 37                               | 0.04                                                 | 0.00                     |
| 34                                           | 0.03                                                         | 0.00                                                        | 35                               | 0.03                                                 | 0.00                     |
| 30                                           | 0.03                                                         | 0.00                                                        | 43                               | 0.04                                                 | 0.00                     |
| 38                                           | 0.04                                                         | 0.00                                                        | 39                               | 0.04                                                 | 0.00                     |
|                                              |                                                              |                                                             |                                  |                                                      | 0.00                     |
|                                              |                                                              |                                                             |                                  |                                                      | 0.00                     |
|                                              |                                                              |                                                             |                                  |                                                      | 0.00                     |
|                                              |                                                              |                                                             |                                  |                                                      | 0.00                     |
|                                              |                                                              | P. 149-4-                                                   |                                  |                                                      | 0.00                     |
|                                              |                                                              | La Carta Carta                                              |                                  |                                                      | 0.00                     |
|                                              |                                                              |                                                             | .5                               | 0.01                                                 | 0.00                     |
|                                              |                                                              |                                                             |                                  |                                                      |                          |
| 33<br>43<br>37<br>40<br>38<br>31<br>36<br>31 | 0.04<br>0.03<br>0.04<br>0.04<br>0.04<br>0.03<br>0.04<br>0.03 | 0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.0 | 35<br>46<br>42<br>34<br>44<br>45 | 0.04<br>0.03<br>0.05<br>0.04<br>0.03<br>0.04<br>0.04 | 0.0<br>0.0<br>0.0<br>0.0 |

#### **APPENDIX 5**

### **SAIC Exploranium Calibration Certificate**



### **Forensic and Scientific Services**

**HSSA** | Health Services Support Agency

#### CERTIFICATE OF CALIBRATION

CLIENT:

INMED Healthcare Pty. Ltd. 45 Prime Drive

Seven Hills NSW 2147 leeann.sands@inmed.com.au

ATTN: Leeann Sands

Laboratory Reference:

20060055

Client Order Number:

Date Received: Date Commenced:

Quote Number:

16/06/2020 29/06/2020

Laboratory Number/s: 19PX422\_Environmental

#### INSTRUMENT DESCRIPTION

Instrument SAIC Exploranium Detector

Manufacturer: Model: Serial Number: Type:

**GR130** 9940+GM

Nal+GM

#### PRE CALIBRATION CHECKS

Visual Inspection:

Check performed adequately on receipt, during and after the calibration process.

Battery Check:

Check performed adequately on receipt, during and after the calibration process.

High/Low Voltage:

N/A

Self-diagnosis system:

Desiccant condition:

N/A

Mechanical zero:

No adjustment was necessary

Check Source Reading:

No check source was supplied.

Background/Leakage:

All calibration measurements were adjusted to take into account the background radiation levels.

#### CALIBRATION CONDITIONS

Detector Reference Point:

The effective measurement point was taken to be the centre of the detector volume.

Instrument Orientation:

The instrument was orientated so that its detector axis was parallel to the surface plane of the calibration pads.

Cosmic Response:

The cosmic response of the instrument was 1.4 ± 0.7 nGy/h (Count time - 30 sec).

Local cosmic background radiation was 40 nGv/h1

(1 - "FAA's Civil Aerospace Medical Institute Radiobiology Research Team, CARI-6. 2004, United States of America Federal Aviation Administration. p. Computer Freeware.")

#### ATMOSPHERIC CONDITIONS

Dry Bulb Temperature: Relative Humidity:

25 °C 60 %

Atmospheric Pressure: Height Above Sea Level 1014 hPa (765.4 mm Hg)

32.4 m

This report overnides all previous reports. The results relate solely to the sample/s as received and are limited to the specific tests undertaken as listed on the report. The results of this report are confidential and are not to be used or disclosed to any other person or used for any other purpose, whether directly or indirectly, unless that use is disclosed or the purpose is expressly authorised in writing by Queensland Health and the named recipient on this report. To the fullest extent permitted by law, Queensland Health will not be liable for any loss or claim (including legal costs calculated on an indemnity basis) which arise because of (a) problems related to the mechantability, fitness or quality of the sample/s, or (b) any negligent or unlawbil act or omissions by Queensland Health that is connected with any activities or services provided by Queensland Health under this agreement (including the timing and/or method under which the sample/s were taken, stored or transported)

Enquiries: Principal Health Physicist

Coopers Plans QLD 4108

AUSTRALIA

Email Fax (+617) 3096 2901

Print 1/07/2020 4:59 PM

Page 1 of 3

#### **CALIBRATION TRACEABILITY**

The expected air kerma rates 150mm above the Calibration pads are traceable to measurements using a reference High Pressure Ion Chamber (RSS-131ER -SN- 12B0038D) calibrated across a range of energies utilising radioactive sources traceable to NIST standards.

| Nuclide /photon<br>source | Emission        | Serial Number | Nominal Activity (GBq) | Reference Date |
|---------------------------|-----------------|---------------|------------------------|----------------|
| Caesium-137               | 0.662 MeV gamma | 1192GN        | 0.037                  | 01-July-1984   |

#### CALIBRATION RESULTS - DOSE RATE MODE (Without Stablization)

| PAD | Expected air Kerma rate (nGy/h) | Cosmic & Bgnd corrected measured Kerma (nGy/h) | Uncertainty (2u) (%)<br>of corrected level | Variation from expected (%) | Calibration<br>Factor |
|-----|---------------------------------|------------------------------------------------|--------------------------------------------|-----------------------------|-----------------------|
| 1   | 9.00                            |                                                |                                            |                             | -                     |
| 2   | 29.00                           | 56.57                                          | 7.1%                                       | 95.1%                       | 0.51                  |
| 3   | 68.00                           | 121.14                                         | 8.6%                                       | 78.2%                       | 0.56                  |
| 4   | 190.00                          | 365.71                                         | 5.3%                                       | 92.5%                       | 0.52                  |
| 5   | 312.00                          | 645.71                                         | 3.3%                                       | 107.0%                      | 0.48                  |

#### CALIBRATION RESULTS - DOSE RATE MODE (With Stabilization)

| PAD | Expected air Kerma rate (nGy/h) | Cosmic & Bgnd corrected measured Kerma (nGy/h) | Uncertainty (2u) (%)<br>of corrected level | Variation from expected (%) | Calibration<br>Factor |
|-----|---------------------------------|------------------------------------------------|--------------------------------------------|-----------------------------|-----------------------|
| 1   | 9.00                            | -                                              |                                            |                             |                       |
| 2   | 29.00                           | 44.60                                          | 7.6%                                       | 53.8%                       | 0.65                  |
| 3   | 68.00                           | 120.31                                         | 5.5%                                       | 76.9%                       | 0.57                  |
| 4   | 190.00                          | 392.31                                         | 2.8%                                       | 106.5%                      | 0.48                  |
| 5   | 312.00                          | 623.74                                         | 2.2%                                       | 99.9%                       | 0.50                  |

CALIBRATION RESULTS - SPECTRUM MODE (eU, eTh, and K%)

No results avaliable

This report overndes all previous reports. The results relate solely to the sample/s as received and are limited to the specific tests undertaken as listed on the report. The results of this report are confidential and are not to be used or disclosed to any other person or used for any other purpose, whether directly, unless that use is disclosed or the purpose is expressly authorised in writing by Queensland Health and the named recipient on this report. To the fullest extent permitted by law. Queensland Health will not be liable for any loss or claim (including legal costs calculated on an indemnity basis) which arise because of (a) problems related to the merchantability, fitness or quality of the sample/s, or (b) any negligent or unlawful act or omissions by Queensland Health that is connected with any activities or services provided by Queensland Health under this agreement (including the timing and/or method under which the sample/s were taken, stored or transported).

Enquiries: Principal Health Physicist
Phone (+61)7 3096 2901

Coopers Plans QLD 4108

AUSTRALIA

AUSTRALIA

Email FSS-Radiation Science@health old gov au

Print 1/07/2020 4:59 PM

Page 2 of 3

MENTS

The centre of detector was sitting 150 mm from the surface of calibration pad for all measurements.

Over-Range Response:

Not applicable to this environmental level calibration.

Energy Dependence Factors:

The response of the instrument was tested for a range of NORM energies (46keV to 2.612 MeV) using U238; Th232 and progeny and K40 spiked aerated concrete (density=1550kg/m³) planar sources shown to be homogenous and produce

uniform radiation fields.

Accuracy:

For calibration of this instrument, accuracy is dependent on laboratory measurements, transfer standards and stability of the instrument being calibrated. The uncertainty of the corrected measurement tends to be larger at the very low air kerma levels associated with pads #1 & #2. The result for this calibration can be considered reliable to within 20%.

General:

Method as described in Radiation & Nuclear Science unit Technical Document RSS14-004 - NORM based Environmental Radiation Calibration Facility - Calibration Procedure (based on published paper: Wallace, J 2016 JER, Establishing a NORM Based Radiation Calibration Facility

NEXT CALIBRATION DUE

29 June 2021

PERFORMED BY

Pushpendy

Pushpendra Chauhan Snr Health Physicist Radiation & Nuclear Science 1-Jul-20

**REVIEWED BY** 

Drew Watson

Principal Health Physicist Radiation & Nuclear Science

Qu.

This report overndes all previous reports. The results relate solely to the sample/s as received and are limited to the specific tests undertaken as listed on the report. The results of this report are confidential and are not to be used or disclosed to any other person or used for any other purpose, whether directly or indirectly, unless that use is disclosed or the purpose is expressly authorised in writing by Queensland Health and the named recipient on this report. To the fullest extent permitted by law, Queensland Health will not be liable for any loss or claim (including legal costs calculated on an indemnity basis) which arise because of (a) problems related to the merchantability, fitness or quality of the sample/s, or (b) any negligent or unlawful act or omissions by Queensland Health that is connected with any activities or services provided by Queensland Health under this agreement (including the timing and/or method under which the sample/s were taken, stored or transported)

Enquiries: Principal Health Physicist
Phone (+61)7 3096 2901

Coopers Plans QLD 4108
AUSTRALIA

AUSTRALIA

Email Scs-RadiationScience@health old gov au

Print 1/07/2020 4:59 PM

## APPENDIX 6 RadAlert Inspector USB Calibration Certificate

| te Address:                                     | 29/06/2020<br>Bartolo Safety Mai<br>PO Box 264<br>Jannali<br>NSW, 2226 | nagement Servi        | ces        |                  |            |                     |             | Authority standards                       | Results                                   | +/- 25<br>+/- 15                          |         |           |
|-------------------------------------------------|------------------------------------------------------------------------|-----------------------|------------|------------------|------------|---------------------|-------------|-------------------------------------------|-------------------------------------------|-------------------------------------------|---------|-----------|
| osimeter:<br>N:<br>al Number                    | Inspector<br>42104<br>IR045297                                         |                       |            |                  | Temp       | 25.6°C              | Humidity    | 30%                                       |                                           |                                           |         |           |
|                                                 | Activity MBq                                                           | Date                  |            | 1/2 Life<br>Days | Half Lives | Current<br>Activity |             | Energy (MeV)                              | Fractional Yelld                          | (u/p) air                                 |         |           |
| Cs137<br>1907-41-3                              | 9,117                                                                  | 1/07/2017             |            | 10964.6          | 0.0997756  | 8,507784755         |             | 3.18170E-02<br>3.21940E-02<br>6.61650E-01 | 1.99500E-02<br>3.64100E-02<br>8.51020E-01 | 1.38188E-01<br>1.34970E-01<br>2.93111E-02 |         |           |
|                                                 |                                                                        | -                     |            | 20               | r          |                     |             |                                           |                                           |                                           |         |           |
| istance (cm)<br>alculated Dose<br>tate (uSv/hr) | 0,649533483                                                            | 1.804259674           | 4.0595843  | 16.238337        |            |                     |             |                                           |                                           |                                           |         |           |
|                                                 | Source must be                                                         | Minned before         | takina maa | eurement         |            |                     |             |                                           |                                           |                                           |         |           |
| IOTE:                                           | Source must be                                                         | BEFORE                |            |                  |            |                     |             |                                           | ADJUSTED Cal Factor                       |                                           | Date    | ******    |
| Background                                      |                                                                        | Cal Factor  Dosimeter | 3340       |                  | 29/06/2020 |                     | Background  | Dose Rate                                 | Cal Factor  Dosimeter                     | Ref                                       | % Dif   | Fail/Pass |
| Measurement                                     | (usviiii)                                                              | (uSv/hr)              | Ref        | % Dif            | Fail/Pass  |                     | Measurement | (uSv/hr)                                  | (uSv/hr)                                  |                                           |         |           |
| 100cm                                           | 1.05                                                                   | .1                    | 0.6495335  | 12.39%           | PASS       |                     | 1           |                                           | #DIV/01                                   | 0.649533483                               | #DIV/0! | #DIV/0!   |
| 60cm                                            | 2.28<br>2.37<br>2.1                                                    | 2.25                  | 1.8042597  | 10%              | PASS       |                     | 2           |                                           | #DIV/0!                                   | 1.804259674                               | #DIV/0! | #DIV/0!   |
| 40cm                                            | 4.55<br>4.6<br>4.7                                                     | Louis Cin             | 4.0595843  | 7%               | PASS       |                     | 3           |                                           | #DIV/0!                                   | 4.059584266                               | #DIV/0! | #DIV/0!   |
| 20cm                                            | 18.3<br>17.8<br>18.1                                                   | 18.06666667           | 16.238337  | 10%              | PASS       |                     | 4           |                                           | #DIV/01                                   | 16.23833707                               | #DIV/0! | #D(V/0!   |

# Service Record



| Service Engineer J Enderstein Start Date 29/6/20 |                        | Service Record Number                |                      |
|--------------------------------------------------|------------------------|--------------------------------------|----------------------|
| Start Date 29/0/20                               | Start Time 09:00       | Finish Date 29/6/20                  | Finish Time 09:45    |
|                                                  | State time 100100      | Finding Page                         | Filish Time 00:40    |
| SERVICE TYPE  Warranty                           | Charge                 | Contract                             | ☐ No Charge          |
|                                                  | L. Charge              | EJ Contact                           | □ No Charge          |
| EQUIPMENT DETAILS  Brand SE International        |                        | N. V. Levinou                        |                      |
| Brand SE International Serial Number 42104       |                        | Model Inspector  Date of Manufacture |                      |
| AND ADD TO                                       |                        | Date of Manufacture                  |                      |
| CUSTOMER DETAILS                                 |                        |                                      |                      |
| Contact Name                                     | noment Condess         | Customer P.O                         |                      |
| Address PO Box 264                               | gement Services        |                                      |                      |
| Suburb/City Jannali                              |                        | State NSW                            | Postcode             |
| Email                                            |                        | state 11011                          | rositode             |
|                                                  |                        |                                      |                      |
| REPORTED FAULT Routine Maintenance               |                        |                                      | On-site Hours        |
|                                                  |                        |                                      | Travel Hours         |
| Carlo de La Carlo                                |                        |                                      | novernous.           |
| ACTION TAKEN  Completed Routine Maintenance      | according to Manufacts | urar's Spasification                 | Count Rate           |
|                                                  |                        | orer's opecinication.                | Peak Graph Yes No    |
| Completed Radiation Detector Re                  | eport.                 |                                      | Laser Aligned Yes No |
| Unit is OK to use.                               |                        |                                      |                      |
|                                                  |                        |                                      |                      |
|                                                  |                        |                                      |                      |
|                                                  |                        |                                      |                      |
|                                                  |                        |                                      | In-House Hours 0.75  |
|                                                  |                        |                                      | On-Site Hours        |
|                                                  |                        |                                      | Other                |
| PARTS REPLACED                                   |                        |                                      |                      |
| Part Number                                      | Description            | New S/N Old S/N                      | W/H                  |
| archanioci                                       | DESCRIPTION            | new syn                              | **/*                 |



# APPENDIX 10. ECOLOGICAL LETTERS

**INSPECTION** 

Ref: CTR Quarry Annual Review Year 2021.docx



Friday, 11 June 2021

Quarry Manager Newcastle Sand Pty Ltd 398 Cabbage Tree Road Williamtown NSW 2318

Attention: Shane Burton

Sent by email to: shane@newcastlesand.com.au

SUBJECT: Area 7 clearing works undertaken on 30 March & 1 April, 2021

Dear Shane,

This letter provides a summary of clearing works undertaken across Area 7 on 30 March, and 1 April 2021, following on from preclearing surveys documented in the clearing letter by Wedgetail, on June 10, 2021. All clearing activities were supervised by Wedgetail Ecologists, Kane Blundell and Ashley Owen.

#### Hollow bearing trees

There were 16 habitat trees marked out during the pre-clear survey and 1 additional tree (ID no 106) that was recorded by Kleinfelder in 2016 (**Figure 1**). Tree 106 was inspected and had no hollows remaining. This tree was felled with all other vegetation surrounding the HBT's. Another HBT (ID no 9) was felled indirectly after being hit by adjacent trees being felled on the first day of clearing. Upon inspection, the hollow was mud-filled, and not considered suitable as a habitat feature.

On March 30, 2021, all other HBT's were set aside for 48 hours, and surrounding vegetation cleared to allow any nocturnal fauna the opportunity to self-relocate overnight.

All HBT were inspected upon being soft felled by excavator on April 1, 2021. Of 35 possible hollows (in 17 HBT's), five hollows were considered suitable habitat for fauna to occupy (**Table 1**). One HBT (ID no 16) was left standing. Therefore 5 nestboxes will need to be installed (1 Large, 3 Medium and 1 Small), to offset the hollows that were felled.

Table 1: Final tally of hollows after clearing took place at Zone 7, Stage 2 & 3 of Newcastle Sand Quarry

| ID no. | Hollows<br>being fel | counted<br>led | prior to | Signs  | Hollows<br>felled | counted af | Comments |             |
|--------|----------------------|----------------|----------|--------|-------------------|------------|----------|-------------|
|        | Small                | Medium         | Large    | of Use | Small             | Medium     | Large    |             |
| 1      | o                    | 1              | 0        | None   | 0                 | 0          | 0        | Termite mud |



| Hollows counted being felled |       |        | Sig   | Signs  | Signs felled |        | ter being | Comments                        |
|------------------------------|-------|--------|-------|--------|--------------|--------|-----------|---------------------------------|
|                              | Small | Medium | Large | of Use | Small        | Medium | Large     |                                 |
| 2                            | 1     | o      | 0     | None   | 0            | 0      | 0         | Fire damage                     |
| 3                            | 2     | 1      | 0     | None   | О            | 0      | 0         | Fire damage                     |
| 4                            | 1     | 1      | 0     | None   | 0            | 0      | 0         | Termite mud                     |
| 5                            | o     | 2      | 0     | None   | 0            | 0      | 0         | Fire damage                     |
| 6                            | О     | 1      | 0     | None   | О            | 0      | 0         | No hollows found                |
| 7                            | 0     | 1      | 0     | None   | О            | 0      | 0         | Solid, fire damage              |
| 8                            | 1     | 2      | 1     | None   | 0            | 1      | 1         |                                 |
| 9                            | О     | 0      | 0     | None   | 0            | 0      | 0         | Termite mud                     |
| 10                           | 4     | 1      | 0     | None   | 0            | 0      | 0         | None                            |
| 11                           | 1     | 0      | 0     | None   | О            | 0      | 0         | Fire damage                     |
| 12                           | 2     | 0      | 0     | None   | 0            | 0      | 0         | Fire damage                     |
| 13                           | 1     | 3      | 0     | None   | 0            | 1      | 0         | Filled with water, fire damage. |
| 14                           | 1     | 1      | 0     | None   | 1            | 0      | 0         | Fire damage, full of water      |
| 15                           | 0     | 1      | 0     | None   | 0            | 1      | 0         | Shallow, full of water          |
| 16                           | 2     | 0      | 1     | None   |              |        |           | Left standing                   |
| 106                          | 0     | 0      | 2     | None   | 0            | 0      | 0         | No hollows                      |
| TOTAL                        | 16    | 15     | 4     |        | 1            | 3      | 1         |                                 |



#### Relocated Fauna

Fauna was encouraged to self-relocate where possible during clearing. One Eastern Bearded Dragon (*Pogonia barbata*) was captured and relocated (**Table 2** and **Plate 1**). All other fauna were left to self-relocate.

Table 2: Fauna relocated during Area 7 clearing works at Newcasatle Sand Quarry

| Date       | Species                  | Capture Location          | Release Location           |
|------------|--------------------------|---------------------------|----------------------------|
| 30-03-2021 | Pogonia barbata          | N -32807963, E 151.805210 | N -32.807835, E 151.805230 |
|            | (Eastern Bearded Dragon) |                           |                            |



Plate 1: Eastern Bearded Dragon (Pogonia barbata) captured and relocated on site

#### **Rehabilitation Resources**

An abundance of seed was present on a number of *Corymbia gummifera* (Bloodwood) and *Eucalyptus camfieldii* (Stringybark) species that were felled throughout clearing of Area 7. It is recommended that this seed be utilised by storing all plant material and topsoil from this area so as to preserve seed both attached to vegetation, as well as that which is present in the soil seed bank. This can be utilised for during rehabilitation of this area or the adjoining areas that contain the same vegetation communities.

Please contact me if you have any questions,

Yours Sincerely

#### **Ashley Owen**

Ecologist M. 0420 800

M: 0430 809 803 aowen@wedgetail.com.au





Thursday, 13 May 2021

Quarry Manager Newcastle Sand Pty Ltd 398 Cabbage Tree Road Williamtown NSW 2318

**Attention:** Shane Burton

Sent by email to: <a href="mailto:shane@newcastlesand.com.au">shane@newcastlesand.com.au</a>

SUBJECT: NESTBOX INSTALLATION - MARCH 2021

Dear Shane,

On March 29 and 30 2021, an Ecologist from Wedgetail Project Consulting, Kane Blundell, installed nest boxes with the assistance of arborists from Hopper the Tree Lopper. A total of 100 nest boxes were installed within the Onsite Biodiversity Offset Area, with 91 boxes installed north of resource areas 7A, 7B and 7C, and the remaining nine (9) boxes installed north of areas 2 and 10A (**Figure 1**). For each nest box, its location, the tree species, diameter at breast height (DBH), nest box number, aspect, install height and nest box type was recorded (**Table 1**).

Nest boxes were spread throughout the Biodiversity Offset Area, within areas adjacent to the disturbance area, and installed at the recommended heights. The aspect of the nest boxes was determined following recommendations to face away from the resource area whilst maintaining a southerly direction where possible. Micro bat boxes were positioned facing west. The nest box sizes were determined by the species most likely to use them and as such there were 39 micro bat boxes, 33 glider boxes, 26 possum boxes and two additional boxes installed, for which data has not yet been recorded.

Currently, a total of 75 hollows have been removed due to clearing the impact area, and a total of 184 nest boxes have been installed within Onsite Biodiversity Offset Area. A summary of all hollows removed and all next boxes installed, to date is provided in **Appendix 1**.





Table 1: Nest box placement at Newcastle Sand Quarry - March 2021

| Nest<br>box<br>ID | Tree Species                | DBH<br>(cm) | Вох Туре  | Aspect | Approx.<br>Height<br>(m) | Easting | Northing |
|-------------------|-----------------------------|-------------|-----------|--------|--------------------------|---------|----------|
| 1                 | C. gumm <mark>ife</mark> ra | 20          | Micro Bat | West   | 4.0                      | 388148  | 6369395  |
| 2                 | C. gummife <mark>ra</mark>  | 37          | Glider    | SW     | 4.3                      | 388247  | 6369417  |
| 3                 | TBD                         | TBD         | TBD       | TBD    | TBD                      | TBD     | TBD      |
| 4                 | C. gummifera                | 32          | Possum    | South  | 3.4                      | 388220  | 6369395  |
| 5                 | Stringybark                 | 59          | Glider    | South  | 3.4                      | 388174  | 6369402  |
| 6                 | C. gummifera                | 29          | Possum    | South  | 3.6                      | 388203  | 6369406  |
| 7                 | Stringybark                 | 34          | Micro Bat | West   | 3.8                      | 388172  | 6369410  |
| 8                 | C. gummifera                | 27          | Micro Bat | West   | 4.5                      | 388219  | 6369405  |
| 9                 | C. gummifera                | 42          | Possum    | SW     | 3.3                      | 388303  | 6369413  |
| 10                | C. gummifera                | 36          | Possum    | SW     | 3.8                      | 388296  | 6369389  |
| 11                | C. gummifera                | 32          | Glider    | SW     | 3.8                      | 388266  | 6369405  |
| 12                | C. gummifera                | 34          | Possum    | SW     | 3.8                      | 388302  | 6369391  |
| 13                | C. gummifera                | 38          | Glider    | South  | 3.6                      | 388332  | 6369405  |
| 14                | C. gummifera                | 40          | Glider    | South  | 3                        | 388312  | 6369403  |
| 15                | C. gummifera                | 34          | Possum    | South  | 3.5                      | 388332  | 6369403  |
| 16                | Stringybark                 | 32          | Micro Bat | West   | 3.8                      | 388316  | 6369398  |
| 17                | C. gummifera                | 32          | Micro Bat | West   | 3.8                      | 388302  | 6369395  |
| 18                | C. gummifera                | 27          | Micro Bat | West   | 3.6                      | 388237  | 6369408  |
| 19                | C. gummifera                | 30          | Micro Bat | West   | 3.7                      | 388253  | 6369412  |
| 20                | Stringybark                 | 36          | Micro Bat | West   | 3.6                      | 388288  | 6369392  |



| Nest<br>box<br>ID | Tree Species                | DBH<br>(cm) | Box Type  | Aspect | Approx.<br>Height<br>(m) | Easting | Northing |
|-------------------|-----------------------------|-------------|-----------|--------|--------------------------|---------|----------|
| 21                | C. gum <mark>mi</mark> fera | 39          | Micro Bat | West   | 3.6                      | 388389  | 6369404  |
| 22                | E. signata                  | 29          | Micro Bat | West   | 3.4                      | 388445  | 6369397  |
| 24                | C. gummifera                | 27          | Micro Bat | West   | 3.2                      | 388482  | 6369393  |
| 25                | C. gummifera                | 30          | Micro Bat | West   | 3.4                      | 388362  | 6369423  |
| 25                | E. signata                  | 33          | Micro Bat | West   | 3.1                      | 388556  | 6369405  |
| 26                | E. signata                  | 38          | Micro Bat | West   | 3.1                      | 388545  | 6369397  |
| 27                | E. signata                  | 29          | Micro Bat | West   | 3.3                      | 388443  | 6369405  |
| 28                | A. costata                  | 28          | Micro Bat | West   | 3.3                      | 388574  | 6369373  |
| 29                | C. gummifera                | 28          | Micro Bat | West   | 3.3                      | 388394  | 6369400  |
| 30                | C. gummifera                | 44          | Possum    | South  | 3.6                      | 388365  | 6369407  |
| 31                | C. gummifera                | 33          | Glider    | SW     | 3.6                      | 388414  | 6369389  |
| 32                | C. gummifera                | 27          | Glider    | SW     | 3.5                      | 388544  | 6369377  |
| 33                | E. signata                  | 40          | Possum    | SW     | 3.8                      | 388413  | 6369383  |
| 34                | E. signata                  | 37          | Possum    | SW     | 3.4                      | 388445  | 6369397  |
| 35                | C. gummifera                | 48          | Possum    | South  | 3.2                      | 388376  | 6369412  |
| 36                | C. gummifera                | 32          | Possum    | SW     | 3.3                      | 388391  | 6369404  |
| 37                | E. signata                  | 28          | Possum    | SW     | 3.2                      | 388530  | 6369389  |
| 38                | A. costata                  | 44          | Possum    | SW     | 3.4                      | 388505  | 6369400  |
| 39                | C. gummifera                | 31          | Possum    | SW     | 3.0                      | 388424  | 6369392  |
| 40                | E. signata                  | 40          | Possum    | SW     | 3.5                      | 388488  | 6369407  |
| 41                | A. costata                  | 31          | Possum    | SW     | 3.7                      | 388562  | 6369399  |



| Nest<br>box<br>ID | Tree Species              | DBH<br>(cm) | Box Type  | Aspect | Approx.<br>Height<br>(m) | Easting | Northing |
|-------------------|---------------------------|-------------|-----------|--------|--------------------------|---------|----------|
| 42                | E. sig <mark>na</mark> ta | 36          | Glider    | SW     | 3.2                      | 388512  | 6369392  |
| 43                | A. costa <mark>ta</mark>  | 28          | Micro Bat | West   | 3.5                      | 388573  | 6369384  |
| 44                | A. costata                | 30          | Micro Bat | West   | 3.6                      | 388585  | 6369399  |
| 45                | A. costata                | 36          | Micro Bat | West   | 3.0                      | 388601  | 6369420  |
| 46                | A. costata                | 50          | Glider    | SW     | 3.6                      | 388718  | 6369437  |
| 47                | E. signata                | 38          | Micro Bat | West   | 3.1                      | 388586  | 6369413  |
| 48                | E. signata                | 25          | Micro Bat | West   | 3.1                      | 388607  | 6369425  |
| 49                | E. signata                | 51          | Possum    | SW     | 3.2                      | 388625  | 6369452  |
| 50                | C. gummifera              | 32          | Micro Bat | West   | 3.2                      | 388623  | 6369421  |
| 51                | C. gummifera              | 30          | Micro Bat | West   | 3.3                      | 388627  | 6369451  |
| 52                | E. signata                | 49          | Possum    | SW     | 3.4                      | 388590  | 6369411  |
| 53                | C. gummifera              | 26          | Micro Bat | West   | 3.0                      | 388663  | 6369448  |
| 54                | TBD                       | TBD         | TBD       | TBD    | TBD                      | TBD     | TBD      |
| 55                | C. gummifera              | 43          | Micro Bat | West   | 3.3                      | 388735  | 6369424  |
| 56                | C. gummifera              | 27          | Micro Bat | West   | 3.2                      | 388640  | 6369459  |
| 57                | A. costata                | 33          | Micro Bat | West   | 3.3                      | 388690  | 6369450  |
| 58                | A. costata                | 70          | Glider    | SW     | 3.1                      | 388623  | 6369420  |
| 59                | E. signata                | 42          | Glider    | SW     | 3.1                      | 388584  | 6369392  |
| 60                | A. costata                | 32          | Glider    | SW     | 3.0                      | 388725  | 6369471  |
| 61                | A. costata                | 42          | Glider    | SW     | 3.5                      | 388783  | 6369397  |
| 62                | C. gummifera              | 35          | Glider    | SW     | 3.1                      | 388757  | 6369413  |



| Nest<br>box<br>ID | Tree Species             | DBH<br>(cm) | Box Type  | Aspect | Approx.<br>Height<br>(m) | Easting | Northing |
|-------------------|--------------------------|-------------|-----------|--------|--------------------------|---------|----------|
| 63                | A. cos <mark>tata</mark> | 38          | Possum    | SW     | 3.0                      | 388808  | 6369332  |
| 64                | A. costata               | 35          | Micro Bat | West   | 3.3                      | 388706  | 6369430  |
| 64                | A. costata               | 52          | Possum    | SW     | 3.4                      | 388776  | 6369405  |
| 65                | A. costata               | 41          | Micro Bat | West   | 3.2                      | 388744  | 6369444  |
| 66                | A. costata               | 45          | Possum    | SW     | 3.9                      | 388802  | 6369370  |
| 67                | A. costata               | 29          | Micro Bat | West   | 3.1                      | 388781  | 6369326  |
| 68                | A. costata               | 42          | Possum    | SW     | 3.2                      | 388785  | 6369417  |
| 69                | A. costata               | 43          | Glider    | SW     | 3.3                      | 388818  | 6369387  |
| 70                | A. costata               | 45          | Micro Bat | West   | 3.3                      | 388788  | 6369474  |
| 71                | A. costata               | 34          | Micro Bat | West   | 3.0                      | 388810  | 6369419  |
| 72                | A. costata               | 35          | Micro Bat | West   | 3.3                      | 388748  | 6369470  |
| 73                | A. costata               | 40          | Micro Bat | West   | 2.9                      | 388821  | 6369345  |
| 74                | A. costata               | 35          | Glider    | SW     | 3.1                      | 388734  | 6369454  |
| 75                | A. costata               | 47          | Possum    | SW     | 3.2                      | 388749  | 6369421  |
| 76                | A. costata               | 31          | Glider    | SW     | 3.0                      | 388729  | 6369420  |
| 77                | A. costata               | 43          | Glider    | SW     | 3.0                      | 388825  | 6369334  |
| 78                | C. gummifera             | 44          | Glider    | SW     | 3.5                      | 388773  | 6369322  |
| 79                | A. costata               | 38          | Glider    | SW     | 3.5                      | 388780  | 6369339  |
| 80                | A. costata               | 50          | Glider    | SW     | 3.1                      | 388792  | 6369478  |
| 81                | A. costata               | 52          | Glider    | SW     | 2.9                      | 387986  | 6369052  |
| 82                | A. costata               | 30          | Glider    | SW     | 2.9                      | 387949  | 6369078  |



| Nest<br>box<br>ID | Tree Species | DBH<br>(cm) | Box Type  | Aspect | Approx.<br>Height<br>(m) | Easting | Northing |
|-------------------|--------------|-------------|-----------|--------|--------------------------|---------|----------|
| 83                | A. costata   | 62          | Glider    | SW     | 3.3                      | 388015  | 6369027  |
| 84                | A. costata   | 51          | Glider    | SW     | 3.7                      | 387906  | 6369093  |
| 85                | A. costata   | 37          | Glider    | SW     | 3.3                      | 388066  | 6369010  |
| 86                | Stringybark  | 41          | Possum    | SW     | 3.2                      | 388201  | 6369443  |
| 87                | C. gummifera | 36          | Glider    | SW     | 3.1                      | 388157  | 6369486  |
| 88                | C. gummifera | 26          | Glider    | SW     | 3.1                      | 388140  | 6369501  |
| 89                | C. gummifera | 34          | Glider    | SW     | 3.1                      | 388190  | 6369442  |
| 90                | C. gummifera | 24          | Glider    | SW     | 3.0                      | 388172  | 6369478  |
| 91                | C. gummifera | 36          | Possum    | SW     | 3.4                      | 388190  | 6369457  |
| 92                | C. gummifera | 26          | Glider    | SW     | 3.0                      | 388135  | 6369502  |
| 94                | A. costata   | 41          | Glider    | SW     | 3.1                      | 388100  | 6369521  |
| 95                | C. gummifera | 27          | Glider    | SW     | 3.0                      | 388115  | 6369515  |
| 96                | A. costata   | 29          | Possum    | SW     | 3.1                      | 387942  | 6369080  |
| 97                | Stringybark  | 28          | Micro Bat | West   | 3.7                      | 388181  | 6369467  |
| 98                | A. costata   | 38          | Micro Bat | West   | 3.2                      | 388079  | 6369006  |
| 99                | A. costata   | 29          | Micro Bat | West   | 3.4                      | 388065  | 6369008  |
| 100               | A. costata   | 41          | Micro Bat | West   | 3.3                      | 388082  | 6368990  |
|                   |              |             |           |        |                          |         |          |

<sup>\*</sup> There are two stringybark species E. camfieldii and E. globoidea present on site



For any further questions, feel free to contact me.

Yours Sincerely

Kane Blundell

**Ecologist** 

M: 0419 999 256

kblundell@wedgetail.com.au



## **Appendix 1. Summary of Hollow Removal and Next Box Installation**

| Year                                                | Hollows recorded in EIS<br>for area disturbed in that<br>year | Hollows recorded in<br>Preclearance Surveys# |        |       | Hollows     | Nest Boxes Installed                |                     |                    |
|-----------------------------------------------------|---------------------------------------------------------------|----------------------------------------------|--------|-------|-------------|-------------------------------------|---------------------|--------------------|
|                                                     |                                                               | Small                                        | Medium | Large | Removed     | Small <sup>1</sup>                  | Medium <sup>2</sup> | Large <sup>3</sup> |
| August 2019 to 31<br>December 2019<br>Construction  | 7                                                             | 7                                            | -      | -     | 6           | -                                   | -                   | -                  |
| 2020 – Sectors<br>1A and 2                          | 5                                                             | 15                                           | 46     | 3     | 64          | 7                                   | 16                  | 2                  |
|                                                     |                                                               |                                              |        |       |             | 28                                  | 30                  | 1                  |
| 2020 – access<br>road                               |                                                               | 6                                            |        |       | Nil removed |                                     |                     |                    |
| 2020 – Sectors<br>3,3A, 4, 4A                       |                                                               | 14                                           |        |       | Nil removed |                                     |                     |                    |
| 2021 - Sectors<br>7B, 7C                            | -                                                             | 16                                           | 15     | 4     | 5           | 39                                  | 33                  | 26                 |
|                                                     |                                                               |                                              |        |       |             | 2 nestboxes, size not yet specified |                     |                    |
| Total                                               | 99                                                            | 58                                           | 61     | 7     | 7.5         | 74                                  | 79                  | 29                 |
|                                                     |                                                               | 86                                           |        |       | 75          | 184                                 |                     |                    |
| Net balance of hollows removed to hollows installed |                                                               |                                              |        |       | 109         |                                     |                     |                    |

<sup>#.</sup> Past fires have resulted in burnt and broken limbs likely to result in false identification of hollows when inspecting from the ground level.

<sup>1.</sup> Small boxes suited to pygmy possums / micro bats.

<sup>2.</sup> Medium boxes suited to gliders.

<sup>3.</sup> Large boxes suited to possums.





Wednesday, 13 October 2021

Quarry Manager Newcastle Sand Pty Ltd 398 Cabbage Tree Road Williamtown NSW 2318

Attention: Shane Burton

Sent by email to: shane@newcastlesand.com.au

### SUBJECT: Pre-clearance surveys and clearing works of Area 3a-3b

Dear Shane,

This letter provides a summary of work undertaken on October 7-8, 2021. This includes nocturnal surveys and pre-clearance of, as well as clearing of vegetation in **Section 3a and 3b** at the Newcastle Sand Quarry, 398 Cabbage Tree Road, Williamtown.

#### 1. Preclearance Surveys

#### 1.1 October 7, 2021

Wedgetail Ecologist, Kane Blundell attended site on October 7, 2021.

A pre-clearance survey was undertaken of areas 3a and 3b, targeting native fauna, specifically the Koala, and confirming the presence of hollows previously identified by a Kleinfelder ecologist on 29 October 2020. The previously identified hollow was not detected and is believed to have possibly been the remnants of a limb burnt in the preceding fires. The resource area was assessed for any other hollow-bearing trees, hollow logs, dead stag trees containing hollows and stick nests. No other hollows or nests were identified in these areas.

During the preclearance, one Lace Monitor (*Varanus varius*) was encountered which immediately retreated up a tree (Plate 1) and was beyond the reach of ecologist to be relocated. The tree was flagged, a GPS location recorded (Figure 1), and the monitor was left to self-relocate.

Below, Table 1 details the tree identified, that appeared to have suitable hollows for fauna. This table includes tree type (dead stag or species (genus) of tree), number of hollows (small – up to 8 cm; medium 8-20cm and large – > 20cm) and any obvious signs of the tree being in current use – this includes scratch marks, scats, feathers, nesting material, animal presence or any other evidence.

The area was also surveyed for the presence and abundance of exotic weed species. The clearing zone contained no large areas of weeds (10m  $\times$  10m, according to the Section .22 BRMP) that required demarcation.



Table 1: Hollow bearing trees identified within Area 3A and 3B at Newcastle Sand Quarry

| ID no.  | Collector | Species                 |       | Signs of |       |      |
|---------|-----------|-------------------------|-------|----------|-------|------|
| 15 116. |           | Species .               | Small | Medium   | Large | Use  |
| 1       | Mark Dean | Eucalyptus<br>pilularis | 1     | 0        | 0     | None |

## 1.2 October 7, 2021

A night survey was undertaken on the 7<sup>th</sup> of October, to identify the presence of fauna within the clearing boundary, targeting threatened species that occur within the region. Koalas (*Phascolarctos cinereus*) and Squirrel-gliders (*Petaurus norfolcensis*) were the target of this survey. Methods used were a combination of meander within the clearing zone with a spotlight to identify eye-shine and call playbacks.

No target threatened species were detected during this survey. No other fauna was detected, including the Lace Monitor previously recorded that afternoon, which appeared to have since self-relocated.

#### 2. Tree Clearing Area 3A and 3B

#### 2.1 October 8, 2021.

Wedgetail Ecologist, Kane Blundell attended site on October 8, 2021.

Immediately prior to clearing activities, the resource area was again surveyed for fauna, in particular Koalas, and to ensure that the previously detected monitor had relocated. As no hollows or fauna were detected, clearing was commenced with an excavator under the supervision of the ecologist. Trees were carefully inspected once felled with particular attention to trees within the vicinity of the previously identified hollow. There were no hollows detected within felled trees (Table 2).

Table 2: Final tally of hollows after clearing took place in Area 3A and 3B of Newcastle Sand Quarry

| ID no. | Hollows<br>being fel | counted<br>led | prior to | Signs of | Hollows<br>felled | counted af | Comments |            |
|--------|----------------------|----------------|----------|----------|-------------------|------------|----------|------------|
|        | Small                | Medium         | Large    | Use      | Small             | Medium     | Large    |            |
| 1      | 1                    | 0              | 0        | None     | 0                 | 0          | 0        | Undetected |

An abundance of seed was present on a number of *Eucalyptus pilularis* (Blackbutt) (Plate 2) and *E. camfieldii* (Stringybark) species that were felled throughout clearing of Area 3a and 3b. Efforts were being made to utilise this seed by separating the seed attached to vegetation (Plate 3), and taking it to be spread over adjoining rehabilitation areas that contain the same vegetation communities.



For any further questions, please do not hesitate to call me.

Sincerely,

## Kane Blundell

**Ecologist** 

M: 0419 999 256

kblundell@wedgetail.com.au



Plate 1: Lace Monitor spotted during preclear



Plate 2: *E.pilularis* seed from clearing area



Plate 3: Native seed being stockpiled for use on rehab areas



www.wedgetail.com.au

25 50 75 100 m

Newcastle Sand Pty Ltd 398 Cabbage Tree Road Williamtown NSW



Friday, 11 June 2021

Quarry Manager Newcastle Sand Pty Ltd 398 Cabbage Tree Road Williamtown NSW 2318

Attention: Shane Burton

Sent by email to: shane@newcastlesand.com.au

#### SUBJECT: Pre-clearance surveys undertaken prior to clearing of Area 7

Dear Shane,

This letter provides a summary of work undertaken from March 25 to April 1, 2021. This includes preclearance of **Section 7b and 7C**, as well as clearing of three small areas of vegetation at the Newcastle Sand Quarry, 398 Cabbage Tree Road, Williamtown.

#### 1. Preclearance Surveys

#### 1.1 March 25, 2021

Wedgetail Principal Ecologist, Adam Blundell attended site on March 25, 2021.

A pre-clearance survey was undertaken of all below identified areas, targeting native fauna, specifically the Koala, and confirming the presence of previously identified hollows.

On the section of the Haul Road that connects the northern and southern resources areas, one non habitat tree (Stringybark) was felled. In addition, a small patch of trees between **Section 3** and the existing road were cleared where previously identified HBT trees were noted. These trees were inspected once felled and contained no hollows (**Table 1**).

A small section of vegetation was removed from the bank between the operations area (Section 1) and the north western border of Section 10B. Five trees required removal as they had died and were leaning over the bank, creating a hazard within the operations area. These dead stags contained no suitable hollows and therefore were not considered habitat trees at the time of clearing.

A pre-clearance survey, and supervision of slashing was undertaken to delineate the boundary of **Section 7** prior to clearing. This facilitated construction of the amphibian fence (**Figure 1**) around the clearing zone (to satisfy requirements of Section 6.4A of the BRMP), as well as to provide access for vehicles and machinery during clearing.

The resource area was assessed for hollow-bearing trees, hollow logs, dead stag trees containing hollows and stick nests.

A total of 17 hollow-bearing trees were identified, marked and numbered across **Section 7**. Pink chalk paint and pink flagging tape were used for marking trees with a "H" and a number, to make them easily



identifiable during clearing operations. One *Banksia* spp. had been identified as a habitat feature in a previous survey undertaken by Kleinfelder in 2016, and hollows were no longer present.

Below, **Table 1** details the trees identified, that appeared to have suitable hollows for fauna. This table includes tree type (dead stag or species (genus) of tree), number of hollows (small – up to 8 cm; medium 8-20cm and large – > 20cm) and any obvious signs of the tree being in current use – this includes scratch marks, scats, feathers, nesting material, animal presence or any other evidence.

The area was also surveyed for the presence and abundance of exotic weed species. The clearing zone contained no large areas of weeds (10m x 10m, according to the Section .22 BRMP) that required demarcation.

Table 1: Hollow bearing trees present within Area 7 - Stages 2 & 3 at Newcastle Sand Quarry

| ID no. | Collector     | Species                 |       | Hollows |       | Signs of |
|--------|---------------|-------------------------|-------|---------|-------|----------|
|        | ·             |                         | Small | Medium  | Large | Use      |
| 1      | Adam Blundell | Dead Stag               | 0     | 1       | 0     | None     |
| 2      | Adam Blundell | Bloodwood               | 1     | 0       | 0     | None     |
| 3      | Adam Blundell | Bloodwood               | 2     | 1       | 0     | None     |
| 4      | Adam Blundell | Bloodwood               | 1     | 1       | 0     | None     |
| 5      | Adam Blundell | Bloodwood               | 0     | 2       | 0     | None     |
| 6      | Adam Blundell | Bloodwood               | 0     | 1       | 0     | None     |
| 7      | Adam Blundell | Bloodwood               | 0     | 1       | 0     | None     |
| 8      | Adam Blundell | Bloodwood               | 1     | 2       | 1     | None     |
| 9      | Adam Blundell | Bloodwood               | 0     | 0       | 0     | None     |
| 10     | Adam Blundell | Bloodwood               | 4     | 1       | 0     | None     |
| 11     | Adam Blundell | Bloodwood               | 1     | 0       | 0     | None     |
| 12     | Adam Blundell | Bloodwood               | 2     | 0       | 0     | None     |
| 13     | Adam Blundell | Bloodwood               | 1     | 3       | 0     | None     |
| 14     | Adam Blundell | Bloodwood               | 1     | 1       | 0     | None     |
| 15     | Adam Blundell | Bloodwood               | 0     | 1       | 0     | None     |
| 16     | Adam Blundell | Stringybark             | 2     | 0       | 1     | None     |
| 106    | Luke O'Brien  | Banksia or<br>Bloodwood | 0     | 0       | 2     | None     |



### 1.2 March 29, 2021

A night survey was undertaken on the 29<sup>th</sup> of March by two Wedgetail Ecologists, to identify the presence of fauna within the clearing boundary, targeting threatened species that occur within the region. Koalas (*Phascolarctos cinereus*) and Squirrel-gliders (*Petaurus norfolcensis*) were the target of this survey. Methods used were a combination of meander within the clearing zone, with a spotlight to identify eye-shine, and also call playback.

No target threatened species were detected during this survey, however many grey-headed flying-fox (*Pteropus poliocephalus*) were seen and heard foraging within the site, feeding on the abundance of *Banksia serrata* flower spikes.

This letter will be followed up by an additional letter detailing supervision of planned clearing at Area 7.

Yours Sincerely

Kane Blundell

**Ecologist** 

M: 0419 999 256 kblundell@wedgetail.com.au





# **APPENDIX 11. NOISE MONITORING REPORTS**

Ref: CTR Quarry Annual Review Year 2021.docx



Document No: 161267/9253

# ATTENDED NOISE MONITORING **QUARTER 1 – MARCH 2021 Newcastle Sands** Williamtown, NSW

Prepared for: Williamtown Sand Syndicate Pty Ltd Cabbage Tree Road WILLIAMTOWN NSW 2318

Author:

**Neil Pennington** 

B. Sc., B.Math. (Hons) MAIP, MAAS, MASA

Principal / Director

March 2021

Phone: (02) 4954 2276



# **TABLE OF CONTENTS**

| 1.0 | INTR | ODUCTION                             | .1 |
|-----|------|--------------------------------------|----|
|     | 1.1  | Noise Monitoring Locations           | .1 |
|     | 1.2  | Monitoring Frequency and Duration    | .1 |
| 2.0 | CRIT | ERIA AND CONDITIONS                  | .3 |
|     | 2.1  | Noise Assessment Criteria            |    |
|     | 2.2  | Monitoring Location Definition       | .3 |
|     | 2.3  | Applicable Meteorological Conditions | .3 |
|     | 2.4  | Other Conditions                     | .3 |
| 3.0 | NOIS | E MONITORING PROCEDURE               | .3 |
|     | 3.1  | Monitoring Equipment                 | .3 |
|     | 3.2  | Measurement Analysis                 | .4 |
|     | 3.3  | Meteorological Data                  | .4 |
| 4.0 | RESI | ULTS AND DISCUSSION                  |    |
|     | 4.1  | Measured Noise Levels                |    |
|     |      | 4.1.1 NS Operations                  | .4 |
|     | 4.2  | Discussion of Results                |    |
|     |      | 4 2 1                                | 5  |

### **APPENDIX A** Description of Acoustical Terms

### **APPENDIX B** Calibration Certificate





# **EXECUTIVE SUMMARY**

Attended noise monitoring has been carried out for the Newcastle Sand (NS) mine on 29-31<sup>st</sup> March 2021. Monitoring was carried out in accordance with requirements of Development Consent (SSD-6125), EPL21264, the Newcastle Sand Noise Management Plan and other relevant Australian Standards and guidelines.

The site was in full operation during the entire survey period.

The site-specific operational criteria were not exceeded at any location or at any time throughout the monitoring period.

Data from those times where noise from NS operations was audible and measureable were analysed using Bruel & Kjaer "Evaluator" software. This analysis showed the noise did not contain any tonal, impulsive and low frequency components as per definitions of "modifying factor corrections" in the NSW Noise Policy for Industry. It is acknowledged that the general area is impacted by low and mid-range frequency noise from Cabbage Tree Road and identification of individual sources requires subjective assessment.

NS was compliant with Environmental Protection Licence (EPL) 21264 and Newcastle Sand Development Consent (SSD-6125) for Quarter 1 (March) 2021.

**\**\\

Doc. No: 161267-9253 March 2021



## 1.0 INTRODUCTION

This report presents the results of attended noise compliance monitoring and measurements conducted for Newcastle Sand (NS) on 29<sup>th</sup> – 31<sup>st</sup> March 2021. Monitoring was undertaken in accordance with requirements of Newcastle Sand Noise Management Plan (NMP) dated March 2019. The noise monitoring programme and procedures in the NMP have been developed in accordance with the NS Environmental Protection Licence (EPL) no 21264 and the Newcastle Sand Development Consent (SSD-6125). To aid in the understanding of this report a description of acoustical terms is attached as **Appendix A**.

### 1.1 Noise Monitoring Locations

The NMP (Section 8.1) contains a table (Table 8) detailing recommended locations for attended noise monitoring and corresponding identification numbers for each boundary of the site, as follows.

Table 8: Noise monitoring locations

| Generalised Location                             | Recommended Receptor ID |  |
|--------------------------------------------------|-------------------------|--|
| Nearest residence to west (at road level)        | 27                      |  |
| Nearest residence to west elevated on hill crest | 14 <sup>1</sup>         |  |
| Residence due south of quarry                    | 38                      |  |
| Nearest residence to the south east              | 74                      |  |

Condition M8.1 of the EPL states that attended noise monitoring is to be undertaken at a location representative of the most affected residences in the noise limit conditions. Monitoring was conducted at receiver number 42 which is representative of receivers south of the site. The monitoring location is also shown on **Figure 1**.

### 1.2 Monitoring Frequency and Duration

EPL21264 indicates that the attended noise monitoring must be conducted quarterly during the morning-shoulder and day periods only. Each quarterly survey is to consist of 30 minute morning-shoulder measurements and 1.5 hour day measurements at one location representative of the most affected residences in the noise limit conditions (in accordance with EPL21264 to be done over a minimum of three consecutive 24 hour periods).



Doc. No: 161267-9253





Figure 1
Noise Monitoring Location



Doc. No: 161267-9253 March 2021



# 2.0 CRITERIA AND CONDITIONS

#### 2.1 Noise Assessment Criteria

The noise assessment criteria are detailed in Condition L3.1 of the. The criteria vary for each receiver monitoring location. The applicable morning-shoulder and day criterion is shown in the tables of results (**Tables 1 - 6** in **Section 4.1**). Noise criteria for all residences listed in the EPL are as shown below. The above noise criteria include the requirement that noise levels at day shoulder must not exceed **45 dB(A) L1 (1 min)** (sleep disturbance criterion) at any residence.

| Receiver                 | Day LAeq(15 Min) | Shoulder LAeq(15 Min) | Shoulder LA Max(1 Min) |
|--------------------------|------------------|-----------------------|------------------------|
| Any residential reciever | 43               | 39                    | 45                     |

Operational noise generated at the premises must not exceed the noise limits shown in the table above.

#### 2.2 Monitoring Location Definition

Condition L3.7 of the EPL states that to determine compliance with the Leq (15 min) operational noise limits the noise measurement equipment must be measured at the most affected point on or within the residential boundary, or at the most affected point within 30m of the dwelling where the dwelling is more than 30m from the boundary.

#### 2.3 Applicable Meteorological Conditions

The noise limits apply under all meteorological conditions except for any one of the following;

- 1. Wind speeds greater than 3m/s at 10m above ground level; or
- Stability category F temperature inversion conditions and wind speeds greater than 2m/s at 10m above ground level; or
- 3. Stability category G temperature inversion conditions.

#### 2.4 Other Conditions

To determine compliance with the Leq (15 min) operational noise criteria the modification factors in Fact Sheet C of the NSW Noise Policy for Industry must be applied, as appropriate, to the noise levels measured by the noise monitoring equipment.

# 3.0 NOISE MONITORING PROCEDURE

### 3.1 Monitoring Equipment

Attended noise monitoring was conducted with a Brüel & Kjær Type 2250 Precision Sound Analyser. This instrument has Class 1 characteristics as defined in AS IEC61672.1-2004 and has current NATA calibration. Calibration certificates are included in Appendix C. Field calibration is carried out at the start and end of each monitoring period.



Doc. No: 161267-9253



A-weighted noise levels were measured over the 15-minute monitoring periods with data acquired at 1 or 2 second statistical intervals and the meter set to "fast" response. Each 1 or 2 second measurement is accompanied by a third-octave band spectrum from 20 - 20k Hz which is required for analysing INP 'modifying factors'. Time based field notes allow for determination of the relative contributions to the overall noise level of all significant noise sources.

## 3.2 Measurement Analysis

The 15 minute Leq noise level for each monitoring period is shown in the tables below. Where the noise from NS was audible, Bruel & Kjaer "Evaluator" analysis software was used to quantify the contributions of NS and other significant noise sources to the overall noise level. Mine noise from NS is shown in the tables in bold type.

### 3.3 Meteorological Data

Meteorological data used in this report were taken from the Williamtown Bureau of Meteorology Station.

# 4.0 RESULTS AND DISCUSSION

## 4.1 Measured Noise Levels

#### 4.1.1 NS Operations

Measured noise levels at the monitoring location are summarised in **Tables 1 - 6**.

|          | Table 1                                                                    |               |                        |                                  |                                               |                                              |  |  |  |
|----------|----------------------------------------------------------------------------|---------------|------------------------|----------------------------------|-----------------------------------------------|----------------------------------------------|--|--|--|
|          | NS Operational Noise Monitoring Results – 29 March 2021 (Morning-Shoulder) |               |                        |                                  |                                               |                                              |  |  |  |
| Location | Time                                                                       | dB(A),<br>Leq | Criterion<br>dB(A) Leq | dB(A),<br>L1 (1min) <sup>1</sup> | Criterion<br>dB(A),<br>L1 (1min) <sup>1</sup> | Identified Noise Sources, LAeq               |  |  |  |
| R42      | 6:40am                                                                     | 67            | 39                     | <20                              | 45                                            | Traffic (67), birds (54), <b>NS (&lt;20)</b> |  |  |  |

<sup>1.</sup> L1 (1 min) from NS mine noise only.

|          | Table 2                                                       |        |           |                                              |  |  |  |  |  |
|----------|---------------------------------------------------------------|--------|-----------|----------------------------------------------|--|--|--|--|--|
|          | Table 2                                                       |        |           |                                              |  |  |  |  |  |
|          | NS Operational Noise Monitoring Results – 29 March 2021 (Day) |        |           |                                              |  |  |  |  |  |
|          |                                                               | dB(A), | Criterion |                                              |  |  |  |  |  |
| Location | Time                                                          | Leq    | dB(A) Leq | Identified Noise Sources, LAeq               |  |  |  |  |  |
| R42      | 7:30am                                                        | 64     | 43        | Traffic (64), birds (50), <b>NS (&lt;20)</b> |  |  |  |  |  |

| Table 3                                                                    |        |               |                        |                                  |                                               |                                              |  |  |
|----------------------------------------------------------------------------|--------|---------------|------------------------|----------------------------------|-----------------------------------------------|----------------------------------------------|--|--|
| NS Operational Noise Monitoring Results – 30 March 2021 (Morning-Shoulder) |        |               |                        |                                  |                                               |                                              |  |  |
| Location                                                                   | Time   | dB(A),<br>Leq | Criterion<br>dB(A) Leq | dB(A),<br>L1 (1min) <sup>1</sup> | Criterion<br>dB(A),<br>L1 (1min) <sup>1</sup> | Identified Noise Sources, LAeq               |  |  |
| R42                                                                        | 6:30am | 68            | 39                     | <20                              | 45                                            | Traffic (68), birds (52), <b>NS (&lt;20)</b> |  |  |

<sup>1.</sup> L1 (1 min) from NS mine noise only.



Doc. No: 161267-9253



| Table 4                                                       |        |        |           |                                              |  |  |  |
|---------------------------------------------------------------|--------|--------|-----------|----------------------------------------------|--|--|--|
| NS Operational Noise Monitoring Results – 30 March 2021 (Day) |        |        |           |                                              |  |  |  |
|                                                               |        | dB(A), | Criterion |                                              |  |  |  |
| Location                                                      | Time   | Leq    | dB(A) Leq | Identified Noise Sources, LAeq               |  |  |  |
| R42                                                           | 7:15am | 67     | 43        | Traffic (67), birds (54), <b>NS (&lt;20)</b> |  |  |  |

| Table 5                                                                    |        |               |                        |                                  |                                               |                                              |  |  |
|----------------------------------------------------------------------------|--------|---------------|------------------------|----------------------------------|-----------------------------------------------|----------------------------------------------|--|--|
| NS Operational Noise Monitoring Results – 31 March 2021 (Morning-Shoulder) |        |               |                        |                                  |                                               |                                              |  |  |
| Location                                                                   | Time   | dB(A),<br>Leq | Criterion<br>dB(A) Leq | dB(A),<br>L1 (1min) <sup>1</sup> | Criterion<br>dB(A),<br>L1 (1min) <sup>1</sup> | Identified Noise Sources, LAeq               |  |  |
| R42                                                                        | 6:30am | 66            | 39                     | <20                              | 45                                            | Traffic (66), birds (54), <b>NS (&lt;20)</b> |  |  |

1. L1 (1 min) from NS mine noise only.

| Table 6  NS Operational Noise Monitoring Results – 31 March 2021 (Day) |                  |    |    |                                              |  |  |  |  |
|------------------------------------------------------------------------|------------------|----|----|----------------------------------------------|--|--|--|--|
| Location                                                               | dB(A), Criterion |    |    |                                              |  |  |  |  |
| R42                                                                    | 7:30am           | 66 | 43 | Traffic (66), birds (55), <b>NS (&lt;20)</b> |  |  |  |  |

#### 4.2 Discussion of Results

The results in **Tables 1-6** show that, under the operating and meteorological conditions at the times, for the 30 minute (morning-shoulder) and 1.5 hour (day) compliance measurement periods, the mine noise from NS was inaudible at the monitoring location. All of the noise measurements were made under compliant meteorological conditions. At the time of this measurement the wind speed at the weather station was less than 3m/s.

### 4.2.1 L1 (1 min)

The noise measurements results in **Tables 1**, **3**, **& 5** (and site observations) show that noise from the operation of NS under the operating and meteorological conditions at the times, did not exceed the L1 (1 min) criterion at the monitoring location. Since L1 (1 min) levels were significantly lower than the criterion, at the operational noise monitoring location, measurements at the residential facade was not considered necessary as compliance was assured.



Doc. No: 161267-9253



# **APPENDIX A**

# **DESCRIPTION OF ACOUSTICAL TERMS**



Doc. No: 161267-9253



Table A1

Definition of acoustical terms

| Term  | Description                                                                       |
|-------|-----------------------------------------------------------------------------------|
| dB(A) | The quantitative measure of sound heard by the human ear, measured by the A-      |
|       | Scale Weighting Network of a sound level meter expressed in decibels (dB).        |
| SPL   | Sound Pressure Level. The incremental variation of sound pressure above and       |
|       | below atmospheric pressure and expressed in decibels. The human ear responds      |
|       | to pressure fluctuations, resulting in sound being heard.                         |
| STL   | Sound Transmission Loss. The ability of a partition to attenuate sound, in dB.    |
| Lw    | Sound Power Level radiated by a noise source per unit time re 1pW.                |
| Leq   | Equivalent Continuous Noise Level - taking into account the fluctuations of noise |
|       | over time. The time-varying level is computed to give an equivalent dB(A) level   |
|       | that is equal to the energy content and time period.                              |
| L1    | Average Peak Noise Level - the level exceeded for 1% of the monitoring period.    |
| L90   | "Background" Noise Level - the level exceeded for 90% of the monitoring period.   |



Doc. No: 161267-9253



# **APPENDIX B**

# **CALIBRATION CERTIFICATE**



Doc. No: 161267-9253





Australian Calibration Laboratory Suite 2, 6-10 Talavera Road, North Ryde NSW 2113, Australia Accredited for compliance with ISO/IEC 17025 - Calibration. Laboratory No. 1301



CERTIFICATE OF CALIBRATION

Certificate No: CAU1901071

Page 1 of 12

**CALIBRATION OF:** 

Sound Level Meter:

Bruel & Kjaer

2250

No: 2747794

Microphone:

Bruel & Kjaer

4189

No: 2733511

Preamplifier:

Bruel & Kjaer

ZC-0032

No: 15339

Supplied Calibrator: Software version:

Bruel & Kjaer

None

No: N/A PTB

Instruction manual:

BZ7224 Version 4.6.0 BE1712-22

Pattern Approval: Identification:

N/A

**CUSTOMER:** 

Spectrum Acoustics Pty Ltd

30 Veronica Street Cardiff NSW 2285

#### **CALIBRATION CONDITIONS:**

Preconditioning:

4 hours at 23 °C

Environment conditions:

see actual values in Environmental conditions sections

#### **SPECIFICATIONS:**

The Sound Level Meter has been calibrated in accordance with the requirements as specified in IEC61672-1:2013 class 1. Procedures from IEC 61672-3:2013 were used to perform the periodic tests.

#### PROCEDURE:

The measurements have been performed with the assistance of Brüel & Kjær Sound Level Meter Calibration System B&K 3630 with application software type 7763 (version 8.0 - DB: 8.00) and test procedure 2250-4189.

#### **RESULTS:**

|   | Initial calibration                   | Calibration prior to repair/adjustment |
|---|---------------------------------------|----------------------------------------|
| Х | Calibration without repair/adjustment | Calibration after repair/adjustment    |

The reported expanded uncertainty is based on the standard uncertainty multiplied by a coverage factor k = 2 providing a level of confidence of approximately 95 %. The uncertainty evaluation has been carried out in accordance with EA-4/02 from elements originating from the standards, calibration method, effect of environmental conditions and any short time contribution from the device under calibration.

Date of Calibration: 05/11/2019

Certificate issued: 05/11/2019

Sajeeb Tharayil

Calibration Technician

Craig Patrick

Approved signatory

Reproduction of the complete certificate is allowed. Part of the certificate may only be reproduced after written permission.



Document No: 161267/9351

# ATTENDED NOISE MONITORING QUARTER 2 – JUNE 2021 Newcastle Sands Williamtown, NSW

Prepared for: Williamtown Sand Syndicate Pty Ltd Cabbage Tree Road WILLIAMTOWN NSW 2318

Author:

**Neil Pennington** 

B. Sc., B.Math. (Hons) MAIP, MAAS, MASA

Principal / Director

July 2021

Phone: (02) 4954 2276



# **TABLE OF CONTENTS**

| 1.0 | INTR | ODUCTION                             | 1 |
|-----|------|--------------------------------------|---|
|     | 1.1  | Noise Monitoring Locations           | 1 |
|     | 1.2  | Monitoring Frequency and Duration    |   |
| 2.0 | CRIT | ERIA AND CONDITIONS                  | 3 |
|     | 2.1  | Noise Assessment Criteria            |   |
|     | 2.2  | Monitoring Location Definition       | 3 |
|     | 2.3  | Applicable Meteorological Conditions |   |
|     | 2.4  | Other Conditions                     | 3 |
| 3.0 | NOIS | E MONITORING PROCEDURE               | 3 |
|     | 3.1  | Monitoring Equipment                 | 3 |
|     | 3.2  | Measurement Analysis                 |   |
|     | 3.3  | Meteorological Data                  |   |
| 4.0 | RESI | JLTS AND DISCUSSION                  | 4 |
|     | 4.1  | Measured Noise Levels                | 4 |
|     |      | 4.1.1 NS Operations                  | 4 |
|     | 4.2  | Discussion of Results                |   |
|     |      | 4 2 1                                | F |

### **APPENDIX A** Description of Acoustical Terms

### **APPENDIX B** Calibration Certificate





# **EXECUTIVE SUMMARY**

Attended noise monitoring has been carried out for the Newcastle Sand (NS) mine on 24, 25 and 28 June 2021. Monitoring was carried out in accordance with requirements of Development Consent (SSD-6125), EPL21264, the Newcastle Sand Noise Management Plan and other relevant Australian Standards and guidelines.

The site was in full operation during the entire survey period.

The site-specific operational criteria were not exceeded at any location or at any time throughout the monitoring period.

Data from those times where noise from NS operations was audible and measurable were analysed using Bruel & Kjaer "Evaluator" software. This analysis showed the noise did not contain any tonal, impulsive and low frequency components as per definitions of "modifying factor corrections" in the NSW Noise Policy for Industry. It is acknowledged that the general area is impacted by low and mid-range frequency noise from Cabbage Tree Road and identification of individual sources requires subjective assessment.

NS was compliant with Environmental Protection Licence (EPL) 21264 and Newcastle Sand Development Consent (SSD-6125) for Quarter 2 (June) 2021.



Doc. No: 161267-9351



# 1.0 INTRODUCTION

This report presents the results of attended noise compliance monitoring and measurements conducted for Newcastle Sand (NS) on 24, 25 and 28 June 2021. Monitoring was undertaken in accordance with requirements of Newcastle Sand Noise Management Plan (NMP) dated March 2019. The noise monitoring programme and procedures in the NMP have been developed in accordance with the NS Environmental Protection Licence (EPL) no 21264 and the Newcastle Sand Development Consent (SSD-6125). To aid in the understanding of this report a description of acoustical terms is attached as **Appendix A**.

### 1.1 Noise Monitoring Locations

The NMP (Section 8.1) contains a table (Table 8) detailing recommended locations for attended noise monitoring and corresponding identification numbers for each boundary of the site, as follows.

Table 8: Noise monitoring locations

| Generalised Location                             | Recommended Receptor ID |
|--------------------------------------------------|-------------------------|
| Nearest residence to west (at road level)        | 27                      |
| Nearest residence to west elevated on hill crest | 14 <sup>1</sup>         |
| Residence due south of quarry                    | 38                      |
| Nearest residence to the south east              | 74                      |

Condition M8.1 of the EPL states that attended noise monitoring is to be undertaken at a location representative of the most affected residences in the noise limit conditions. Monitoring was conducted at receiver number 42 which is representative of receivers south of the site. The monitoring location is also shown on **Figure 1**.

### 1.2 Monitoring Frequency and Duration

EPL21264 indicates that the attended noise monitoring must be conducted quarterly during the morning-shoulder and day periods only. Each quarterly survey is to consist of 30 minute morning-shoulder measurements and 1.5 hour day measurements at one location representative of the most affected residences in the noise limit conditions (in accordance with EPL21264 to be done over a minimum of three consecutive 24 hour periods).



Doc. No: 161267-9351





Figure 1
Noise Monitoring Location





# 2.0 CRITERIA AND CONDITIONS

#### 2.1 Noise Assessment Criteria

The noise assessment criteria are detailed in Condition L3.1 of the. The criteria vary for each receiver monitoring location. The applicable morning-shoulder and day criterion is shown in the tables of results (**Tables 1 - 6** in **Section 4.1**). Noise criteria for all residences listed in the EPL are as shown below. The above noise criteria include the requirement that noise levels at day shoulder must not exceed **45 dB(A) L1 (1 min)** (sleep disturbance criterion) at any residence.

| Receiver                 | Day LAeq(15 Min) | Shoulder LAeq(15 Min) | Shoulder LA Max(1 Min) |
|--------------------------|------------------|-----------------------|------------------------|
| Any residential reciever | 43               | 39                    | 45                     |

Operational noise generated at the premises must not exceed the noise limits shown in the table above.

#### 2.2 Monitoring Location Definition

Condition L3.7 of the EPL states that to determine compliance with the Leq (15 min) operational noise limits the noise measurement equipment must be measured at the most affected point on or within the residential boundary, or at the most affected point within 30m of the dwelling where the dwelling is more than 30m from the boundary.

#### 2.3 Applicable Meteorological Conditions

The noise limits apply under all meteorological conditions except for any one of the following;

- 1. Wind speeds greater than 3m/s at 10m above ground level; or
- 2. Stability category F temperature inversion conditions and wind speeds greater than 2m/s at 10m above ground level; or
- 3. Stability category G temperature inversion conditions.

#### 2.4 Other Conditions

To determine compliance with the Leq (15 min) operational noise criteria the modification factors in Fact Sheet C of the NSW Noise Policy for Industry must be applied, as appropriate, to the noise levels measured by the noise monitoring equipment.

# 3.0 NOISE MONITORING PROCEDURE

### 3.1 Monitoring Equipment

Attended noise monitoring was conducted with a Brüel & Kjær Type 2250 Precision Sound Analyser. This instrument has Class 1 characteristics as defined in AS IEC61672.1-2004 and has current NATA calibration. Calibration certificates are included in Appendix C. Field calibration is carried out at the start and end of each monitoring period.



Doc. No: 161267-9351



A-weighted noise levels were measured over the 15-minute monitoring periods with data acquired at 1 or 2 second statistical intervals and the meter set to "fast" response. Each 1 or 2 second measurement is accompanied by a third-octave band spectrum from 20 - 20k Hz which is required for analysing INP 'modifying factors'. Time based field notes allow for determination of the relative contributions to the overall noise level of all significant noise sources.

## 3.2 Measurement Analysis

The 15 minute Leq noise level for each monitoring period is shown in the tables below. Where the noise from NS was audible, Bruel & Kjaer "Evaluator" analysis software was used to quantify the contributions of NS and other significant noise sources to the overall noise level. Mine noise from NS is shown in the tables in bold type.

### 3.3 Meteorological Data

Meteorological data used in this report were taken from the Williamtown Bureau of Meteorology Station.

# 4.0 RESULTS AND DISCUSSION

## 4.1 Measured Noise Levels

#### 4.1.1 NS Operations

Measured noise levels at the monitoring location are summarised in **Tables 1 - 6**.

|          | Table 1                                                                   |               |                        |                                  |                                               |                                              |  |  |  |  |
|----------|---------------------------------------------------------------------------|---------------|------------------------|----------------------------------|-----------------------------------------------|----------------------------------------------|--|--|--|--|
|          | NS Operational Noise Monitoring Results – 24 June 2021 (Morning-Shoulder) |               |                        |                                  |                                               |                                              |  |  |  |  |
| Location | Time                                                                      | dB(A),<br>Leq | Criterion<br>dB(A) Leq | dB(A),<br>L1 (1min) <sup>1</sup> | Criterion<br>dB(A),<br>L1 (1min) <sup>1</sup> | Identified Noise Sources, LAeq               |  |  |  |  |
| R42      | 6:43am                                                                    | 65            | 39                     | <20                              | 45                                            | Traffic (65), birds (48), <b>NS (&lt;20)</b> |  |  |  |  |

<sup>1.</sup> L1 (1 min) from NS mine noise only.

|          | Table 2                                                      |    |    |                                              |  |  |  |  |
|----------|--------------------------------------------------------------|----|----|----------------------------------------------|--|--|--|--|
|          | NS Operational Noise Monitoring Results – 24 June 2021 (Day) |    |    |                                              |  |  |  |  |
|          | dB(A), Criterion                                             |    |    |                                              |  |  |  |  |
| Location | Location Time Leq dB(A) Leq Identified Noise Sources, LAeq   |    |    |                                              |  |  |  |  |
| R42      | 7:31am                                                       | 68 | 43 | Traffic (68), birds (44), <b>NS (&lt;20)</b> |  |  |  |  |

| Table 3  |                                                                           |               |                        |                                  |                                               |                                              |  |  |  |
|----------|---------------------------------------------------------------------------|---------------|------------------------|----------------------------------|-----------------------------------------------|----------------------------------------------|--|--|--|
|          | NS Operational Noise Monitoring Results – 25 June 2021 (Morning-Shoulder) |               |                        |                                  |                                               |                                              |  |  |  |
| Location | Time                                                                      | dB(A),<br>Leq | Criterion<br>dB(A) Leq | dB(A),<br>L1 (1min) <sup>1</sup> | Criterion<br>dB(A),<br>L1 (1min) <sup>1</sup> | Identified Noise Sources, LAeq               |  |  |  |
| R42      | 6:31am                                                                    | 64            | 39                     | <20                              | 45                                            | Traffic (64), birds (46), <b>NS (&lt;20)</b> |  |  |  |

<sup>1.</sup> L1 (1 min) from NS mine noise only.



Doc. No: 161267-9351



| Table 4  |                                                              |    |    |                                              |  |  |  |  |
|----------|--------------------------------------------------------------|----|----|----------------------------------------------|--|--|--|--|
|          | NS Operational Noise Monitoring Results – 25 June 2021 (Day) |    |    |                                              |  |  |  |  |
|          | dB(A), Criterion                                             |    |    |                                              |  |  |  |  |
| Location | Location Time Leq dB(A) Leq Identified Noise Sources, LAeq   |    |    |                                              |  |  |  |  |
| R42      | 7:13am                                                       | 64 | 43 | Traffic (64), birds (45), <b>NS (&lt;20)</b> |  |  |  |  |

| Table 5  |                                                                           |               |                        |                                  |                                               |                                              |  |  |  |
|----------|---------------------------------------------------------------------------|---------------|------------------------|----------------------------------|-----------------------------------------------|----------------------------------------------|--|--|--|
|          | NS Operational Noise Monitoring Results – 28 June 2021 (Morning-Shoulder) |               |                        |                                  |                                               |                                              |  |  |  |
| Location | Time                                                                      | dB(A),<br>Leq | Criterion<br>dB(A) Leq | dB(A),<br>L1 (1min) <sup>1</sup> | Criterion<br>dB(A),<br>L1 (1min) <sup>1</sup> | Identified Noise Sources, LAeq               |  |  |  |
| R42      | 6:32am                                                                    | 67            | 39                     | <20                              | 45                                            | Traffic (67), birds (48), <b>NS (&lt;20)</b> |  |  |  |

1. L1 (1 min) from NS mine noise only.

| Table 6                                                      |  |        |           |  |  |  |  |
|--------------------------------------------------------------|--|--------|-----------|--|--|--|--|
| NS Operational Noise Monitoring Results – 28 June 2021 (Day) |  |        |           |  |  |  |  |
|                                                              |  | dB(A), | Criterion |  |  |  |  |
| Location Time Leq dB(A) Leq Identified Noise Sources, LAeq   |  |        |           |  |  |  |  |
| R42                                                          |  |        |           |  |  |  |  |

#### 4.2 Discussion of Results

The results in **Tables 1-6** show that, under the operating and meteorological conditions at the times, for the 30 minute (morning-shoulder) and 1.5 hour (day) compliance measurement periods, the mine noise from NS was inaudible at the monitoring location. All of the noise measurements were made under compliant meteorological conditions. At the time of this measurement the wind speed at the weather station was less than 3m/s.

## 4.2.1 L1 (1 min)

The noise measurements results in **Tables 1**, **3**, **& 5** (and site observations) show that noise from the operation of NS under the operating and meteorological conditions at the times, did not exceed the L1 (1 min) criterion at the monitoring location. Since L1 (1 min) levels were significantly lower than the criterion, at the operational noise monitoring location, measurements at the residential facade was not considered necessary as compliance was assured.



Doc. No: 161267-9351



# **APPENDIX A**

# **DESCRIPTION OF ACOUSTICAL TERMS**



Doc. No: 161267-9351



Table A1
Definition of acoustical terms

| Term  | Description                                                                       |
|-------|-----------------------------------------------------------------------------------|
| dB(A) | The quantitative measure of sound heard by the human ear, measured by the A-      |
|       | Scale Weighting Network of a sound level meter expressed in decibels (dB).        |
| SPL   | Sound Pressure Level. The incremental variation of sound pressure above and       |
|       | below atmospheric pressure and expressed in decibels. The human ear responds      |
|       | to pressure fluctuations, resulting in sound being heard.                         |
| STL   | Sound Transmission Loss. The ability of a partition to attenuate sound, in dB.    |
| Lw    | Sound Power Level radiated by a noise source per unit time re 1pW.                |
| Leq   | Equivalent Continuous Noise Level - taking into account the fluctuations of noise |
|       | over time. The time-varying level is computed to give an equivalent dB(A) level   |
|       | that is equal to the energy content and time period.                              |
| L1    | Average Peak Noise Level - the level exceeded for 1% of the monitoring period.    |
| L90   | "Background" Noise Level - the level exceeded for 90% of the monitoring period.   |



# **APPENDIX B**

# **CALIBRATION CERTIFICATE**



Doc. No: 161267-9351





Australian Calibration Laboratory Suite 2, 6-10 Talavera Road, North Ryde NSW 2113, Australia Accredited for compliance with ISO/IEC 17025 - Calibration. Laboratory No. 1301



CERTIFICATE OF CALIBRATION

Certificate No: CAU1901071

Page 1 of 12

**CALIBRATION OF:** 

Sound Level Meter:

Bruel & Kjaer

2250

No: 2747794

Microphone:

Bruel & Kjaer

4189

No: 2733511

Preamplifier:

Bruel & Kjaer

ZC-0032 None

No: 15339 No: N/A

Supplied Calibrator: Software version:

Bruel & Kjaer BZ7224 Version 4.6.0

Pattern Approval:

PTB

Instruction manual:

BE1712-22

Identification:

N/A

**CUSTOMER:** 

Spectrum Acoustics Pty Ltd

30 Veronica Street Cardiff NSW 2285

**CALIBRATION CONDITIONS:** 

Preconditioning:

4 hours at 23 °C

Environment conditions:

see actual values in Environmental conditions sections

#### **SPECIFICATIONS:**

The Sound Level Meter has been calibrated in accordance with the requirements as specified in IEC61672-1:2013 class 1. Procedures from IEC 61672-3:2013 were used to perform the periodic tests.

#### PROCEDURE:

The measurements have been performed with the assistance of Brüel & Kjær Sound Level Meter Calibration System B&K 3630 with application software type 7763 (version 8.0 - DB: 8.00) and test procedure 2250-4189.

#### **RESULTS:**

|   | Initial calibration                   | Calibration prior to repair/adjustment |
|---|---------------------------------------|----------------------------------------|
| Χ | Calibration without repair/adjustment | Calibration after repair/adjustment    |

The reported expanded uncertainty is based on the standard uncertainty multiplied by a coverage factor k = 2 providing a level of confidence of approximately 95 %. The uncertainty evaluation has been carried out in accordance with EA-4/02 from elements originating from the standards, calibration method, effect of environmental conditions and any short time contribution from the device under calibration.

Date of Calibration: 05/11/2019

Certificate issued: 05/11/2019

Sajeeb Tharayil

Calibration Technician

Craig Patrick

Approved signatory

Reproduction of the complete certificate is allowed. Part of the certificate may only be reproduced after written permission.



Document No: 161267/9435

# ATTENDED NOISE MONITORING QUARTER 3 – SEPTEMBER 2021 Newcastle Sands Williamtown, NSW

Prepared for: Williamtown Sand Syndicate Pty Ltd Cabbage Tree Road WILLIAMTOWN NSW 2318

Author:

**Neil Pennington** 

B. Sc., B.Math. (Hons) MAIP, MAAS, MASA

Principal / Director

November 2021

Phone: (02) 4954 2276



# **TABLE OF CONTENTS**

| 1.0 | INTR                       | RODUCTION                            | 1 |  |
|-----|----------------------------|--------------------------------------|---|--|
|     | 1.1                        | Noise Monitoring Locations           | 1 |  |
|     | 1.2                        | Monitoring Frequency and Duration    | 1 |  |
| 2.0 | CRIT                       | CRITERIA AND CONDITIONS              |   |  |
|     | 2.1                        | Noise Assessment Criteria            | 3 |  |
|     | 2.2                        | Monitoring Location Definition       | 3 |  |
|     | 2.3                        | Applicable Meteorological Conditions | 3 |  |
|     | 2.4                        | Other Conditions                     | 3 |  |
| 3.0 | NOISE MONITORING PROCEDURE |                                      |   |  |
|     | 3.1                        | Monitoring Equipment                 | 3 |  |
|     | 3.2                        | Measurement Analysis                 | 4 |  |
|     | 3.3                        | Meteorological Data                  | 4 |  |
| 4.0 | RESI                       | ULTS AND DISCUSSION                  |   |  |
|     | 4.1                        | Measured Noise Levels                | 4 |  |
|     |                            | 4.1.1 NS Operations                  |   |  |
|     | 4.2                        | Discussion of Results                | 5 |  |
|     |                            | 4 2 1                                | 5 |  |

## **APPENDIX A** Description of Acoustical Terms

### **APPENDIX B** Calibration Certificate





#### **EXECUTIVE SUMMARY**

Attended noise monitoring has been carried out for the Newcastle Sand (NS) quarry on 28, 29 and 30 September 2021. Monitoring was carried out in accordance with requirements of Development Consent (SSD-6125), EPL21264, the Newcastle Sand Noise Management Plan and other relevant Australian Standards and guidelines.

Monitoring was conducted by Neil Pennington (Principal/Director, Spectrum Acoustics).

The site was in full operation during the entire survey period.

The site-specific operational criteria were not exceeded at any location or at any time throughout the monitoring period.

Data from those times where noise from NS operations was audible and measurable were analysed using Bruel & Kjaer "Evaluator" software. This analysis showed the noise did not contain any tonal, impulsive and low frequency components as per definitions of "modifying factor corrections" in the NSW Noise Policy for Industry. It is acknowledged that the general area is impacted by low and mid-range frequency noise from Cabbage Tree Road and identification of individual sources requires subjective assessment.

NS was compliant with Environmental Protection Licence (EPL) 21264 and Newcastle Sand Development Consent (SSD-6125) for Quarter 3 (September) 2021.





#### 1.0 INTRODUCTION

This report presents the results of attended noise compliance monitoring and measurements conducted for Newcastle Sand (NS) on 28, 29 and 30 September 2021. Monitoring was undertaken in accordance with requirements of Newcastle Sand Noise Management Plan (NMP) dated March 2019. The noise monitoring programme and procedures in the NMP have been developed in accordance with the NS Environmental Protection Licence (EPL) no 21264 and the Newcastle Sand Development Consent (SSD-6125). To aid in the understanding of this report a description of acoustical terms is attached as **Appendix A**.

#### 1.1 Noise Monitoring Locations

The NMP (Section 8.1) contains a table (Table 8) detailing recommended locations for attended noise monitoring and corresponding identification numbers for each boundary of the site, as follows.

Table 8: Noise monitoring locations

| Generalised Location                             | Recommended Receptor ID |
|--------------------------------------------------|-------------------------|
| Nearest residence to west (at road level)        | 27                      |
| Nearest residence to west elevated on hill crest | 14 <sup>1</sup>         |
| Residence due south of quarry                    | 38                      |
| Nearest residence to the south east              | 74                      |

Condition M8.1 of the EPL states that attended noise monitoring is to be undertaken at a location representative of the most affected residences in the noise limit conditions. Monitoring was conducted at receiver number 42 which is representative of receivers south of the site. The monitoring location is also shown on **Figure 1**.

#### 1.2 Monitoring Frequency and Duration

EPL21264 indicates that the attended noise monitoring must be conducted quarterly during the morning-shoulder and day periods only. Each quarterly survey is to consist of 30 minute morning-shoulder measurements and 1.5 hour day measurements at one location representative of the most affected residences in the noise limit conditions (in accordance with EPL21264 to be done over a minimum of three consecutive 24 hour periods).







Figure 1
Noise Monitoring Location





#### 2.0 CRITERIA AND CONDITIONS

#### 2.1 Noise Assessment Criteria

The noise assessment criteria are detailed in Condition L3.1 of the. The criteria vary for each receiver monitoring location. The applicable morning-shoulder and day criterion is shown in the tables of results (**Tables 1 - 6** in **Section 4.1**). Noise criteria for all residences listed in the EPL are as shown below. The above noise criteria include the requirement that noise levels at day shoulder must not exceed **45 dB(A) L1** (**1 min**) (sleep disturbance criterion) at any residence.

| Receiver                 | Day LAeq(15 Min) | Shoulder LAeq(15 Min) | Shoulder LA Max(1 Min) |
|--------------------------|------------------|-----------------------|------------------------|
| Any residential reciever | 43               | 39                    | 45                     |

Operational noise generated at the premises must not exceed the noise limits shown in the table above.

#### 2.2 Monitoring Location Definition

Condition L3.7 of the EPL states that to determine compliance with the Leq (15 min) operational noise limits the noise measurement equipment must be measured at the most affected point on or within the residential boundary, or at the most affected point within 30m of the dwelling where the dwelling is more than 30m from the boundary.

#### 2.3 Applicable Meteorological Conditions

The noise limits apply under all meteorological conditions except for any one of the following;

- 1. Wind speeds greater than 3m/s at 10m above ground level; or
- 2. Stability category F temperature inversion conditions and wind speeds greater than 2m/s at 10m above ground level; or
- 3. Stability category G temperature inversion conditions.

#### 2.4 Other Conditions

To determine compliance with the Leq (15 min) operational noise criteria the modification factors in Fact Sheet C of the NSW Noise Policy for Industry must be applied, as appropriate, to the noise levels measured by the noise monitoring equipment.

#### 3.0 NOISE MONITORING PROCEDURE

#### 3.1 Monitoring Equipment

Attended noise monitoring was conducted with a Brüel & Kjær Type 2250 Precision Sound Analyser. This instrument has Class 1 characteristics as defined in AS IEC61672.1-2004 and has current NATA calibration. Calibration certificates are included in Appendix C. Field calibration is carried out at the start and end of each monitoring period.





A-weighted noise levels were measured over the 15-minute monitoring periods with data acquired at 1 or 2 second statistical intervals and the meter set to "fast" response. Each 1 or 2 second measurement is accompanied by a third-octave band spectrum from 20 - 20k Hz which is required for analysing INP 'modifying factors'. Time based field notes allow for determination of the relative contributions to the overall noise level of all significant noise sources.

#### 3.2 Measurement Analysis

The 15 minute Leq noise level for each monitoring period is shown in the tables below. Where the noise from NS was audible, Bruel & Kjaer "Evaluator" analysis software was used to quantify the contributions of NS and other significant noise sources to the overall noise level. Quarry noise from NS is shown in the tables in bold type.

#### 3.3 Meteorological Data

Meteorological data used in this report were taken from the Williamtown Bureau of Meteorology Station.

#### 4.0 RESULTS AND DISCUSSION

#### 4.1 Measured Noise Levels

#### 4.1.1 NS Operations

Measured noise levels at the monitoring location are summarised in **Tables 1 - 6**.

|          | Table 1                                                                                                                         |    |    |     |    |                                              |  |  |  |
|----------|---------------------------------------------------------------------------------------------------------------------------------|----|----|-----|----|----------------------------------------------|--|--|--|
|          | NS Operational Noise Monitoring Results – 28 September 2021 (Morning-Shoulder)                                                  |    |    |     |    |                                              |  |  |  |
| Location | Location  Time  dB(A), Criterion dB(A), Criterion dB(A), Criterion dB(A), Identified Noise Sources, LAeq L1 (1min)¹  L1 (1min)¹ |    |    |     |    |                                              |  |  |  |
| R42      | 6:40am                                                                                                                          | 66 | 39 | <20 | 45 | Traffic (66), birds (54), <b>NS (&lt;20)</b> |  |  |  |

<sup>1.</sup> L1 (1 min) from NS quarry noise only.

| Table 2  |                                                                   |     |           |                                              |  |  |  |  |
|----------|-------------------------------------------------------------------|-----|-----------|----------------------------------------------|--|--|--|--|
|          | NS Operational Noise Monitoring Results – 28 September 2021 (Day) |     |           |                                              |  |  |  |  |
|          | dB(A), Criterion                                                  |     |           |                                              |  |  |  |  |
| Location | Time                                                              | Leq | dB(A) Leq | Identified Noise Sources, LAeq               |  |  |  |  |
| R42      | 7:01am                                                            | 65  | 43        | Traffic (65), birds (47), <b>NS (&lt;20)</b> |  |  |  |  |

| Table 3  |                                                                                |               |                        |                                  |                                               |                                              |  |  |
|----------|--------------------------------------------------------------------------------|---------------|------------------------|----------------------------------|-----------------------------------------------|----------------------------------------------|--|--|
|          | NS Operational Noise Monitoring Results – 29 September 2021 (Morning-Shoulder) |               |                        |                                  |                                               |                                              |  |  |
| Location | Time                                                                           | dB(A),<br>Leq | Criterion<br>dB(A) Leq | dB(A),<br>L1 (1min) <sup>1</sup> | Criterion<br>dB(A),<br>L1 (1min) <sup>1</sup> | Identified Noise Sources, LAeq               |  |  |
| R42      | 6:44am                                                                         | 65            | 39                     | <20                              | 45                                            | Traffic (66), birds (52), <b>NS (&lt;20)</b> |  |  |

<sup>1.</sup> L1 (1 min) from NS quarry noise only.





| Table 4 NS Operational Noise Monitoring Results – 29 September 2021 (Day) |                                                                             |    |    |                                              |  |  |  |
|---------------------------------------------------------------------------|-----------------------------------------------------------------------------|----|----|----------------------------------------------|--|--|--|
| Location                                                                  | dB(A), Criterion Location Time Leg dB(A) Leg Identified Noise Sources, LAeg |    |    |                                              |  |  |  |
| R42                                                                       | 7:00am                                                                      | 67 | 43 | Traffic (67), birds (48), <b>NS (&lt;20)</b> |  |  |  |

| Table 5                                                                        |        |               |                        |                                  |                                               |                                              |  |  |
|--------------------------------------------------------------------------------|--------|---------------|------------------------|----------------------------------|-----------------------------------------------|----------------------------------------------|--|--|
| NS Operational Noise Monitoring Results – 30 September 2021 (Morning-Shoulder) |        |               |                        |                                  |                                               |                                              |  |  |
| Location                                                                       | Time   | dB(A),<br>Leq | Criterion<br>dB(A) Leq | dB(A),<br>L1 (1min) <sup>1</sup> | Criterion<br>dB(A),<br>L1 (1min) <sup>1</sup> | Identified Noise Sources, LAeq               |  |  |
| R42                                                                            | 6:42am | 64            | 39                     | <20                              | 45                                            | Traffic (64), birds (50), <b>NS (&lt;20)</b> |  |  |

1. L1 (1 min) from NS quarry noise only.

| Table 6  |                                                                   |     |           |                                              |  |  |  |
|----------|-------------------------------------------------------------------|-----|-----------|----------------------------------------------|--|--|--|
|          | NS Operational Noise Monitoring Results – 30 September 2021 (Day) |     |           |                                              |  |  |  |
|          | dB(A), Criterion                                                  |     |           |                                              |  |  |  |
| Location | Time                                                              | Leq | dB(A) Leq | Identified Noise Sources, LAeq               |  |  |  |
| R42      | 7:05am                                                            | 67  | 43        | Traffic (67), birds (45), <b>NS (&lt;20)</b> |  |  |  |

#### 4.2 Discussion of Results

The results in **Tables 1-6** show that, under the operating and meteorological conditions at the times, for the 30 minute (morning-shoulder) and 1.5 hour (day) compliance measurement periods, the quarry noise from NS was inaudible at the monitoring location. All of the noise measurements were made under compliant meteorological conditions. At the time of this measurement the wind speed at the weather station was less than 3m/s.

#### 4.2.1 L1 (1 min)

The noise measurements results in **Tables 1, 3, & 5** (and site observations) show that noise from the operation of NS under the operating and meteorological conditions at the times, did not exceed the L1 (1 min) criterion at the monitoring location. Since L1 (1 min) levels were significantly lower than the criterion, at the operational noise monitoring location, measurements at the residential facade was not considered necessary as compliance was assured.





### **APPENDIX A**

## **DESCRIPTION OF ACOUSTICAL TERMS**





Table A1
Definition of acoustical terms

| Term  | Description                                                                       |  |  |  |  |
|-------|-----------------------------------------------------------------------------------|--|--|--|--|
| dB(A) | The quantitative measure of sound heard by the human ear, measured by the A-      |  |  |  |  |
|       | Scale Weighting Network of a sound level meter expressed in decibels (dB).        |  |  |  |  |
| SPL   | Sound Pressure Level. The incremental variation of sound pressure above and       |  |  |  |  |
|       | below atmospheric pressure and expressed in decibels. The human ear               |  |  |  |  |
|       | responds to pressure fluctuations, resulting in sound being heard.                |  |  |  |  |
| STL   | Sound Transmission Loss. The ability of a partition to attenuate sound, in dB.    |  |  |  |  |
| Lw    | Sound Power Level radiated by a noise source per unit time re 1pW.                |  |  |  |  |
| Leq   | Equivalent Continuous Noise Level - taking into account the fluctuations of noise |  |  |  |  |
|       | over time. The time-varying level is computed to give an equivalent dB(A) level   |  |  |  |  |
|       | that is equal to the energy content and time period.                              |  |  |  |  |
| L1    | Average Peak Noise Level - the level exceeded for 1% of the monitoring period.    |  |  |  |  |
| L90   | "Background" Noise Level - the level exceeded for 90% of the monitoring period.   |  |  |  |  |





## **APPENDIX B**

## **CALIBRATION CERTIFICATE**







Australian Calibration Laboratory Suite 2, 6-10 Talavera Road, North Ryde NSW 2113, Australia Accredited for compliance with ISO/IEC 17025 - Calibration. Laboratory No. 1301



CERTIFICATE OF CALIBRATION

Certificate No: CAU1901071

Page 1 of 12

**CALIBRATION OF:** 

Sound Level Meter:

Bruel & Kjaer

2250

No: 2747794

Microphone:

Bruel & Kjaer

4189

No: 2733511

Preamplifier:

Bruel & Kjaer

ZC-0032

No: 15339

Supplied Calibrator:

Bruel & Kjaer

None

No: N/A PTB

Software version: Instruction manual: BZ7224 Version 4.6.0 BE1712-22

Pattern Approval: Identification:

N/A

**CUSTOMER:** 

Spectrum Acoustics Pty Ltd

30 Veronica Street Cardiff NSW 2285

**CALIBRATION CONDITIONS:** 

Preconditioning:

4 hours at 23 °C

Environment conditions:

see actual values in Environmental conditions sections

#### SPECIFICATIONS:

The Sound Level Meter has been calibrated in accordance with the requirements as specified in IEC61672-1:2013 class 1. Procedures from IEC 61672-3:2013 were used to perform the periodic tests.

#### PROCEDURE:

The measurements have been performed with the assistance of Brüel & Kjær Sound Level Meter Calibration System B&K 3630 with application software type 7763 (version 8.0 - DB: 8.00) and test procedure 2250-4189.

#### **RESULTS:**

|   | Initial calibration                   | Calibration prior to repair/adjustment |
|---|---------------------------------------|----------------------------------------|
| Χ | Calibration without repair/adjustment | Calibration after repair/adjustment    |

Reproduction of the complete certificate is allowed. Part of the certificate may only be reproduced after written permission.

The reported expanded uncertainty is based on the standard uncertainty multiplied by a coverage factor k = 2 providing a level of confidence of approximately 95 %. The uncertainty evaluation has been carried out in accordance with EA-4/02 from elements originating from the standards, calibration method, effect of environmental conditions and any short time contribution from the device under calibration.

Date of Calibration: 05/11/2019

Certificate issued: 05/11/2019

Sajeeb Tharayil

Calibration Technician

Craig Patrick

Approved signatory

November 2021



Document No: 161267/9480

## ATTENDED NOISE MONITORING QUARTER 4 – DECEMBER 2021 Newcastle Sands Williamtown, NSW

Prepared for: Williamtown Sand Syndicate Pty Ltd Cabbage Tree Road WILLIAMTOWN NSW 2318

Author:

**Neil Pennington** 

B. Sc., B.Math. (Hons) MAIP, MAAS, MASA

Principal / Director

January 2022

Phone: (02) 4954 2276



## **TABLE OF CONTENTS**

| 1.0 | INTR | ODUCTION1                            |
|-----|------|--------------------------------------|
|     | 1.1  | Noise Monitoring Locations1          |
|     | 1.2  | Monitoring Frequency and Duration1   |
| 2.0 | CRIT | ERIA AND CONDITIONS3                 |
|     | 2.1  | Noise Assessment Criteria3           |
|     | 2.2  | Monitoring Location Definition       |
|     | 2.3  | Applicable Meteorological Conditions |
|     | 2.4  | Other Conditions                     |
| 3.0 | NOIS | SE MONITORING PROCEDURE3             |
|     | 3.1  | Monitoring Equipment3                |
|     | 3.2  | Measurement Analysis4                |
|     | 3.3  | Meteorological Data4                 |
| 4.0 | RESI | ULTS AND DISCUSSION4                 |
|     | 4.1  | Measured Noise Levels4               |
|     |      | 4.1.1 NS Operations4                 |
|     | 4.2  | Discussion of Results5               |
|     |      | 4.2.1 L1 (1 min)5                    |

#### **APPENDIX A** Description of Acoustical Terms

#### **APPENDIX B** Calibration Certificate





#### **EXECUTIVE SUMMARY**

Attended noise monitoring has been carried out for the Newcastle Sand (NS) quarry on 15, 16 and 17 December 2021. Monitoring was carried out in accordance with requirements of Development Consent (SSD-6125), EPL21264, the Newcastle Sand Noise Management Plan and other relevant Australian Standards and guidelines.

Monitoring was conducted by Neil Pennington (Principal/Director, Spectrum Acoustics).

The site was in full operation during the entire survey period.

The site-specific operational criteria were not exceeded at any location or at any time throughout the monitoring period.

Data from those times where noise from NS operations was audible and measurable were analysed using Bruel & Kjaer "Evaluator" software. This analysis showed the noise did not contain any tonal, impulsive and low frequency components as per definitions of "modifying factor corrections" in the NSW Noise Policy for Industry. It is acknowledged that the general area is impacted by low and mid-range frequency noise from Cabbage Tree Road and identification of individual sources requires subjective assessment.

NS was compliant with Environmental Protection Licence (EPL) 21264 and Newcastle Sand Development Consent (SSD-6125) for Quarter 4 (December) 2021.





#### 1.0 INTRODUCTION

This report presents the results of attended noise compliance monitoring and measurements conducted for Newcastle Sand (NS) on 15, 16 and 17 December 2021. Monitoring was undertaken in accordance with requirements of Newcastle Sand Noise Management Plan (NMP) dated March 2019. The noise monitoring programme and procedures in the NMP have been developed in accordance with the NS Environmental Protection Licence (EPL) no 21264 and the Newcastle Sand Development Consent (SSD-6125). To aid in the understanding of this report a description of acoustical terms is attached as **Appendix A**.

#### 1.1 Noise Monitoring Locations

The NMP (Section 8.1) contains a table (Table 8) detailing recommended locations for attended noise monitoring and corresponding identification numbers for each boundary of the site, as follows.

Table 8: Noise monitoring locations

| Generalised Location                             | Recommended Receptor ID |
|--------------------------------------------------|-------------------------|
| Nearest residence to west (at road level)        | 27                      |
| Nearest residence to west elevated on hill crest | 14 <sup>1</sup>         |
| Residence due south of quarry                    | 38                      |
| Nearest residence to the south east              | 74                      |

Condition M8.1 of the EPL states that attended noise monitoring is to be undertaken at a location representative of the most affected residences in the noise limit conditions. Monitoring was conducted at receiver number 42 which is representative of receivers south of the site. The monitoring location is also shown on **Figure 1**.

#### 1.2 Monitoring Frequency and Duration

EPL21264 indicates that the attended noise monitoring must be conducted quarterly during the morning-shoulder and day periods only. Each quarterly survey is to consist of 30 minute morning-shoulder measurements and 1.5 hour day measurements at one location representative of the most affected residences in the noise limit conditions (in accordance with EPL21264 to be done over a minimum of three consecutive 24 hour periods).







Figure 1
Noise Monitoring Location





#### 2.0 CRITERIA AND CONDITIONS

#### 2.1 Noise Assessment Criteria

The noise assessment criteria are detailed in Condition L3.1 of the. The criteria vary for each receiver monitoring location. The applicable morning-shoulder and day criterion is shown in the tables of results (**Tables 1 - 6** in **Section 4.1**). Noise criteria for all residences listed in the EPL are as shown below. The above noise criteria include the requirement that noise levels at day shoulder must not exceed **45 dB(A) L1** (**1 min**) (sleep disturbance criterion) at any residence.

| Receiver                 | Day LAeq(15 Min) | Shoulder LAeq(15 Min) | Shoulder LA Max(1 Min) |
|--------------------------|------------------|-----------------------|------------------------|
| Any residential reciever | 43               | 39                    | 45                     |

Operational noise generated at the premises must not exceed the noise limits shown in the table above.

#### 2.2 Monitoring Location Definition

Condition L3.7 of the EPL states that to determine compliance with the Leq (15 min) operational noise limits the noise measurement equipment must be measured at the most affected point on or within the residential boundary, or at the most affected point within 30m of the dwelling where the dwelling is more than 30m from the boundary.

#### 2.3 Applicable Meteorological Conditions

The noise limits apply under all meteorological conditions except for any one of the following;

- 1. Wind speeds greater than 3m/s at 10m above ground level; or
- 2. Stability category F temperature inversion conditions and wind speeds greater than 2m/s at 10m above ground level; or
- 3. Stability category G temperature inversion conditions.

#### 2.4 Other Conditions

To determine compliance with the Leq (15 min) operational noise criteria the modification factors in Fact Sheet C of the NSW Noise Policy for Industry must be applied, as appropriate, to the noise levels measured by the noise monitoring equipment.

#### 3.0 NOISE MONITORING PROCEDURE

#### 3.1 Monitoring Equipment

Attended noise monitoring was conducted with a Brüel & Kjær Type 2250 Precision Sound Analyser. This instrument has Class 1 characteristics as defined in AS IEC61672.1-2004 and has current NATA calibration. Calibration certificates are included in Appendix C. Field calibration is carried out at the start and end of each monitoring period.





A-weighted noise levels were measured over the 15-minute monitoring periods with data acquired at 1 or 2 second statistical intervals and the meter set to "fast" response. Each 1 or 2 second measurement is accompanied by a third-octave band spectrum from 20 - 20k Hz which is required for analysing INP 'modifying factors'. Time based field notes allow for determination of the relative contributions to the overall noise level of all significant noise sources.

#### 3.2 Measurement Analysis

The 15 minute Leq noise level for each monitoring period is shown in the tables below. Where the noise from NS was audible, Bruel & Kjaer "Evaluator" analysis software was used to quantify the contributions of NS and other significant noise sources to the overall noise level. Quarry noise from NS is shown in the tables in bold type.

#### 3.3 Meteorological Data

Meteorological data used in this report were taken from the Williamtown Bureau of Meteorology Station.

#### 4.0 RESULTS AND DISCUSSION

#### 4.1 Measured Noise Levels

#### 4.1.1 NS Operations

Measured noise levels at the monitoring location are summarised in Tables 1 - 6.

|          | Table 1                                                                                                                |    |    |     |    |                                              |  |  |  |
|----------|------------------------------------------------------------------------------------------------------------------------|----|----|-----|----|----------------------------------------------|--|--|--|
|          | NS Operational Noise Monitoring Results – 15 December 2021 (Morning-Shoulder)                                          |    |    |     |    |                                              |  |  |  |
| Location | Location  Time  dB(A), Criterion dB(A), Criterion dB(A), Griterion dB(A), Leq L1 (1min)¹ dB(A), L1 (1min)¹  L1 (1min)¹ |    |    |     |    |                                              |  |  |  |
| R42      | 6:32am                                                                                                                 | 75 | 39 | <20 | 45 | Traffic (75), birds (52), <b>NS (&lt;20)</b> |  |  |  |

<sup>1.</sup> L1 (1 min) from NS quarry noise only.

| Table 2  |                                                                             |    |    |                                              |  |  |  |  |
|----------|-----------------------------------------------------------------------------|----|----|----------------------------------------------|--|--|--|--|
|          | NS Operational Noise Monitoring Results – 15 December 2021 (Day)            |    |    |                                              |  |  |  |  |
| Location | dB(A), Criterion Location Time Leg dB(A) Leg Identified Noise Sources, LAeg |    |    |                                              |  |  |  |  |
| R42      | 7:15am                                                                      | 76 | 43 | Traffic (76), birds (49), <b>NS (&lt;20)</b> |  |  |  |  |

| Table 3                                                               |                                                                               |    |    |     |                                |                                              |  |  |
|-----------------------------------------------------------------------|-------------------------------------------------------------------------------|----|----|-----|--------------------------------|----------------------------------------------|--|--|
|                                                                       | NS Operational Noise Monitoring Results – 16 December 2021 (Morning-Shoulder) |    |    |     |                                |                                              |  |  |
| Location Time dB(A), Criterion dB(A), Criterion dB(A), Identified Noi |                                                                               |    |    |     | Identified Noise Sources, LAeq |                                              |  |  |
| R42                                                                   | 6:30am                                                                        | 78 | 39 | <20 | 45                             | Traffic (78), birds (49), <b>NS (&lt;20)</b> |  |  |

<sup>1.</sup> L1 (1 min) from NS quarry noise only.





| Table 4                                                    |                                                                  |  |  |  |  |  |  |  |
|------------------------------------------------------------|------------------------------------------------------------------|--|--|--|--|--|--|--|
|                                                            | NS Operational Noise Monitoring Results – 16 December 2021 (Day) |  |  |  |  |  |  |  |
|                                                            | dB(A), Criterion                                                 |  |  |  |  |  |  |  |
| Location Time Leq dB(A) Leq Identified Noise Sources, LAeq |                                                                  |  |  |  |  |  |  |  |
| R42                                                        |                                                                  |  |  |  |  |  |  |  |

| Table 5                                                                                         |                                                                               |    |    |     |                                |                                              |  |
|-------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|----|----|-----|--------------------------------|----------------------------------------------|--|
|                                                                                                 | NS Operational Noise Monitoring Results – 17 December 2021 (Morning-Shoulder) |    |    |     |                                |                                              |  |
| Location Time dB(A), Criterion dB(A), Criterion dB(A), L1 (1min) <sup>1</sup> dB(A), Identified |                                                                               |    |    |     | Identified Noise Sources, LAeq |                                              |  |
| R42                                                                                             | 6:31am                                                                        | 76 | 39 | <20 | 45                             | Traffic (76), birds (52), <b>NS (&lt;20)</b> |  |

<sup>1.</sup> L1 (1 min) from NS quarry noise only.

| Table 6  |                                                                    |     |           |                                              |  |  |  |  |
|----------|--------------------------------------------------------------------|-----|-----------|----------------------------------------------|--|--|--|--|
|          | NS Operational Noise Monitoring Results – 17 December 2021 (Day)   |     |           |                                              |  |  |  |  |
|          | 110 Operational recise monitoring results - 17 December 2021 (Day) |     |           |                                              |  |  |  |  |
|          | dB(A), Criterion                                                   |     |           |                                              |  |  |  |  |
| Location | Time                                                               | Leq | dB(A) Leq | Identified Noise Sources, LAeq               |  |  |  |  |
| R42      | 7:15am                                                             | 77  | 43        | Traffic (77), birds (47), <b>NS (&lt;20)</b> |  |  |  |  |

#### 4.2 Discussion of Results

The results in **Tables 1-6** show that, under the operating and meteorological conditions at the times, for the 30 minute (morning-shoulder) and 1.5 hour (day) compliance measurement periods, the quarry noise from NS was inaudible at the monitoring location. All of the noise measurements were made under compliant meteorological conditions. At the time of this measurement the wind speed at the weather station was less than 3m/s.

#### 4.2.1 L1 (1 min)

The noise measurements results in **Tables 1, 3, & 5** (and site observations) show that noise from the operation of NS under the operating and meteorological conditions at the times, did not exceed the L1 (1 min) criterion at the monitoring location. Since L1 (1 min) levels were significantly lower than the criterion, at the operational noise monitoring location, measurements at the residential facade was not considered necessary as compliance was assured.





## **APPENDIX A**

## **DESCRIPTION OF ACOUSTICAL TERMS**





Table A1
Definition of acoustical terms

| Term  | Description                                                                       |
|-------|-----------------------------------------------------------------------------------|
| dB(A) | The quantitative measure of sound heard by the human ear, measured by the A-      |
|       | Scale Weighting Network of a sound level meter expressed in decibels (dB).        |
| SPL   | Sound Pressure Level. The incremental variation of sound pressure above and       |
|       | below atmospheric pressure and expressed in decibels. The human ear               |
|       | responds to pressure fluctuations, resulting in sound being heard.                |
| STL   | Sound Transmission Loss. The ability of a partition to attenuate sound, in dB.    |
| Lw    | Sound Power Level radiated by a noise source per unit time re 1pW.                |
| Leq   | Equivalent Continuous Noise Level - taking into account the fluctuations of noise |
|       | over time. The time-varying level is computed to give an equivalent dB(A) level   |
|       | that is equal to the energy content and time period.                              |
| L1    | Average Peak Noise Level - the level exceeded for 1% of the monitoring period.    |
| L90   | "Background" Noise Level - the level exceeded for 90% of the monitoring period.   |





## **APPENDIX B**

## **CALIBRATION CERTIFICATE**







Australian Calibration Laboratory
Suite 4.03, Level 4, 3 Thomas Holt Drive, Macquarie Park NSW 2113, Australia
Accredited for compliance with ISO/IEC 17025 - Calibration. Laboratory No. 1301



#### CERTIFICATE OF CALIBRATION

Certificate No: CAU2100868

Page 1 of 11

#### **CALIBRATION OF:**

Sound Level Meter: Microphone: Bruel & Kjaer Bruel & Kjaer Bruel & Kjaer

BF1712-22

4189 ZC-0032 4231

2250

No: 2733511 No: 15339 No: 2466354

No: 2747794

Supplied Calibrator: Software version: Instruction manual:

Preamplifier:

Bruel & Kjaer BZ7224 Version 4.6

Pattern Approval: Identification: PTB N/A

#### **CUSTOMER:**

Spectrum Acoustics Pty Ltd Suite 1, 12 Alma Road New Lambton NSW 2305

#### **CALIBRATION CONDITIONS:**

Preconditioning:

4 hours at 23 °C

**Environment conditions:** 

see actual values in Environmental conditions sections

#### SPECIFICATIONS:

The Sound Level Meter has been calibrated in accordance with the requirements as specified in IEC61672-1:2013 class 1. Procedures from IEC 61672-3:2013 were used to perform the periodic tests.

The measurements included in this document are traceable to Australian/National standards.

#### PROCEDURE:

The measurements have been performed with the assistance of Brüel & Kjær Sound Level Meter Calibration System B&K 3630 with application software type 7763 (version 8.3 - DB: 8.30) and test procedure 2250-4189.

#### **RESULTS:**

|   | Initial calibration                   | Calibration prior to repair/adjustment |
|---|---------------------------------------|----------------------------------------|
| Х | Calibration without repair/adjustment | Calibration after repair/adjustment    |

The reported expanded uncertainty is based on the standard uncertainty multiplied by a coverage factor k = 2 providing a level of confidence of approximately 95 %. The uncertainty evaluation has been carried out in accordance with EA-4/02 from elements originating from the standards, calibration method, effect of environmental conditions and any short time contribution from the device under calibration.

Date of Calibration: 06/12/2021

Certificate issued: 06/12/2021

Sajeeb Tharayil

Craig Patrick
Approved signatory

Reproduction of the complete certificate is allowed. Part of the certificate may only be reproduced after written permission.

January 2022



## APPENDIX 12. PFAS EXPOSURE PATHWAYS REVIEW

Ref: CTR Quarry Annual Review Year 2021.docx

# Williamtown Sand Syndicate – Per- and Polyfluoroalkyl Substances Annual Risk Review

398 Cabbage Tree Road, Williamtown, New South Wales, 2318
20222347.001A
01 April 2022









Level 1, 95 Coventry Street, South Melbourne, VIC 3205 Phone: +61 3 9907 6000



#### Kleinfelder Australia Pty Ltd

ABN: 23 146 082 500

Level 1, 95 Coventry Street, South Melbourne, VIC 3205

Phone: +61 3 9907 6000 www.kleinfelder.com.au

01 April 2022 20222347.001A

Jonathan Berry Principal Advisor Wedgetail Project Consulting PO Box 898, Newcastle, NSW 2300

**Attention: Jonathan Berry** 

Subject: Williamtown Sand Syndicate - Per- and Polyfluoroalkyl Substances Annual Risk Review

398 Cabbage Tree Road, Williamtown, New South Wales, 2318

#### **Executive Summary**

Kleinfelder Australia were engaged by Wedgetail Project Consulting, on behalf of the Williamtown Sand Syndicate (WSS) to undertake a review of the 2021 quarrying activities at Newcastle Sand and determine whether these activities have changed the potential for local residents to be exposed to per- and polyfluoroalkyl substances (PFAS). Regional PFAS contamination in the quarry area is related to contamination at and from the Department of Defence (DoD) Williamtown Royal Australian Air Force Base ("the Base"). PFAS has been identified in sediment, surface water, groundwater and biota (terrestrial and aquatic) within and surrounding the Base.

The Newcastle Sand quarry is located at 398 Cabbage Tree Road, Williamtown ("the Site") and is situated partially within the New South Wales Environment Protection Authority (EPA) defined Williamtown Management Area (WMA). The Site is located within the WMA broader management zone, defined as an area where PFAS could be identified at the current time and into the future. EPA precautionary advice to minimise PFAS exposure within the broader management zone includes avoiding the use of groundwater and surface water and consuming home-grown produce.

This report forms the requirement to Schedule 3 Condition 48 in the Development Consent SSD-6125 which requires an assessment of whether or not quarrying operations are increasing the risk of PFAS exposure for local residents and the environment.

Since 2007, the DoD have been investigating the PFAS presence in various media at and surrounding the Base. The investigations have included multiple rounds of soil, sediment, surface water and groundwater sampling within the EPA defined WMA. Off-Base PFAS surface water and groundwater, PFAS fate and transport models and human and ecological health risk assessments have also been conducted. The human health risk assessment identified four "risk zones", designated zones A through D and corresponding with a risk hierarchy such that Zone A is the highest risk and Zone D is the lowest. Part of the Site is situated within the low-risk zone C, with the north-western Site area located outside the defined risk zones. Zones C and D broadly correspond with the WMA broader management area.

The principal PFAS of concern with the Base and WMA is PFOS, which generally comprises >60% of the PFAS present.

A review of the available information, that includes the Site setting, PFAS sampling and analysis undertaken at the Site and those conducted by the DoD at the Base and surrounding area leads to the following conclusions:

- PFAS migration from primary or secondary Base sources is unlikely to reach the Site.
- PFAS are not present in Site soil.
- In surface water, PFAS are present in the sample collected in the eastern-most Site area (SW4), with 13 out of 24 samples analysed having PFOS concentrations ranging from 0.01 to 0.04 μg/L.



- Detections of PFOS concentrations in all thirteen samples are attributed to background levels and not quarrying operations, hence no increased exposure risk to receptors from quarrying operations has been identified.
- The PFAS in this area is likely sourced from an irrigation channel that is at or near the level of the major channel to the east.
- PFAS are generally not considered present in groundwater. While there have been three sporadic 6:2 FTS
  occurrences and one PFOS occurrence, these are not considered to represent widespread contamination
  within the aguifer onsite.
- In 2021 PFAS in the wash plant and sands were assessed:
  - PFAS were below the laboratory LOR in the water entering the wash plant.
  - Low PFAS concentrations (PFOS and PFHxS) were reported in two of five processed water samples.
  - PFAS were below the laboratory LOR in raw feed and processed sand samples.
  - Low PFAS concentrations were reported in wash plant fines (silt and organic material) in three of four samples. The reported concentrations do not exceed the screening criteria.
  - Based on the wash plant sample results, it is probable that a minor PFAS source is present in the wash plant or within the silt and organic material.
- The floor of the quarry is based on maintaining a 0.7m buffer above the maximum predicted ground water level. The only occurrence during 2021 where groundwater levels approached this were following over 460mm of rain in March 2021, where levels at BH1 and BH2 exceeded the adopted Trigger Action Response Plan (TARP) levels.
- At the highest groundwater table levels, quarry floor levels remained at worst 652mm above the groundwater table at all times and did not intercept groundwater. The nearest current quarry floor at that time was located over 130m from BH2. Given there was no interception of groundwater and groundwater is not contaminated, this is unlikely to have resulted in any increased risk to on, or off Site receptors.

The DoD-commissioned human health risk assessment (HRA) determined that the Site is within PFAS Risk Zone C for impacts originating from the Base. This quarry PFAS risk assessment review for 2021 compared the upper exposure scenario (i.e., highest concentration) for risk zone C detailed within the DOD HRA with potential exposures from the quarry and concludes:

- The only product produced onsite where repeatable PFAS detections have occurred and have a potential
  risk to nearby residents and ecological receptors is the wash plant fines (silt and organic material) where the
  stockpiled fines could be transported from the Site via dust dispersion. This is unlikely as:
  - Dust mitigation measures undertaken by Newcastle Sand are likely to reduce this risk, and the fines form an agglomerated matrix, more consolidated and bound than existing silts and clays onsite.
  - The PFAS concentrations are below the human and ecological health screening criteria and the risk is therefore acceptable.
  - Fines are approved for use within rehabilitation or to be blended for use as a landscaping product. With the repeated detections of PFAS, prior to offsite removal and sale of the material it will be necessary to assess concentrations within this material to ensure it is suitable and consistent with relevant criteria.
- Other quarrying operations will not increase the PFAS risk to residents because:
  - The only location within the Site boundary that PFAS appear to be routinely present is SW4, which is more than 450 m southeast from the proposed quarry areas, lower in elevation and directly connected to known higher PFAS contamination areas associated with the RAAF Base.
  - PFAS reported at other Site monitored locations are sporadic and do not indicate PFAS contamination is present.
  - Quarrying operations could result in the establishment of a short-term groundwater mound, however, this is unlikely to change the current groundwater flow regime.
  - The Base PFAS groundwater plumes are not estimated to intersect the eastern Site boundary prior to 2050, with the predicted PFAS concentrations unlikely to exceed human health drinking water criteria until significantly after 2050, if at all.
  - Historical prevailing wind directions and dust mitigation measures undertaken by the quarry operator will not result in additional PFAS impacts to nearby residents.





Wedgetail Project Consulting commissioned Kleinfelder to undertake a review of DoD and the NSW EPA information regarding PFAS contamination that originated from the Williamtown Royal Australian Air Force (RAAF) Base ("the Base"). The Site is within the NSW EPA declared WMA.

The WMA was established by the NSW EPA following DoD commissioned testing of sediment, soil, groundwater, surface water and aquatic and terrestrial biota which identified a large area affected by PFAS contamination originally sourced from the Base (**Figure 1**). The EPA management area is comprised of three zones:

- Primary high PFAS concentrations have been observed.
- Secondary low PFAS concentrations have been identified.
- Broader topography and hydrology are used to suggest that PFAS could be identified in the future.

The Site is within the broader management area where the Site's eastern boundary is 1.4 km from the Base's western boundary.

In accordance with Condition 48 of the quarry approval note an annual review of the current available PFAS information relating to PFAS exposure pathways for contamination originating from the Base is required to be conducted. The review is to assess if the quarrying activities have resulted in an increased PFAS exposure for local residents. Condition 48 states the following:

"In conjunction with preparation of each Annual Review, unless otherwise agreed with the Secretary, the Applicant shall engage a suitably qualified and experienced independent expert, approved by the Secretary, to review the currently available information on exposure pathways for PFAS contamination originating from the Williamtown RAAF Base, as may be applicable to local residents and the development. This report must assess whether or not quarrying operations are increasing the risk of PFAS exposure for local residents and/or the environment, to the satisfaction of the Secretary. The Applicant must ensure that the Review of PFAS Exposure Pathways reports are placed on its website and are available to the CCC and any interested person on request."

#### 2 OBJECTIVE

The objective of this review is to assess if the quarrying activities have resulted in an increased PFAS exposure for local residents.

#### 3 SITE SETTING

The site is located approximately 1.4 km to the southwest of the Base's western boundary. The general land use in the vicinity of the Site is large-lot residential and farming. Residential properties are located to the Site's east, west and south with larger conservation reserves on the northern boundaries. The Tilligerry Habitat Reserve forms part of the western and northern Site boundaries.

The Williamtown area receives a mean annual rainfall of 1,100 mm, with the highest rainfall months typically between January and June, where the monthly mean rainfall typically exceeds 100 mm (Bureau of Meteorology weather station 061078). Mean monthly temperatures range between 17°C and 28°C, indicating the climate is warm temperate. The prevailing 9 AM wind directions at the Base are north-westerly (25%) and westerly (22%), i.e., away from the Site. Calm is the third most common observation (15%). Wind directions toward the Site are north-easterly (6%) and easterly (5%). Predominant 3 PM wind directions are south-easterly (24%) and southerly (16%). Afternoon wind directions toward the Site are easterly (14%) and north-easterly (8%).

Geologically the Site is located within the Tomago Sandbeds, a linear series of shallow sand dunes that cover approximately 200 km² between Newcastle and Lemon Tree Passage, that have a mean thickness of 20 metres¹. The beds were deposited from the Hunter and Karuah rivers during a period of high sea level and overlie clay and rock. The aquifer is the Tomago Sandbeds, with the underlying clay and rock generally acting as a barrier to vertical groundwater migration. The DoD 2020 groundwater hydraulic gradients indicate a potential southerly groundwater flow direction and compared to 2019 a groundwater mound is present to the south of Lake Cochran (**Figure 2**).

<sup>&</sup>lt;sup>1</sup> Crosbie, R.S., 2003. Regional scaling of groundwater recharge. PhD Thesis, University of Newcastle.



Figure 1. Site regional context.



Figure 2. May 2020 shallow aquifer water table elevations, potential groundwater flow direction and total PFAS concentrations.





Figure 3. Elevation and drainage network of the project area and subject land in relation to surrounding lands.



The Tomago Sandbeds aquifer form an important water resource in the area. The low salinity groundwater combined with relatively shallow water table depth (mean depth 1.5 m below ground level) have, historically resulted in the extensive use of the resource as a stock watering, irrigation and drinking water supply.

There is a well-developed man-made surface waterway network within the Williamtown area. Site surface water runoff may discharge to two unnamed surface water channels; one channel discharges directly to Fullerton Cove and the other joins Dawsons Drain, approximately 650 metres from the Site's eastern boundary. Within the Base Lake Cochran acts as a stormwater collection point which also discharges to the off-Base Dawsons Drain and ultimately Fullerton Cove to the South. An extract from the SWMP has been included as Figure 3 and shows the current mapping of the drainage network.

#### 4 2020 AND 2021 QUARRYING ACTIVITIES SUMMARY

The subject land where the quarry is located occupies four land titles and has an area of 175 hectares (ha), with the quarry disturbance area occupying approximately 43 ha. Approximately 3.25 megatonnes of sand is planned to be quarried from elevated areas over a period of up to 15 years. Sand will be excavated from an elevation of 24 mAHD to an elevation no less than 0.7 metres above the highest estimated water table elevation. The anticipated minimum excavation elevations are approximately 5.6 mAHD in the north and 3.8 mAHD in the south.

Groundwater is not being extracted by the Site operators for quarrying operations, which rely on water sourced from Hunter Water. WSS have commenced a comprehensive groundwater and surface water monitoring program to monitor water levels and quality from the Site and to ensure that sand is not extracted from an elevation less than 0.7 metres above the maximum estimated water table elevation.

Various works have occurred at the Site throughout 2021 (see **Figure 1** of Kleinfelder<sup>2</sup>). Planned vegetation clearing occurred to the north of the initial sand stockpiling area (Sector 7B) during April 2021. A wash plant was constructed within the central area of Sector 1 between the months of March and July 2021 and has since been developed to operate an additional sand washing conveyer belt. Sector 3 (west of Sector 7B) has been developed over the last six months of 2021, with clearing occurring to the west (Sectors 3A and 3B).

#### 5 SUMMARY OF PFAS INVESTIGATIONS IN THE WMA

PFAS contamination of surface water, groundwater, sediment and aquatic and terrestrial biota within and surrounding the Base has been reported by both the NSW EPA and DoD. A list of reports is available at <a href="https://www.defence.gov.au/environment/pfas/Williamtown/publications.asp">www.defence.gov.au/environment/pfas/Williamtown/publications.asp</a>.

The contamination is understood to have been the result of the use of aqueous film-forming foam used during firefighting and emergency response training. The known PFAS contamination sources at the Base are:

- Primary sources Fire station, two landfills and a disused fire training pit.
- Secondary sources Lake Cochran, the trade waste treatment plant (eastern Base area) and sewage treatment plant.
  - The trade waste treatment plant is not considered a possible source for PFAS contamination that may occur at the Site.

The surface soil samples collected outside the Base boundaries have been predominantly collected across the southern boundary, south of Lake Cochran and the sewerage treatment area. The PFOS + PFHxS concentrations, which generally make up approximately 90% of the total PFAS concentrations in the Williamtown Management Area, in the off-Base surface soil samples range between the laboratory limit of reporting (LOR), 0.2 and 375 micrograms per kilogram (µg/kg). Two soil samples were collected between the Site and the Base's western boundary. The PFOS + PFHxS concentrations in soil were 0.5 and 0.7 µg/kg, with the closest sample to the Site 350 metres northeast (1.3 km from the disused fire training pit (i.e., a primary PFAS source) and 1.1 km from a former landfill (i.e., a secondary PFAS source).

PFOS + PFHxS concentrations above the laboratory LOR (>0.2 to  $<10 \mu g/L$ ) have been observed in all surface water samples collected from channels that receive discharge from the Base. Based on the local drainage network, surface water is not considered a likely pathway for PFAS from the Base to the Site under normal flow

<sup>&</sup>lt;sup>2</sup> Kleinfelder, 2022. Annual water quality monitoring results Cabbage Tree Road Sand Quarry, NSW.



conditions. However, backwash flooding is considered likely during high rainfall events and could impact upon the Site.

On- and off-Base PFAS groundwater investigations have focused on the Tomago Sandbeds aquifer with shallow and deep groundwater samples collected and analysed. This review focusses on PFAS concentrations in the shallow aquifer.

The 2020 groundwater Base PFAS monitoring results are summarised in **Figure 2** (above). PFOS + PFHxS concentrations above the laboratory LOR were observed to the south of Lake Cochran, beneath the disused fire training burn-pit, former landfill and current fire station and training pad. From the data reviewed it is evident that there is a groundwater mound to the south of Lake Cochran, suggesting the lake is providing groundwater recharge and is consistent with high PFOS + PFHxS concentrations observed down-gradient from the Lake.

The Site is not directly down-hydraulic gradient from any known primary or secondary Base PFAS source, as shown on **Figure 2**.

With regards to the Base groundwater fate and transport model, four "unidentified" PFAS sources (surface water, soil and or groundwater) located to the Site's south were identified. It is possible that one of these sources, located near the Cabbage Tree Road Dawsons Drain bridge, is associated with the Lake Cochran discharge. The other three low PFAS concentration occurrences are located to the Base's south and cannot be directly linked to the source at the Base. The three locations are:

- One Base groundwater monitoring well and three residential monitoring wells located on Cabbage Tree Road, directly south of the Site.
- Groundwater from a residential well located 550 metres to the Site's south.
- Groundwater from a residential well located to the south of lot DP629503. It is noted PFAS were not present above the laboratory LOR in a 2019 groundwater sample from MW139 located approximately 75 metres uphydraulic gradient from the residential well.

The PFAS groundwater fate and transport model estimated:

- The Base PFAS groundwater plume areas may expand through PFAS dispersion and diffusion.
- That by 2050:
  - The disused fire training pit and former landfill plumes may merge, although it is noted that the merged plume is unlikely to intersect the Site's eastern boundary.
  - The Lake Cochran PFAS plume should not intersect the Site's eastern boundary.
- The probable Lake Cochran sourced off-Base groundwater "unidentified" PFAS occurrence is beneath the Site's DP814078 parcel (eastern Site area) and has total PFAS concentrations between 0.01 and 0.07 µg/L.

#### 6 SITE PFAS REVIEW

PFAS investigations commissioned by WSS at the Site have involved submission of soil, surface water and groundwater samples to a laboratory that has National Association of Testing Authorities (NATA) accreditation to determine PFAS concentrations in the submitted media. All laboratory results discussed in this report have been compared to the site-specific trigger values established in the Soil and Water Management Plan (SWMP, 2021).

Surface and groundwater sampling locations are shown on (below).

#### 6.1 Soil

Sixteen soil samples collected from 10 bore holes between 7 and 17 December 2016 were submitted for PFAS analysis. The samples were all collected from elevated Site areas where sand quarrying is proposed to be undertaken. All samples, including two samples collected within the eastern Site area, i.e., closest to the Base were reported to have total PFAS concentrations below the laboratory LOR.

#### 6.2 Surface Water

Surface water is monitored at four Site locations. Forty surface water samples collected from the four locations between January and December 2021 were submitted for PFAS analysis. The 2021 surface water results are summarised below:



- SW2 was dry during January and February 2021 and all PFAS compounds were below the laboratory LOR in the following months.
- PFAS was reported below the laboratory LOR from all samples collected from SW3.
- At the SW4 location:
  - PFOS was reported above the laboratory LOR in January to March 2021 (yet below the site-specific trigger value), and at concentrations equivalent to the LOR in May 2021.
  - PFHxS was reported above the laboratory LOR in January 2021 (yet below the site-specific trigger value), and at a concentration equal to the laboratory LOR in March 2021.
  - SW4 is located on a drainage channel connecting to Dawsons Drain. PFOS detected at this location is likely due to backwater flooding during high rainfall events from Base-related impacts present within Dawsons Drain to the east.



Figure 4. April 2021 and August 2020 water table elevations and sampling locations.

#### 6.3 Groundwater

Groundwater samples were collected using high-density polyethylene HydraSleeves, with the samples transferred directly into laboratory supplied PFAS specific sample containers. The method is considered suitable for the collection of water samples to assess for non-volatile chemicals<sup>3</sup>.

Twelve groundwater monitoring wells have been installed and sampled at the Site (BH01 to BH12). MW239S, located within the DP629503 land parcel, was installed during the DoD investigations. Groundwater from the well was reported to have 0.03 µg/L PFOS in March 2017, however, during WSS monitoring (sampled once in 2019,

<sup>&</sup>lt;sup>3</sup> Environment Protection Authority Victoria, 2000. Groundwater sampling guidelines. Publication 669.



five times in 2020 and 11 times in 2021) PFAS were below the laboratory LOR. BH10 was dry between installation and April 2021 and two wells have been decommissioned (BH3 and BH9) with BH9A installed as a replacement for BH9 in September 2020.

During the 2021 monitoring, the majority of wells (BH1, BH2, BH4, BH6, BH7, BH8, BH9A, BH10, BH11, BH12 & MW239S) were sampled on a monthly basis, up until September 2021 when the scope of work changed. BH12 became an annual sampling location, while BH8 was sampled on a quarterly basis for the remaining months of 2021.

#### **Water Table Elevation**

During the 2021 monitoring period, the maximum water table elevation was in general recorded in April and are historically the highest recorded within the well network and were up to 1.5 m above the elevation recorded in August 2020 (**Figure 4**). The water table elevation contours indicate a southeasterly groundwater flow direction, consistent with the 2019 and 2020 contours.

The floor of the quarry is based on maintaining a 0.7m buffer above the maximum predicted ground water level. The only occurrence during 2021 where levels approached this were following over 460mm of rain in March 2021 recorded at the Williamtown RAAF weather station (# 61078), where:

- Groundwater levels within BH2 exceeded adopted Trigger Action Response Plan (TARP) levels:
  - The 17 March 2021 groundwater sampling event showed levels 1.25m lower than maximum predicted.
  - The 22 April 2021 groundwater sampling event showed levels 0.34m lower than maximum predicted (i.e. TARP Level 1).
  - The 20 May 2021 groundwater sampling event showed levels 0.54m lower than maximum predicted (i.e. TARP Level 0).
  - The logger showed a potential exceedance of the maximum predicted groundwater level of 3.8m AHD by 48mm on 3 April 2021, noting dip and logger levels varied by 39 to 192mm between March and May. This may have been equivalent to TARP level 2 or 3.
  - The logger shows levels were potentially within 0.5m (i.e. TARP Level 1) of the maximum predicted level from 23 March 2021 to 4 June 2021.
- Groundwater Levels within BH1 exceeded TARP Level 1 (i.e. within 0.5m of maximum) on 22 April 2021 by 12mm. All other months were at TARP Level 0.
- It should be noted, quarry floor levels remained at worst 652mm above the groundwater table at all times and did not intercept groundwater. The nearest current quarry floor is located over 130m from BH2. Given there was no interception of groundwater and groundwater is not contaminated, this resulted in no increased risk to on, or off-Site receptors.

In the long-term, groundwater rainfall recharge within the sands is likely to be relatively rapid. The removal of sand above the Site aquifer may result in short-term groundwater mounding, due to increased infiltration and lower evapotranspiration with the mound dissipating due to the high effective porosity of the sands. If a groundwater mound does form beneath the quarried areas, it would be unlikely to significantly change the groundwater flow direction and is more likely to result in producing a steeper off-Site hydraulic gradient. The likelihood that the quarrying would lead to increased groundwater flow from the Base to the Site area is very low.

#### **PFAS**

In 2016 and 2017, seven groundwater samples were analysed for PFAS with all concentrations reported below the laboratory LOR.

From the 2019 WSS monitoring, a low 6:2 FTS concentration (0.19  $\mu$ g/L) was reported for BH6 groundwater and a low PFDS equal to the LOR (0.02  $\mu$ g/L) was reported for BH4 groundwater, however, the concentrations were below the laboratory LOR in follow-up samples.

Between January and December 2020, groundwater samples from ten monitoring wells (total = 68 samples) were submitted to the laboratory for PFAS concentration determination. One groundwater sample from BH9 (August) was reported to have a total PFAS concentration of 0.14  $\mu$ g/L, with all other samples below the laboratory LOR. The PFAS above the LOR was 6:2 FTS.



6:2 FTS is rarely above the laboratory LOR in the Base water samples (37 out of 176 groundwater samples had low 6:2 FTS concentrations ( $<0.34 \,\mu\text{g/L}$ ) and four out of 27 surface water samples had low 6:2 FTS concentrations ( $<0.35 \,\mu\text{g/L}$ )) during the 2020 DoD monitoring.

In 2021, 87 Site groundwater samples were submitted to the laboratory for PFAS analysis, with one sample (BH4) reported to have PFAS above the LOR; 0.15 µg/L 6:2 FTS in the November 2021 groundwater monitoring event.

#### **Groundwater Summary**

- 2021 water table elevations are generally higher than in previous years. In particular, there was less than the
  allowable 0.5 m separation between the inferred groundwater maximum level and measured groundwater
  elevation at BH1 and BH2 in April 2021 (however returned to more average conditions by the following month).
- The increase in water table elevation is a consequence of the high rainfall between January and March 2021.
- The potential groundwater flow direction is consistent with the observed 2019 and 2020 directions.
- A low 6:2 FTS concentration was reported in a groundwater sample from BH4. Low 6:2 FTS concentrations have previously been reported in groundwater samples from BH6 (0.19 μg/L, December 2019) BH9 (0.14 μg/L, August 2020).
   6:2 FTS is not a COPC at the Base and is therefore unlikely to represent PFAS migration from the Base.

#### 6.4 Wash Plant and Sand Samples

With the approval of a Wash Plant addition to the quarry, a condition of the approval included monitoring for PFAS within the wash plant water and sediment. To provide a greater understanding of PFAS distribution at the Site, the wash plant water (input and output), sediment, and sand (input and output) were submitted to the laboratory for PFAS analysis. The laboratory results are summarised below:

- Wash plant water input One sample with all PFAS reported below the LOR.
- Wash plant water output Five samples collected monthly from August to December:
  - PFOS concentrations in samples collected in October and December were 0.01 and 0.03 μg/L, respectively (laboratory LOR = 0.01 μg/L). The concentrations are below the adopted criteria (0.07 μg/L).
- Four wash plant fines samples (comprising silt and organic particles) were collected from the plant between August and November 2021.
  - Low PFOS (2 samples August and November, both 0.0005 mg/kg) and PFOA (2 samples 19 and 27 August, 0.0006 and 0.0043 mg/kg, respectively) concentrations were reported for the samples, remaining below the site-specific trigger values.
  - All PFAS compounds were below the LOR in September 2021.
- PFAS concentrations in one raw feed sample (RFS, September 2021) were reported below the LOR.
- PFAS concentrations in two washed samples (SAND1 and WASHED) were below the LOR.

Based on the wash plant waste (fines) sample results, a minor PFAS source within the wash plant could be considered. However, it is also likely that low PFAS concentrations within wash plant inputs are concentrated on the silt and organic material.

#### 7 DOD HUMAN HEALTH RISK ASSESSMENT REVIEW

In 2016 the DoD engaged AECOM to undertake an off-Base human health risk assessment (HHRA). The off-Base HHRA was updated in 2017. A summary of the findings of the updated HHRA and relevance to the Site area are provided below.

The HHRA evaluated the potential health risks in the Williamtown area to residents (including recreational and commercial fishers and beef farmers) and non-residents (commercial fishers, council workers and visitors) from exposure to PFAS under both typical and upper exposure scenarios. The exposure scenarios are:

- Typical exposure scenario:
  - Representative of PFAS concentrations that a general or average receptor is likely to be exposed. This is applicable to the majority of the population.
- Upper exposure scenario:



- Calculated based on the PFAS concentration upper 95th percentile in the relevant media and is applicable for receptors that may be in close proximity to media with elevated PFAS concentrations within a localised area, such as a residential groundwater well.
- The upper exposure scenario is considered suitable for quarry workers who would have a generally high risk though ingestion (incidental and via inhalation) and residents near the quarry.

Based on the Stage 2B investigation outcomes the HHRA divided the off-Base areas into zones based on the potential risk that PFAS posed. The Site's local area was designated Risk Zone C (low risk), with the risk zone encompassing the entire eastern Site area and the southern proposed extraction area. For reference the northern extraction area is not within an identified risk zone.

The HHRA determined risks for Risk Zone C upper exposure scenarios (pathways) are:

- Ingestion and contact with groundwater acceptable.
- Dermal contact with soil and Ingestion of soil and dust acceptable.
- Consumption of homegrown eggs elevated.
- Consumption of locally grown fruit and vegetables acceptable.
- Incidental ingestion of surface water elevated.
- Surface water contact acceptable.
- Incidental ingestion and contact with sediment acceptable.
- Consumption of beef and milk elevated.

#### 7.1 Relevance of Potential On- and Off-Site Exposures

The HHRA determined potential exposure pathways listed above are considered suitable for off-Site residents and on-Site quarry personnel. For nearby residents and quarry personnel, the comparison of the HHRA upper exposure scenario is considered conservative:

- For dust inhalation/soil ingestion because:
  - PFAS have not been reported above the laboratory limit of reporting in soil samples.
  - Dust mitigation measures are required during quarrying activities.
- For groundwater exposure because:
  - The quarry base will not extend to a depth closer than 0.7 metres to the highest estimated water table elevation, hence groundwater management will not be required and groundwater discharge to surface water as a result of quarrying activities will not occur.
  - PFAS have essentially not been identified above the laboratory LOR in Site groundwater, hence PFAS present in groundwater from nearby residential wells is unlikely to have been sourced from the Site and may be diluted by Site derived groundwater.
  - The designation of Risk Zone C in the Site area was partially based on a very low PFOS concentration from one well, a concentration that was not subsequently repeated.
  - Groundwater migration from the Base is unlikely to reach the eastern property before 2050, by which time quarrying operations will have ceased and any complete PFAS migration pathways will be unlikely.
- While SW1 and SW4 are both down gradient of the Site and have detectable PFAS concentrations above the LOR, the hydraulic connection via surface water is limited due to high infiltration.

Based on the above, the potential for increased PFAS exposure to residents resulting from quarrying activities is considered unlikely.

#### 8 CONCLUSIONS

A review of the currently available information regarding the PFAS contamination originating from the Base and assessed Site derived soil, groundwater and surface water data was undertaken to determine whether quarrying operations will increase the PFAS exposure to nearby residents.

During 2021, sand quarrying activities were ongoing at the Site and expanded into the northern Site area.

Considering the information reviewed, the following is concluded:



- Base-sourced PFAS is and has historically been unlikely to be transported to the Site via wind, surface water
  or groundwater the Site does not appear to have received PFAS from the Base and does not appear to be
  acting as a local tertiary PFAS source.
- A PFAS (predominantly PFOS with minor other PFAS) surface water source appears to be close to SW4 (within the eastern Site area). However, PFOS concentrations in the surface water remain below the adopted criteria.
- The source close to SW4 is attributed to backwash flooding withing the drainage network from Dawsons
  Creek, reporting to the Base. PFAS sources are not considered to be present within the Site, hence risks to
  receptors from quarrying operations are acceptable.
- The water table did not exceed the maximum predicted water table elevation by 50mm at BH2 associated with a significant rainfall event. The quarry floor remained 650mm above this level, no increased exposure to groundwater was observed during 2021.
- The regular PFAS detections within the wash plant fines requires further investigation to determine source and suitability of material if used offsite (including the PFAS TCLP requirements).

#### 9 RECOMMENDATIONS

Development of a numerical groundwater flow model that allows for the effects of increased infiltration in the sand extraction areas to be quantitatively assessed should be considered.

If you require additional information or clarification, please contact the undersigned at (03) 9907 6000. This report should be read in conjunction with the Kleinfelder Statement of Limitations (attached).

Sincerely,

Kleinfelder Australia Pty Ltd

Stuart Graham (PhD - Geochemistry)

Associate Hydrogeologist

Attachments - Kleinfelder Statement of Limitations



# KLEINFELDER STATEMENT OF LIMITATIONS

This report has been prepared by Kleinfelder Australia Pty Ltd (Kleinfelder) and may be used only by the Client and its designated representatives or relevant statutory authorities and only for the purposes stated for this specific engagement within a reasonable time from its issuance, but in no event later than two (2) years from the date of the report.

This work was performed in a manner consistent with that level of care and skill ordinarily exercised by other members of Kleinfelder's profession practicing in the same locality, under similar conditions and at the date the services are provided. Our conclusions, opinions, and recommendations are based on a limited number of observations and data. It is possible that conditions could vary between or beyond the data evaluated. Kleinfelder makes no other representation, guarantee, or warranty, express or implied, regarding the services, communication (oral or written), report, opinion, or instrument of service provided.

This report cannot be reproduced without the written authorisation of Kleinfelder and then can only be reproduced in its entirety.

The findings and conclusions contained within this report are relevant to the conditions of the site and the state of legislation currently enacted in the relevant jurisdiction in which the site is located as at the date of this report.

Additionally, the findings and conclusions contained within this report are made following a review of certain information, reports, correspondence and data noted by methods described in this report including information supplied by the client or its assigns. Kleinfelder has designed and managed the program for this report in good faith and in a manner that seeks to confirm the information provided and test its accuracy and completeness. However, Kleinfelder does not provide guarantees or assurances regarding the accuracy, completeness and validity of information and data obtained from these sources and accepts no responsibility for errors or omissions arising from relying on data or conclusions obtained from these sources.

Any representation, statement, opinion or advice expressed or implied in this report is made on the basis that Kleinfelder, its agents and employees are not liable to any other person taking or not taking (as the case may be) action in respect of any representation, statement, opinion or advice referred to above.



| Analyte Perfluceobal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Perfluoropentane Perf                                                                  | rfluoroality! Sulfonic Acids<br>uorohexane Perfluorohe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | pta Perfluorocctane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Perfluorodecane                                                              | Perfluorobutanoic PV                                                 | erflucropenta                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | exancic Perflucechep                                                                                                                                                               | Perfuerosctanoic                                                             | fluoroa kyl Carboxylic Acids Perfluorononanoic Perflu                        | orodecanoic Per                                                              | rfluoroundeca Perfluoroundeca                                                | zorododeca Perfizor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | otrideca<br>perfluoro                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | otetradeca Perfluce                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | octane N-Methy                                                                                                                              | - N-E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Perfluoroalky<br>Ethyl N-M<br>rooctane perfluo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | i Sulfonamides<br>lethyl N-Et<br>rooctane parfizoro                                                      | nyl N-Methyl octane perfluorocct.                                                                                 | N-Ethyl<br>ne perfuorocct <u>une</u>                                         | 4:2 Fluorotelomer sulfi                                                      | (n:2) Fluorotelomer                                                                    | Sulfonic Acids  c 8:2 Nuorotelomer sulfon                                    | 10:2<br>ic Flucrotelomer Sum of<br>sulforic acid and P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Sum of PFAS                                                                                                       | A Sum of Blood                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|----------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|------------------------------------------------------------------------------|------------------------------------------------------------------------------|------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| LOR 0.02 Units                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.02<br>µg/L                                                                           | Definition   Permission   Per                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | (PFOS) 0.01 μg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (PFDS)<br>0.02<br>pg/L                                                       | acid (PFBA)  0.1  pg/L                                               | noic acid (PE<br>(PEPeA) acid (PE<br>0.02 0.0<br>pg/L pg/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                    | acid (PFOA)  0.01  µg/L                                                      | acid (PFNA) ac<br>0.02<br>µg/L                                               | id (PFDA)<br>0.02<br>pg/L                                                    | (PFUnDA) (F<br>0.02<br>µg/L                                                  | 0.62 0. µg/L µg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | rDA) noic acid                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | d (PFTeDA) (FO:<br>0.05 0.0<br>ig/L pg.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | sulfonami<br>(Me/OSA<br>t 0.65<br>L µg/L                                                                                                    | te sulfor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | namide sulfona<br>(OSA) anol (1<br>(OS 0<br>(Q/L µ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | smidoeth sulfonan<br>4e/OSE) anol (Et<br>.05 0.0<br>g/L siz:                                             | idoeth sulfonamidoe:<br>FOSE) acid (MeFOS:<br>5 0.02<br>L µg/L                                                    | etic sulfonamidoacetic<br>(A) acid (EtFOSAA)<br>0.02<br>pg/L                 | 4:2 Fluorotalomer suifi<br>acid (4:2 FTS)<br>0.95<br>µg/L                    | acid (6:2 FTS)<br>0.05<br>μg/L                                                         | acid (8:2 FTS)<br>0.05<br>µg/L                                               | (10:2 FTS)<br>0.05 0.0<br>pg/L pg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1 0.01<br>L µg/L                                                                                                  | 0.01<br>pg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Adopted Site Specific Tripger Values (SWMP 2021) <sup>1</sup> HEPA NEMP 2020** HEPA NEMP 2020* Sample Name Spreak Date 17-Nam-21 < 0.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                        | < 0.02 < 0.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | < 0.02                                                                       | :                                                                    | < 0.02 < 0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2 < 0.02                                                                                                                                                                           | 0.56<br>19<br>5.6                                                            | - 0.02                                                                       | - 0.02                                                                       | - 002                                                                        | < 0.02 <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.05 < 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 005                                                                                                      |                                                                                                                   | - 000                                                                        | :                                                                            |                                                                                        |                                                                              | - 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 8H1 22-4gs-21 <0.02<br>20-May-21 <0.02<br>20-May-21 <0.02<br>18-Jus-21 <0.02<br>15-Jul-21 <0.02<br>22-4gs-19 <0.02<br>14-Aug-20 <0.02<br>16-5gs-10 <0.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <0.02<br><0.02<br><0.02<br><0.02<br><0.02<br><0.02<br><0.02                            | -0.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | < 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <0.02<br><0.02<br><0.02<br><0.02<br><0.02<br><0.02<br><0.02                  | < 0.1<br>< 0.1<br>< 0.1<br>< 0.1<br>< 0.1<br>< 0.1<br>< 0.1<br>< 0.1 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2 <0.02<br>2 <0.02<br>2 <0.02<br>2 <0.02<br>2 <0.02<br>2 <0.02                                                                                                                     | < 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01                     | <0.02<br><0.02<br><0.02<br><0.02<br><0.02<br><0.02<br><0.02                  | <0.02<br><0.02<br><0.02<br><0.02<br><0.02<br><0.02                           | <0.02<br><0.02<br><0.02<br><0.02<br><0.02<br><0.02<br><0.02                  | 40.02 di<br>40.02 di | 1.02 <<br>1.02 <<br>1.02 <<br>1.02 <<br>1.02 <<br>1.02 <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.05 c0<br>0.05 c0<br>0.05 c0<br>0.05 c0<br>0.05 c0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | > < 0.05                                                                                                                                    | < 1<br>< 1<br>< 1<br>< 1<br>< 1<br>< 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.05 <<br>0.05 <<br>0.05 <<br>0.05 <<br>0.05 <<br>0.05 <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.05 < 0<br>0.05 < 0<br>0.05 < 0<br>0.05 < 0<br>0.05 < 0<br>0.05 < 0<br>0.05 < 0                         | 05 <0.02<br>05 <0.02<br>05 <0.02<br>05 <0.02<br>05 <0.02<br>05 <0.02<br>05 <0.02<br>05 <0.02                      | <0.02<br><0.02<br><0.02<br><0.02<br><0.02<br><0.02<br><0.02                  | < 0.05<br>< 0.05<br>< 0.05<br>< 0.05<br>< 0.05<br>< 0.05<br>< 0.05           | < 0.05<br>< 0.05<br>< 0.05<br>< 0.05<br>< 0.05<br>< 0.05<br>< 0.05                     | < 0.05<br>< 0.05<br>< 0.05<br>< 0.05<br>< 0.05<br>< 0.05<br>< 0.05           | - 0.05 < 0<br>< 0.05 < 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 01 < 0.01                                                                                                         | < 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 16-0ct-20 < 0.02<br>16-Nov-20 < 0.02<br>16-Nov-20 < 0.02<br>16-Dox 20 < 0.02<br>14-Jan-21 < 0.02<br>8H2 16-Feb-21 < 0.02<br>17-Mar 31 < 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | < 0.02<br>< 0.02<br>< 0.02<br>< 0.02<br>< 0.02<br>< 0.02<br>< 0.02<br>< 0.02           | <pre>&lt; 0.02  &lt; 0.02<br/>&lt; 0.02  &lt; 0.02</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | < 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | < 0.02<br>< 0.02<br>< 0.02<br>< 0.02<br>< 0.02<br>< 0.02<br>< 0.02<br>< 0.02 | < 0.1<br>< 0.1<br>< 0.1<br>< 0.1<br>< 0.1<br>< 0.1<br>< 0.1<br>< 0.1 | < 0.02 < 0.<br>< 0.02 < 0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 22 < 0.02<br>22 < 0.02<br>23 < 0.02<br>24 < 0.02<br>25 < 0.02<br>26 < 0.02<br>27 < 0.02<br>28 < 0.02<br>29 < 0.02<br>20 < 0.02<br>20 < 0.02<br>20 < 0.02                           | < 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01           | < 0.02<br>< 0.02<br>< 0.02<br>< 0.02<br>< 0.02<br>< 0.02<br>< 0.02<br>< 0.02 | < 0.02<br>< 0.02<br>< 0.02<br>< 0.02<br>< 0.02<br>< 0.02<br>< 0.02           | < 0.02<br>< 0.02<br>< 0.02<br>< 0.02<br>< 0.02<br>< 0.02<br>< 0.02<br>< 0.02 | < 0.02 < 1<br>< 0.02 < 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 3.02 < 5.02 < 5.02 < 5.02 < 5.02 < 5.02 < 5.02 < 5.02 < 5.02 < 5.02 < 5.02 < 5.02 < 5.02 < 5.02 < 5.02 < 5.02 < 5.02 < 5.02 < 5.02 < 5.02 < 5.02 < 5.02 < 5.02 < 5.02 < 5.02 < 5.02 < 5.02 < 5.02 < 5.02 < 5.02 < 5.02 < 5.02 < 5.02 < 5.02 < 5.02 < 5.02 < 5.02 < 5.02 < 5.02 < 5.02 < 5.02 < 5.02 < 5.02 < 5.02 < 5.02 < 5.02 < 5.02 < 5.02 < 5.02 < 5.02 < 5.02 < 5.02 < 5.02 < 5.02 < 5.02 < 5.02 < 5.02 < 5.02 < 5.02 < 5.02 < 5.02 < 5.02 < 5.02 < 5.02 < 5.02 < 5.02 < 5.02 < 5.02 < 5.02 < 5.02 < 5.02 < 5.02 < 5.02 < 5.02 < 5.02 < 5.02 < 5.02 < 5.02 < 5.02 < 5.02 < 5.02 < 5.02 < 5.02 < 5.02 < 5.02 < 5.02 < 5.02 < 5.02 < 5.02 < 5.02 < 5.02 < 5.02 < 5.02 < 5.02 < 5.02 < 5.02 < 5.02 < 5.02 < 5.02 < 5.02 < 5.02 < 5.02 < 5.02 < 5.02 < 5.02 < 5.02 < 5.02 < 5.02 < 5.02 < 5.02 < 5.02 < 5.02 < 5.02 < 5.02 < 5.02 < 5.02 < 5.02 < 5.02 < 5.02 < 5.02 < 5.02 < 5.02 < 5.02 < 5.02 < 5.02 < 5.02 < 5.02 < 5.02 < 5.02 < 5.02 < 5.02 < 5.02 < 5.02 < 5.02 < 5.02 < 5.02 < 5.02 < 5.02 < 5.02 < 5.02 < 5.02 < 5.02 < 5.02 < 5.02 < 5.02 < 5.02 < 5.02 < 5.02 < 5.02 < 5.02 < 5.02 < 5.02 < 5.02 < 5.02 < 5.02 < 5.02 < 5.02 < 5.02 < 5.02 < 5.02 < 5.02 < 5.02 < 5.02 < 5.02 < 5.02 < 5.02 < 5.02 < 5.02 < 5.02 < 5.02 < 5.02 < 5.02 < 5.02 < 5.02 < 5.02 < 5.02 < 5.02 < 5.02 < 5.02 < 5.02 < 5.02 < 5.02 < 5.02 < 5.02 < 5.02 < 5.02 < 5.02 < 5.02 < 5.02 < 5.02 < 5.02 < 5.02 < 5.02 < 5.02 < 5.02 < 5.02 < 5.02 < 5.02 < 5.02 < 5.02 < 5.02 < 5.02 < 5.02 < 5.02 < 5.02 < 5.02 < 5.02 < 5.02 < 5.02 < 5.02 < 5.02 < 5.02 < 5.02 < 5.02 < 5.02 < 5.02 < 5.02 < 5.02 < 5.02 < 5.02 < 5.02 < 5.02 < 5.02 < 5.02 < 5.02 < 5.02 < 5.02 < 5.02 < 5.02 < 5.02 < 5.02 < 5.02 < 5.02 < 5.02 < 5.02 < 5.02 < 5.02 < 5.02 < 5.02 < 5.02 < 5.02 < 5.02 < 5.02 < 5.02 < 5.02 < 5.02 < 5.02 < 5.02 < 5.02 < 5.02 < 5.02 < 5.02 < 5.02 < 5.02 < 5.02 < 5.02 < 5.02 < 5.02 < 5.02 < 5.02 < 5.02 < 5.02 < 5.02 < 5.02 < 5.02 < 5.02 < 5.02 < 5.02 < 5.02 < 5.02 < 5.02 < 5.02 < 5.02 < 5.02 < 5.02 < 5.02 < 5.02 < 5.02 < 5.02 < 5.02 < 5.02 < 5.02 < 5.02 < 5.02 < 5.02 < 5.02 < 5.02 < 5.02 < 5.02 < 5.02 < 5.02 < 5.02 < 5. | 0.05 < 0<br>0.05 < 0<br>0.05 < 0<br>0.05 < 0<br>0.05 < 0<br>0.05 < 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 12 < 0.05<br>12 < 0.05                           | C    C    C    C    C    C    C    C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0. | 0.05 < 0<br>0.05 < 0<br>0.05 < 0<br>0.05 < 0<br>0.05 < 0<br>0.05 < 0<br>0.05 < 0                         | 05 < 0.02<br>05 < 0.02              | < 0.02<br>< 0.02<br>< 0.02<br>< 0.02<br>< 0.02<br>< 0.02<br>< 0.02<br>< 0.02 | < 0.05<br>< 0.05<br>< 0.05<br>< 0.05<br>< 0.05<br>< 0.05<br>< 0.05           | < 0.05<br>< 0.05<br>< 0.05<br>< 0.05<br>< 0.05<br>< 0.05<br>< 0.05<br>< 0.05           | < 0.05<br>< 0.05<br>< 0.05<br>< 0.05<br>< 0.05<br>< 0.05<br>< 0.05           | < 0.05 < 0<br>< 0.05 < 0<br>< 0.05 < 0<br>< 0.05 < 0<br>< 0.05 < 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 01 < 0.01<br>01 < 0.01              | <0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 22-Apr211 < 0.00 20-May-211 < 0.00 20-May-211 < 0.00 18-Jun-211 < 0.00 15-Jul-211 < 0.02 15-Jul-211 < 0.02 15-Aug-211 < 0.02 21-Aug-211 < 0.02 8H3 211-Rub-19 < 0.00 21-Rub-19 < 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | < 0.02<br>< 0.02<br>< 0.02<br>< 0.02<br>< 0.02<br>< 0.02<br>< 0.02                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | < 0.01<br>< 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | < 0.02<br>< 0.02<br>< 0.02<br>< 0.02<br>< 0.02<br>< 0.02<br>< 0.02           | < 0.1<br>< 0.1<br>< 0.1<br>< 0.1<br>< 0.1<br>< 0.1<br>< 0.1<br>< 0.1 | < 0.02 < 0.<br>< 0.02 < 0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2 < 0.02<br>2 < 0.02                                                                           | < 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01           | < 0.02<br>< 0.02<br>< 0.02<br>< 0.02<br>< 0.02<br>< 0.02<br>< 0.02           | < 0.02<br>< 0.02<br>< 0.02<br>< 0.02<br>< 0.02<br>< 0.02<br>< 0.02           | < 0.02<br>< 0.02<br>< 0.02<br>< 0.02<br>< 0.02<br>< 0.02<br>< 0.02<br>< 0.02 | < 0.02 < 1<br>< 0.02 < 1<br>< 0.02 < 3<br>< 0.02 < 3<br>< 0.02 < 1<br>< 0.02 < 1<br>< 0.02 < 1<br>< 0.02 < 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.02 <<br>0.02 <<br>0.02 <<br>0.02 <<br>0.02 <<br>0.02 <<br>0.02 <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.05 < 0<br>0.05 < 0<br>0.05 < 0<br>0.05 < 0<br>0.05 < 0<br>0.05 < 0<br>0.05 < 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 22 < 0.05<br>32 < 0.05<br>2 < 0.05<br>2 < 0.05<br>2 < 0.05<br>32 < 0.05<br>32 < 0.05<br>32 < 0.05<br>32 < 0.05<br>32 < 0.05                 | ()<br>()<br>()<br>()<br>()<br>()                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0. | 0.05 < 0<br>0.05 < 0             | 05 < 0.02<br>05 < 0.02              | < 0.02<br>< 0.02<br>< 0.02<br>< 0.02<br>< 0.02<br>< 0.02<br>< 0.02           | < 0.05<br>< 0.05<br>< 0.05<br>< 0.05<br>< 0.05<br>< 0.05<br>< 0.05           | < 0.05<br>< 0.05<br>< 0.05<br>< 0.05<br>< 0.05<br>< 0.05<br>< 0.05                     | < 0.05<br>< 0.05<br>< 0.05<br>< 0.05<br>< 0.05<br>< 0.05<br>< 0.05           | < 0.05 < 0<br>< 0.05 < 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 01 < 0.01<br>01 < 0.01              | < 0.01<br>< 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 15-Nev-21 < 0.02 BH3 21-8-19 < 0.02 21-8-19 < 0.02 21-8-19 < 0.02 21-8-19 < 0.02 23-0-19 < 0.02 23-0-19 < 0.02 23-0-19 < 0.02 23-0-19 < 0.02 16-Ney-19 < 0.02 16-Ney-19 < 0.02 16-3-19 < 0.02 16-3-19 < 0.02 16-3-19 < 0.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | < 0.02<br>< 0.02<br>< 0.02<br>< 0.02<br>< 0.02<br>< 0.02<br>< 0.02                     | < 0.02 < 0.02<br>< 0.02 < 0.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | < 0.02<br>< 0.02<br>< 0.02<br>< 0.02<br>< 0.02<br>< 0.02<br>< 0.02           | < 0.1<br>< 0.1<br>< 0.1<br>< 0.1<br>< 0.1<br>< 0.1<br>< 0.1<br>< 0.1 | < 0.02 < 0.<br>< 0.02 < 0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 22 < 0.02<br>12 < 0.02<br>13 < 0.02                                                                  | < 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01           | < 0.02<br>< 0.02<br>< 0.02<br>< 0.02<br>< 0.02<br>< 0.02<br>< 0.02           | < 0.02<br>< 0.02<br>< 0.02<br>< 0.02<br>< 0.02<br>< 0.02<br>< 0.02<br>< 0.02 | < 0.02<br>< 0.02<br>< 0.02<br>< 0.02<br>< 0.02<br>< 0.02<br>< 0.02<br>< 0.02 | < 0.02 < 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 5.02 <<br>5.02 <<br>5.02 <<br>5.02 <<br>5.02 <<br>5.02 <<br>5.02 <<br>5.02 <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.05 < 0<br>0.05 < 0<br>0.05 < 0<br>0.05 < 0<br>0.05 < 0<br>0.05 < 0<br>0.05 < 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 22 < 0.05<br>32 < 0.05              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0. | 0.05 < 0<br>0.05 < 0             | 05 < 0.02<br>05 < 0.02 | < 0.02<br>< 0.02<br>< 0.02<br>< 0.02<br>< 0.02<br>< 0.02<br>< 0.02           | < 0.05<br>< 0.05<br>< 0.05<br>< 0.05<br>< 0.05<br>< 0.05<br>< 0.05           | < 0.05<br>< 0.05<br>< 0.05<br>< 0.05<br>< 0.05<br>< 0.05<br>< 0.05<br>< 0.05           | < 0.05<br>< 0.05<br>< 0.05<br>< 0.05<br>< 0.05<br>< 0.05<br>< 0.05           | < 0.05 < 0<br>< 0.05 < 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 01 < 0.01<br>01 < 0.01              | < 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 15 Oct 19 < 0.02<br>18 Nov 19 < 0.02<br>17 Duo 19 < 0.02<br>16 Jan 20 < 0.02<br>27 Feb 20 < 0.02<br>27 Feb 20 < 0.02<br>26 Mar 20 < 0.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | < 0.02<br>< 0.02<br>< 0.02<br>< 0.02<br>< 0.02<br>< 0.02<br>< 0.02                     | < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | < 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <0.02<br>< 0.02<br>< 0.02<br>< 0.02<br>< 0.02<br>< 0.02<br>< 0.02            | < 0.1<br>< 0.1<br>< 0.1<br>< 0.1<br>< 0.1<br>< 0.1<br>< 0.1          | < 0.02 < 0.<br>< 0.02 < 0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 22 < 0.02<br>22 < 0.02<br>2 < 0.02<br>22 < 0.02<br>22 < 0.02<br>23 < 0.02<br>24 < 0.02<br>25 < 0.02<br>26 < 0.02<br>27 < 0.02<br>28 < 0.02                                         | < 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01           | < 0.02<br>< 0.02<br>< 0.02<br>< 0.02<br>< 0.02<br>< 0.02<br>< 0.02<br>< 0.02 | < 0.02<br>< 0.02<br>< 0.02<br>< 0.02<br>< 0.02<br>< 0.02<br>< 0.02<br>< 0.02 | < 0.02<br>< 0.02<br>< 0.02<br>< 0.02<br>< 0.02<br>< 0.02<br>< 0.02           | < 0.02 < 1<br>< 0.02 < 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 5.02 <<br>5.02 <<br>5.02 <<br>5.02 <<br>5.02 <<br>5.02 <<br>5.02 <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.05 < 0<br>0.05 < 0<br>0.05 < 0<br>0.05 < 0<br>0.05 < 0<br>0.05 < 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 22 < 0.05<br>22 < 0.05                                        | ()<br>()<br>()<br>()<br>()<br>()                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0. | 0.05 < 0<br>0.05 < 0<br>0.05 < 0<br>0.05 < 0<br>0.05 < 0<br>0.05 < 0<br>0.05 < 0                         | 05 < 0.02<br>05 < 0.02              | < 0.02<br>< 0.02<br>< 0.02<br>< 0.02<br>< 0.02<br>< 0.02<br>< 0.02           | < 0.05<br>< 0.05<br>< 0.05<br>< 0.05<br>< 0.05<br>< 0.05<br>< 0.05           | < 0.05<br>< 0.05<br>< 0.05<br>< 0.05<br>< 0.05<br>< 0.05<br>< 0.05<br>< 0.05           | < 0.05<br>< 0.05<br>< 0.05<br>< 0.05<br>< 0.05<br>< 0.05<br>< 0.05           | 4.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 01 < 0.01<br>01 < 0.01              | <.0.01 <.0.01 <.0.01 <.0.01 <.0.01 <.0.01 <.0.01 <.0.01 <.0.01 <.0.01 <.0.01 <.0.01 <.0.01 <.0.01 <.0.01 <.0.01 <.0.01 <.0.01 <.0.01 <.0.01 <.0.01 <.0.01 <.0.01 <.0.01 <.0.01 <.0.01 <.0.01 <.0.01 <.0.01 <.0.01 <.0.01 <.0.01 <.0.01 <.0.01 <.0.01 <.0.01 <.0.01 <.0.01 <.0.01 <.0.01 <.0.01 <.0.01 <.0.01 <.0.01 <.0.01 <.0.01 <.0.01 <.0.01 <.0.01 <.0.01 <.0.01 <.0.01 <.0.01 <.0.01 <.0.01 <.0.01 <.0.01 <.0.01 <.0.01 <.0.01 <.0.01 <.0.01 <.0.01 <.0.01 <.0.01 <.0.01 <.0.01 <.0.01 <.0.01 <.0.01 <.0.01 <.0.01 <.0.01 <.0.01 <.0.01 <.0.01 <.0.01 <.0.01 <.0.01 <.0.01 <.0.01 <.0.01 <.0.01 <.0.01 <.0.01 <.0.01 <.0.01 <.0.01 <.0.01 <.0.01 <.0.01 <.0.01 <.0.01 <.0.01 <.0.01 <.0.01 <.0.01 <.0.01 <.0.01 <.0.01 <.0.01 <.0.01 <.0.01 <.0.01 <.0.01 <.0.01 <.0.01 <.0.01 <.0.01 <.0.01 <.0.01 <.0.01 <.0.01 <.0.01 <.0.01 <.0.01 <.0.01 <.0.01 <.0.01 <.0.01 <.0.01 <.0.01 <.0.01 <.0.01 <.0.01 <.0.01 <.0.01 <.0.01 <.0.01 <.0.01 <.0.01 <.0.01 <.0.01 <.0.01 <.0.01 <.0.01 <.0.01 <.0.01 <.0.01 <.0.01 <.0.01 |
| BH4 13-May-20 < 0.02<br>13-May-20 < 0.02<br>19-Jun-20 < 0.02<br>19-Jun-20 < 0.02<br>14-Jun-20 < 0.02<br>14-May-20 < 0.02<br>16-Gct-20 < 0.02<br>16-Gct-20 < 0.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | < 0.02<br>< 0.02<br>< 0.02<br>< 0.02<br>< 0.02<br>< 0.02<br>< 0.02<br>< 0.02<br>< 0.02 | <0.02 <0.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | < 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | < 0.02<br><0.02<br><0.02<br><0.02<br><0.02<br><0.02<br>< 0.02<br>< 0.02      | < 0.1<br><0.1<br><0.1<br><0.1<br><0.1<br>< 0.1<br>< 0.1<br>< 0.1     | <0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 | 22 < 0.02<br>2 < 0.02<br>2 < 0.02<br>2 < 0.02<br>2 < 0.02<br>2 < 0.02<br>2 < 0.02<br>0.02                                                                                          | < 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01                     | < 0.02<br><0.02<br><0.02<br><0.02<br><0.02<br>< 0.02<br>< 0.02               | <0.02<br><0.02<br><0.02<br><0.02<br><0.02<br><0.02<br><0.02                  | <0.02<br><0.02<br><0.02<br><0.02<br><0.02<br><0.02<br><0.02                  | < 0.00 < 1<br>< 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.02 <<br>0.02 <<br>0.02 <<br>0.02 <<br>0.02 <<br>0.02 <<br>0.02 <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.05 < 0<br>0.05 <0<br>0.05 <0<br>0.05 <0<br>0.05 <0<br>0.05 <0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 22 < 0.05<br>22 <0.05<br>22 <0.05<br>22 <0.05<br>22 < 0.05<br>22 < 0.05<br>22 < 0.05                                                        | < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.05 <<br>0.05 <<br>0.05 <<br>0.05 <<br>0.05 <<br>0.05 <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.05 < 0<br>0.05 < 0 | 05 < 0.02<br>05 < 0.02<br>05 < 0.02<br>05 < 0.02<br>05 < 0.02<br>05 < 0.02<br>06 < 0.02                           | <0.02<br><0.02<br><0.02<br><0.02<br><0.02<br><0.02<br><0.02                  | < 0.05<br><0.05<br><0.05<br><0.05<br><0.05<br>< 0.05<br>< 0.05               | < 0.05<br>< 0.05<br>< 0.05<br>< 0.05<br>< 0.05<br>< 0.05<br>< 0.05                     | < 0.05<br><0.05<br><0.05<br><0.05<br><0.05<br>< 0.05<br>< 0.05               | < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 <p< td=""><td>001 &lt; 0.01<br/>01 &lt; 0.01<br/>01 &lt; 0.01<br/>01 &lt; 0.01<br/>01 &lt; 0.01<br/>01 &lt; 0.01<br/>01 &lt; 0.01</td><td>&lt; 0.01<br/>&lt;0.01<br/>&lt;0.01<br/>&lt;0.01<br/>&lt; 0.01<br/>&lt; 0.01</td></p<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 001 < 0.01<br>01 < 0.01<br>01 < 0.01<br>01 < 0.01<br>01 < 0.01<br>01 < 0.01<br>01 < 0.01                          | < 0.01<br><0.01<br><0.01<br><0.01<br>< 0.01<br>< 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 16 599-20 < 0.00 16 504-20 < 0.00 16 504-20 < 0.00 16 1600-25 < 0.00 16 1600-25 < 0.00 16 1600-25 < 0.00 16 1600-25 < 0.00 16 1600-25 < 0.00 16 1600-25 < 0.00 17 1600-25 < 0.00 18 1600-25 < 0.00 18 1600-25 < 0.00 18 1600-25 < 0.00 18 1600-25 < 0.00 18 1600-25 < 0.00 18 1600-25 < 0.00 18 1600-25 < 0.00 18 1600-25 < 0.00 18 1600-25 < 0.00 18 1600-25 < 0.00 18 1600-25 < 0.00 18 1600-25 < 0.00 18 1600-25 < 0.00 18 1600-25 < 0.00 18 1600-25 < 0.00 18 1600-25 < 0.00 18 1600-25 < 0.00 18 1600-25 < 0.00 18 1600-25 < 0.00 18 1600-25 < 0.00 18 1600-25 < 0.00 18 1600-25 < 0.00 18 1600-25 < 0.00 18 1600-25 < 0.00 18 1600-25 < 0.00 18 1600-25 < 0.00 18 1600-25 < 0.00 18 1600-25 < 0.00 18 1600-25 < 0.00 18 1600-25 < 0.00 18 1600-25 < 0.00 18 1600-25 < 0.00 18 1600-25 < 0.00 18 1600-25 < 0.00 18 1600-25 < 0.00 18 1600-25 < 0.00 18 1600-25 < 0.00 18 1600-25 < 0.00 18 1600-25 < 0.00 18 1600-25 < 0.00 18 1600-25 < 0.00 18 1600-25 < 0.00 18 1600-25 < 0.00 18 1600-25 < 0.00 18 1600-25 < 0.00 18 1600-25 < 0.00 18 1600-25 < 0.00 18 1600-25 < 0.00 18 1600-25 < 0.00 18 1600-25 < 0.00 18 1600-25 < 0.00 18 1600-25 < 0.00 18 1600-25 < 0.00 18 1600-25 < 0.00 18 1600-25 < 0.00 18 1600-25 < 0.00 18 1600-25 < 0.00 18 1600-25 < 0.00 18 1600-25 < 0.00 18 1600-25 < 0.00 18 1600-25 < 0.00 18 1600-25 < 0.00 18 1600-25 < 0.00 18 1600-25 < 0.00 18 1600-25 < 0.00 18 1600-25 < 0.00 18 1600-25 < 0.00 18 1600-25 < 0.00 18 1600-25 < 0.00 18 1600-25 < 0.00 18 1600-25 < 0.00 18 1600-25 < 0.00 18 1600-25 < 0.00 18 1600-25 < 0.00 18 1600-25 < 0.00 18 1600-25 < 0.00 18 1600-25 < 0.00 18 1600-25 < 0.00 18 1600-25 < 0.00 18 1600-25 < 0.00 18 1600-25 < 0.00 18 1600-25 < 0.00 18 1600-25 < 0.00 18 1600-25 < 0.00 18 1600-25 < 0.00 18 1600-25 < 0.00 18 1600-25 < 0.00 18 1600-25 < 0.00 18 1600-25 < 0.00 18 1600-25 < 0.00 18 1600-25 < 0.00 18 1600-25 < 0.00 18 1600-25 < 0.00 18 1600-25 < 0.00 18 1600-25 < 0.00 18 1600-25 < 0.00 18 1600-25 < 0.00 18 1600-25 < 0.00 18 1600-25 < 0.00 18 1600-25 < 0.00 18 1600-25 < 0.00 18 1600-25 < 0.00 18 1600-25 < 0.00 18 1600-25 < 0. | < 0.02<br>< 0.02<br>< 0.02<br>< 0.02<br>< 0.02<br>< 0.02<br>< 0.02<br>< 0.02           | < 0.02 < 0.02<br>< 0.02 < 0.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | < 0.02<br>< 0.02<br>< 0.02<br>< 0.02<br>< 0.02<br>< 0.02<br>< 0.02<br>< 0.02 | < 0.1<br>< 0.1<br>< 0.1<br>< 0.1<br>< 0.1<br>< 0.1<br>< 0.1<br>< 0.1 | < 0.02 < 0.<br>< 0.02 < 0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2 < 0.02<br>2 < 0.02                                                               | < 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01 | < 0.02<br>< 0.02<br>< 0.02<br>< 0.02<br>< 0.02<br>< 0.02<br>< 0.02<br>< 0.02 | < 0.02<br>< 0.02<br>< 0.02<br>< 0.02<br>< 0.02<br>< 0.02<br>< 0.02<br>< 0.02 | < 0.02<br>< 0.02<br>< 0.02<br>< 0.02<br>< 0.02<br>< 0.02<br>< 0.02<br>< 0.02 | < 0.02 < 1<br>< 0.02 < 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.02 <<br>0.02 <<br>0.02 <<br>0.02 <<br>0.02 <<br>0.02 <<br>0.02 <<br>0.02 <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.05 < 0<br>0.05 < 0<br>0.05 < 0<br>0.05 < 0<br>0.05 < 0<br>0.05 < 0<br>0.05 < 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 22 < 0.05<br>12 < 0.05              | ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0. | 0.05 < 0<br>0.05 < 0<br>0.05 < 0<br>0.05 < 0<br>0.05 < 0<br>0.05 < 0<br>0.05 < 0                         | 05 < 0.02<br>05 < 0.02              | < 0.02<br>< 0.02<br>< 0.02<br>< 0.02<br>< 0.02<br>< 0.02<br>< 0.02<br>< 0.02 | < 0.05<br>< 0.05<br>< 0.05<br>< 0.05<br>< 0.05<br>< 0.05<br>< 0.05<br>< 0.05 | < 0.05<br>< 0.05<br>< 0.05<br>< 0.05<br>< 0.05<br>< 0.05<br>< 0.05<br>< 0.05           | < 0.05<br>< 0.05<br>< 0.05<br>< 0.05<br>< 0.05<br>< 0.05<br>< 0.05           | < 0.05 < 0<br>< 0.05 < 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 01 < 0.01<br>01 < 0.01 | <ul> <li>0.01</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 15-3a-21 <0.02<br>15-3a-21 <0.02<br>15-3a-21 <0.02<br>15-3a-21 <0.02<br>16-3a-21 <0.02<br>22-7a-19 <0.02<br>14-3a-19 <0.02<br>14-3a-19 <0.02<br>16-3a-19 <0.02<br>16-3a-19 <0.02<br>16-3a-19 <0.02<br>16-3a-19 <0.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <0.02<br><0.02<br><0.02<br><0.02<br><0.02<br><0.02<br><0.02<br><0.02                   | <0.02 <0.02<br><0.02 <0.02<br><0.01 <0.02<br><0.01 <0.02<br><0.02 <0.02<br><0.02 <0.02<br><0.02 <0.02<br><0.02 <0.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | < 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <0.02<br><0.02<br>< 0.02<br>< 0.02<br>< 0.02<br>< 0.02<br>< 0.02             | < 0.1<br>< 0.1<br>< 0.1<br>< 0.1<br>< 0.1<br>< 0.1<br>< 0.1          | <0.02 <0.02 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.0 | 2 <0.02<br>2 <0.02<br>2 <0.02<br>2 <0.02<br>2 <0.02<br>2 <0.02<br>2 <0.02                                                                                                          | < 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01           | <0.02<br><0.02<br>< 0.02<br>< 0.02<br>< 0.02<br>< 0.02<br>< 0.02             | <0.02<br><0.02<br>< 0.02<br>< 0.02<br>< 0.02<br>< 0.02<br>< 0.02<br>< 0.02   | <0.02<br><0.02<br><0.02<br><0.02<br><0.02<br><0.02<br><0.02                  | <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1.02 < 1.02 < 1.02 < 1.02 < 1.02 < 1.02 < 1.02 < 1.02 < 1.02 < 1.02 < 1.02 < 1.02 < 1.02 < 1.02 < 1.02 < 1.02 < 1.02 < 1.02 < 1.02 < 1.02 < 1.02 < 1.02 < 1.02 < 1.02 < 1.02 < 1.02 < 1.02 < 1.02 < 1.02 < 1.02 < 1.02 < 1.02 < 1.02 < 1.02 < 1.02 < 1.02 < 1.02 < 1.02 < 1.02 < 1.02 < 1.02 < 1.02 < 1.02 < 1.02 < 1.02 < 1.02 < 1.02 < 1.02 < 1.02 < 1.02 < 1.02 < 1.02 < 1.02 < 1.02 < 1.02 < 1.02 < 1.02 < 1.02 < 1.02 < 1.02 < 1.02 < 1.02 < 1.02 < 1.02 < 1.02 < 1.02 < 1.02 < 1.02 < 1.02 < 1.02 < 1.02 < 1.02 < 1.02 < 1.02 < 1.02 < 1.02 < 1.02 < 1.02 < 1.02 < 1.02 < 1.02 < 1.02 < 1.02 < 1.02 < 1.02 < 1.02 < 1.02 < 1.02 < 1.02 < 1.02 < 1.02 < 1.02 < 1.02 < 1.02 < 1.02 < 1.02 < 1.02 < 1.02 < 1.02 < 1.02 < 1.02 < 1.02 < 1.02 < 1.02 < 1.02 < 1.02 < 1.02 < 1.02 < 1.02 < 1.02 < 1.02 < 1.02 < 1.02 < 1.02 < 1.02 < 1.02 < 1.02 < 1.02 < 1.02 < 1.02 < 1.02 < 1.02 < 1.02 < 1.02 < 1.02 < 1.02 < 1.02 < 1.02 < 1.02 < 1.02 < 1.02 < 1.02 < 1.02 < 1.02 < 1.02 < 1.02 < 1.02 < 1.02 < 1.02 < 1.02 < 1.02 < 1.02 < 1.02 < 1.02 < 1.02 < 1.02 < 1.02 < 1.02 < 1.02 < 1.02 < 1.02 < 1.02 < 1.02 < 1.02 < 1.02 < 1.02 < 1.02 < 1.02 < 1.02 < 1.02 < 1.02 < 1.02 < 1.02 < 1.02 < 1.02 < 1.02 < 1.02 < 1.02 < 1.02 < 1.02 < 1.02 < 1.02 < 1.02 < 1.02 < 1.02 < 1.02 < 1.02 < 1.02 < 1.02 < 1.02 < 1.02 < 1.02 < 1.02 < 1.02 < 1.02 < 1.02 < 1.02 < 1.02 < 1.02 < 1.02 < 1.02 < 1.02 < 1.02 < 1.02 < 1.02 < 1.02 < 1.02 < 1.02 < 1.02 < 1.02 < 1.02 < 1.02 < 1.02 < 1.02 < 1.02 < 1.02 < 1.02 < 1.02 < 1.02 < 1.02 < 1.02 < 1.02 < 1.02 < 1.02 < 1.02 < 1.02 < 1.02 < 1.02 < 1.02 < 1.02 < 1.02 < 1.02 < 1.02 < 1.02 < 1.02 < 1.02 < 1.02 < 1.02 < 1.02 < 1.02 < 1.02 < 1.02 < 1.02 < 1.02 < 1.02 < 1.02 < 1.02 < 1.02 < 1.02 < 1.02 < 1.02 < 1.02 < 1.02 < 1.02 < 1.02 < 1.02 < 1.02 < 1.02 < 1.02 < 1.02 < 1.02 < 1.02 < 1.02 < 1.02 < 1.02 < 1.02 < 1.02 < 1.02 < 1.02 < 1.02 < 1.02 < 1.02 < 1.02 < 1.02 < 1.02 < 1.02 < 1.02 < 1.02 < 1.02 < 1.02 < 1.02 < 1.02 < 1.02 < 1.02 < 1.02 < 1.02 < 1.02 < 1.02 < 1.02 < 1.02 < 1.02 < 1.02 < 1.02 < 1.02 < 1.02 < 1.02 < 1.02 < 1.02 < 1.02 < 1.02 < 1.02 < 1.02 < 1. | 0.05 c0<br>0.05 c0<br>0.05 c0<br>0.05 c0<br>0.05 c0<br>0.05 c0<br>0.05 c0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2 < 0.05<br>2 < 0.05<br>12 < 0.05<br>12 < 0.05<br>12 < 0.05<br>12 < 0.05<br>12 < 0.05                                                       | 41<br>41<br>41<br>41<br>41                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0. | 0.05 < 0<br>0.05 < 0<br>0.05 < 0<br>0.05 < 0<br>0.05 < 0<br>0.05 < 0<br>0.05 < 0                         | 05 <0.02<br>05 <0.02<br>05 <0.02<br>05 <0.02<br>05 <0.02<br>05 <0.02<br>05 <0.02<br>05 <0.02                      | <0.02<br><0.02<br>< 0.02<br>< 0.02<br>< 0.02<br>< 0.02<br>< 0.02             | < 0.05<br>< 0.05<br>< 0.05<br>< 0.05<br>< 0.05<br>< 0.05<br>< 0.05           | < 0.05<br>< 0.05<br>0.15<br>< 0.05<br>< 0.05<br>< 0.05<br>< 0.05<br>< 0.05             | < 0.05<br>< 0.05<br>< 0.05<br>< 0.05<br>< 0.05<br>< 0.05<br>< 0.05           | <ul> <li>0.055</li> <li>0.05</li> <li>0.055</li> <li>0.05</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 01 < 0.01<br>01 < 0.01<br>01 <b>0.15</b><br>01 < 0.01<br>01 < 0.01<br>01 < 0.01<br>01 < 0.01                      | < 0.01<br>< 0.01<br><b>0.15</b><br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 16-but-19 < 0.00<br>14-but-19 < 0.00<br>15-but-19 < 0.00<br>15-but-19 < 0.00<br>15-but-19 < 0.00<br>15-but-19 < 0.00<br>15-but-19 < 0.00<br>15-but-19 < 0.00<br>17-but-19 < 0.00<br>17-but-19 < 0.00<br>16-but-19 < 0.00<br>17-but-19 < 0.00<br>17-but-19 < 0.00<br>16-but-19 < 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | < 0.02<br>< 0.02<br>< 0.02<br>< 0.02<br>< 0.02<br>< 0.02<br>< 0.02<br>< 0.02           | < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | < 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | < 0.02<br>< 0.02<br>< 0.02<br>< 0.02<br>< 0.02<br>< 0.02<br>< 0.02<br>< 0.02 | < 0.1<br>< 0.1<br>< 0.1<br>< 0.1<br>< 0.1<br>< 0.1<br>< 0.1<br>< 0.1 | <0.02 < 0.02 < 0. <0.02 < 0. <0.02 < 0. <0.02 < 0. <0.02 < 0. <0.02 < 0. <0.02 < 0. <0.02 < 0. <0.02 < 0. <0.02 < 0. <0.02 < 0. <0.02 < 0. <0.02 < 0. <0.02 < 0. <0.02 < 0. <0.02 < 0. <0.02 < 0. <0.02 < 0. <0.02 < 0. <0.02 < 0. <0.02 < 0. <0.02 < 0. <0.02 < 0. <0.02 < 0. <0.02 < 0. <0.02 < 0. <0.02 < 0. <0.02 < 0. <0.02 < 0. <0.02 < 0. <0.02 < 0. <0.02 < 0. <0.02 < 0. <0.02 < 0. <0.02 < 0. <0.02 < 0. <0.02 < 0. <0.02 < 0. <0.02 < 0. <0.02 < 0. <0.02 < 0. <0.02 < 0. <0.02 < 0. <0.02 < 0. <0.02 < 0. <0.02 < 0. <0.02 < 0. <0.02 < 0. <0.02 < 0. <0.02 < 0. <0.02 < 0. <0.02 < 0. <0.02 < 0. <0.02 < 0. <0.02 < 0. <0.02 < 0. <0.02 < 0. <0. <0.02 < 0. <0.02 < 0. <0.02 < 0. <0.02 < 0. <0.02 < 0. <0.02 < 0. <0.02 < 0. <0.02 < 0. <0.02 < 0. <0.02 < 0. <0.02 < 0. <0.02 < 0. <0.02 < 0. <0.02 < 0. <0.02 < 0. <0.02 < 0. <0.02 < 0. <0.02 < 0. <0.02 < 0. <0.02 < 0. <0.02 < 0. <0.02 < 0. <0.02 < 0. <0.02 < 0. <0.02 < 0. <0.02 < 0. <0.02 < 0. <0.02 < 0. <0.02 < 0. <0.02 < 0. <0.02 < 0. <0.02 < 0. <0.02 < 0. <0.02 < 0. <0.02 < 0. <0.02 < 0. <0.02 < 0. <0.02 < 0. <0.02 < 0. <0.02 < 0. <0.02 < 0. <0.02 < 0. <0.02 < 0. <0.02 < 0. <0.02 < 0. <0.02 < 0. <0.02 < 0. <0.02 < 0. <0.02 < 0. <0.02 < 0. <0.02 < 0. <0.02 < 0. <0. <0.02 < 0. <0.02 < 0. <0.02 < 0. <0.02 < 0. <0.02 < 0. <0.02 < 0. <0.02 < 0. <0.02 < 0. <0.02 < 0. <0.02 < 0. <0.02 < 0. <0.02 < 0. <0.02 < 0. <0.02 < 0. <0.02 < 0. <0.02 < 0. <0.02 < 0. <0. <0.02 < 0. <0.02 < 0. <0.02 < 0. <0.02 < 0. <0. <0.02 < 0. <0.02 < 0. <0.02 < 0. <0.02 < 0. <0.02 < 0. <0.02 < 0. <0.02 < 0. <0. <0.02 < 0. <0.02 < 0. <0.02 < 0. <0.02 < 0. <0.02 < 0. <0.02 < 0. <0.02 < 0. <0.02 < 0. <0.02 < 0. <0.02 < 0. <0.02 < 0. <0.02 < 0. <0.02 < 0. <0.02 < 0. <0.02 < 0. <0.02 < 0. <0.02 < 0. <0.02 < 0. <0.02 < 0. <0.02 < 0. <0.02 < 0. <0. <0.02 < 0. <0.02 < 0. <0.02 < 0. <0. <0.02 < 0. <0. <0.02 < 0. <0. <0.02 < 0. <0. <0.02 < 0. <0. <0. <0.02 < 0. <0. <0. <0.02 < 0. <0. <0. <0.02 < 0. <0. <0. <0. <0. <0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0                                                                       | 2                                                                                                                                                                                  | < 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01           | < 0.02<br>< 0.02<br>< 0.02<br>< 0.02<br>< 0.02<br>< 0.02<br>< 0.02<br>< 0.02 | < 0.02<br>< 0.02<br>< 0.02<br>< 0.02<br>< 0.02<br>< 0.02<br>< 0.02           | < 0.02<br>< 0.02<br>< 0.02<br>< 0.02<br>< 0.02<br>< 0.02<br>< 0.02<br>< 0.02 | < 0.002 < 1<br>< 0.002 < 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 5.02 <<br>5.02 <<br>5.02 <<br>5.02 <<br>5.02 <<br>5.02 <<br>5.02 <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.05 < 0<br>0.05 < 0<br>0.05 < 0<br>0.05 < 0<br>0.05 < 0<br>0.05 < 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 22 < 0.05<br>12 < 0.05                           | ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.05 <<br>0.05 <<br>0.05 <<br>0.05 <<br>0.05 <<br>0.05 <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.05 < 0<br>0.05 < 0<br>0.05 < 0<br>0.05 < 0<br>0.05 < 0<br>0.05 < 0<br>0.05 < 0                         | 05 < 0.02<br>05 < 0.02              | < 0.02<br>< 0.02<br>< 0.02<br>< 0.02<br>< 0.02<br>< 0.02<br>< 0.02<br>< 0.02 | < 0.05<br>< 0.05<br>< 0.05<br>< 0.05<br>< 0.05<br>< 0.05<br>< 0.05<br>< 0.05 | < 0.05<br>< 0.05<br>< 0.05<br>< 0.05<br>< 0.05<br>< 0.05<br>< 0.05<br>< 0.05           | < 0.05<br>< 0.05<br>< 0.05<br>< 0.05<br>< 0.05<br>< 0.05<br>< 0.05           | < 0.05 < 0.05 < 0 < 0.05 < 0 < 0.05 < 0 < 0.05 < 0 < 0.05 < 0 < 0.05 < 0 < 0.05 < 0 < 0.05 < 0 < 0.05 < 0 < 0.05 < 0 < 0.05 < 0 < 0.05 < 0 < 0.05 < 0 < 0.05 < 0 < 0.05 < 0 < 0.05 < 0 < 0.05 < 0 < 0.05 < 0 < 0.05 < 0 < 0.05 < 0 < 0.05 < 0 < 0.05 < 0 < 0.05 < 0 < 0.05 < 0 < 0.05 < 0 < 0.05 < 0 < 0.05 < 0 < 0.05 < 0 < 0.05 < 0 < 0 < 0.05 < 0 < 0.05 < 0 < 0.05 < 0 < 0.05 < 0 < 0.05 < 0 < 0.05 < 0 < 0.05 < 0 < 0.05 < 0 < 0.05 < 0 < 0.05 < 0 < 0.05 < 0 < 0.05 < 0 < 0.05 < 0 < 0.05 < 0 < 0.05 < 0 < 0.05 < 0 < 0.05 < 0 < 0.05 < 0 < 0.05 < 0 < 0.05 < 0 < 0.05 < 0 < 0.05 < 0 < 0.05 < 0 < 0.05 < 0 < 0.05 < 0 < 0.05 < 0 < 0.05 < 0 < 0.05 < 0 < 0.05 < 0 < 0.05 < 0 < 0.05 < 0 < 0.05 < 0 < 0.05 < 0 < 0.05 < 0 < 0.05 < 0 < 0.05 < 0 < 0.05 < 0 < 0.05 < 0 < 0.05 < 0 < 0.05 < 0 < 0.05 < 0 < 0.05 < 0 < 0.05 < 0 < 0.05 < 0 < 0.05 < 0 < 0.05 < 0 < 0.05 < 0 < 0.05 < 0 < 0.05 < 0 < 0.05 < 0 < 0.05 < 0 < 0.05 < 0 < 0.05 < 0 < 0.05 < 0 < 0.05 < 0 < 0.05 < 0 < 0.05 < 0 < 0.05 < 0 < 0.05 < 0 < 0.05 < 0 < 0.05 < 0 < 0.05 < 0 < 0.05 < 0 < 0.05 < 0 < 0.05 < 0 < 0.05 < 0 < 0.05 < 0 < 0.05 < 0 < 0.05 < 0 < 0.05 < 0 < 0.05 < 0 < 0.05 < 0 < 0.05 < 0 < 0.05 < 0 < 0.05 < 0 < 0.05 < 0 < 0.05 < 0 < 0.05 < 0 < 0.05 < 0 < 0.05 < 0 < 0.05 < 0 < 0.05 < 0 < 0.05 < 0 < 0.05 < 0 < 0.05 < 0 < 0.05 < 0 < 0.05 < 0.05 < 0 < 0.05 < 0 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 | 01 < 0.01<br>01 < 0.01              | < 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 16-Jan-20 < 0.02<br>27-Yeb-210 < 0.02<br>26-Mar-20 < 0.02<br>27-Apr-20 < 0.02<br>27-Apr-20 < 0.02<br>15-Mar-20 < 0.02<br>19-Jan-20 < 0.02<br>16-Jan-20 < 0.02<br>16-Jan-20 < 0.02<br>14-Apr-20 < 0.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | < 0.02<br>< 0.02<br>< 0.02<br>< 0.02<br>< 0.02<br>< 0.02<br>< 0.02<br>< 0.02           | < 0.02 < 0.02<br>< 0.02 < 0.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | < 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | < 0.02<br>< 0.02<br>< 0.02<br>< 0.02<br>< 0.02<br>< 0.02<br>< 0.02<br>< 0.02 | < 0.1<br>< 0.1<br>< 0.1<br>< 0.1<br>< 0.1<br>< 0.1<br>< 0.1<br>< 0.1 | < 0.02 < 0.<br>< 0.02 < 0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2 < 0.02<br>2 < 0.02                                                                           | < 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01           | < 0.02<br>< 0.02<br>< 0.02<br>< 0.02<br>< 0.02<br>< 0.02<br>< 0.02<br>< 0.02 | < 0.02<br>< 0.02<br>< 0.02<br>< 0.02<br>< 0.02<br>< 0.02<br>< 0.02<br>< 0.02 | < 0.02<br>< 0.02<br>< 0.02<br>< 0.02<br>< 0.02<br>< 0.02<br>< 0.02<br>< 0.02 | < 0.02 < 1<br>< 0.02 < 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0. | 0.05 < 0<br>0.05 < 0<br>0.05 < 0<br>0.05 < 0<br>0.05 < 0<br>0.05 < 0<br>0.05 < 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 22 < 0.05<br>32 < 0.05              | ()<br>()<br>()<br>()<br>()<br>()                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0. | 0.05 < 0<br>0.05 < 0             | 05 < 0.02<br>05 < 0.02              | < 0.02<br>< 0.02<br>< 0.02<br>< 0.02<br>< 0.02<br>< 0.02<br>< 0.02<br>< 0.02 | < 0.05<br>< 0.05<br>< 0.05<br>< 0.05<br>< 0.05<br>< 0.05<br>< 0.05           | < 0.05<br>< 0.05<br>< 0.05<br>< 0.05<br>< 0.05<br>< 0.05<br>< 0.05<br>< 0.05           | < 0.05<br>< 0.05<br>< 0.05<br>< 0.05<br>< 0.05<br>< 0.05<br>< 0.05           | Col.      | 01 < 0.01<br>01 < 0.01              | \$\begin{array}{c} \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 14-May 20 < 0.00 16-Sm-20 < 0.00 16-Sm-20 < 0.00 18-Sm-20 < 0.00 19-Sm-20 < 0.00 16-Sm-20 < 0.00 16-Sm-20 < 0.00 16-Sm-20 < 0.00 16-Sm-21 < 0.00 16-Sm-21 < 0.00 16-Sm-21 < 0.00 17-Sm-21 < 0.00 18-Sm-21 < 0.00 18-Sm-21 < 0.00 18-Sm-21 < 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | < 0.02<br>< 0.02<br>< 0.02<br>< 0.02<br>< 0.02<br>< 0.02<br>< 0.02<br>< 0.02           | <0.02 < 0.02<br>< 0.02 < 0.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | < 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | < 0.02<br>< 0.02<br>< 0.02<br>< 0.02<br>< 0.02<br>< 0.02<br>< 0.02           | < 0.1<br>< 0.1<br>< 0.1<br>< 0.1<br>< 0.1<br>< 0.1<br>< 0.1          | < 0.02 < 0.<br>< 0.02 < 0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 22 < 0.02<br>22 < 0.02<br>23 < 0.02<br>24 < 0.02<br>25 < 0.02<br>26 < 0.02<br>27 < 0.02<br>28 < 0.02<br>29 < 0.02<br>20 < 0.02                                                     | < 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01           | < 0.02<br>< 0.02<br>< 0.02<br>< 0.02<br>< 0.02<br>< 0.02<br>< 0.02<br>< 0.02 | < 0.02<br>< 0.02<br>< 0.02<br>< 0.02<br>< 0.02<br>< 0.02<br>< 0.02<br>< 0.02 | < 0.02<br>< 0.02<br>< 0.02<br>< 0.02<br>< 0.02<br>< 0.02<br>< 0.02           | < 0.02 < 1<br>< 0.02 < 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 5.02 <<br>5.02 <<br>5.02 <<br>5.02 <<br>5.02 <<br>5.02 <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.05 < 0<br>0.05 < 0<br>0.05 < 0<br>0.05 < 0<br>0.05 < 0<br>0.05 < 0<br>0.05 < 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 22 < 0.05<br>22 < 0.05                                        | <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0. | 0.05 < 0<br>0.05 < 0<br>0.05 < 0<br>0.05 < 0<br>0.05 < 0<br>0.05 < 0<br>0.05 < 0                         | 05 < 0.02<br>05 < 0.02              | < 0.02<br>< 0.02<br>< 0.02<br>< 0.02<br>< 0.02<br>< 0.02<br>< 0.02           | < 0.05<br>< 0.05<br>< 0.05<br>< 0.05<br>< 0.05<br>< 0.05<br>< 0.05           | < 0.05<br>< 0.05<br>< 0.05<br>< 0.05<br>< 0.05<br>< 0.05<br>< 0.05<br>< 0.05           | < 0.05<br>< 0.05<br>< 0.05<br>< 0.05<br>< 0.05<br>< 0.05<br>< 0.05           | < 0.05 < 0<br>< 0.05 < 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 01 < 0.01<br>01 < 0.01<br>01 < 0.01<br>01 < 0.01<br>01 < 0.01<br>01 < 0.01<br>01 < 0.01                           | < 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 19-Aup-21 -0.03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | < 0.02<br>< 0.02<br>< 0.02<br>< 0.02<br>< 0.02<br>< 0.02<br>< 0.02                     | < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.01 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.03 < 0.03 < 0.04 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 <p< td=""><td>&lt; 0.01<br/>&lt; 0.01<br/>&lt; 0.01<br/>&lt; 0.01<br/>&lt; 0.01<br/>&lt; 0.01<br/>&lt; 0.01</td><td>&lt; 0.02<br/>&lt; 0.02<br/>&lt; 0.02<br/>&lt; 0.02<br/>&lt; 0.02<br/>&lt; 0.02<br/>&lt; 0.02</td><td>&lt; 0.1<br/>&lt; 0.1<br/>&lt; 0.1<br/>&lt; 0.1<br/>&lt; 0.1<br/>&lt; 0.1<br/>&lt; 0.1</td><td>&lt;0.02 &lt; 0.02 &lt; 0.002 &lt;</td><td>2 &lt; 0.02<br/>2 &lt; 0.02<br/>2 &lt; 0.02<br/>2 &lt; 0.02<br/>2 &lt; 0.02<br/>2 &lt; 0.02<br/>2 &lt; 0.02<br/>3 &lt; 0.02</td><td>&lt; 0.01<br/>&lt; 0.01<br/>&lt; 0.01<br/>&lt; 0.01<br/>&lt; 0.01<br/>&lt; 0.01</td><td>&lt; 0.02<br/>&lt; 0.02<br/>&lt; 0.02<br/>&lt; 0.02<br/>&lt; 0.02<br/>&lt; 0.02<br/>&lt; 0.02</td><td>&lt; 0.02<br/>&lt; 0.02<br/>&lt; 0.02<br/>&lt; 0.02<br/>&lt; 0.02<br/>&lt; 0.02<br/>&lt; 0.02<br/>&lt; 0.02</td><td>&lt; 0.02<br/>&lt; 0.02<br/>&lt; 0.02<br/>&lt; 0.02<br/>&lt; 0.02<br/>&lt; 0.02<br/>&lt; 0.02</td><td>&lt; 0.02 &lt; 1<br/>&lt; 0.02 &lt; 1</td><td>5.02 &lt;<br/>5.02 &lt;<br/>5.02 &lt;<br/>5.02 &lt;<br/>5.02 &lt;<br/>6.02 &lt;<br/>6.02 &lt;</td><td>0.05 &lt; 0<br/>0.05 &lt; 0<br/>0.05 &lt; 0<br/>0.05 &lt; 0<br/>0.05 &lt; 0<br/>0.05 &lt; 0</td><td>22 &lt; 0.05<br/>22 &lt; 0.05<br/>22 &lt; 0.05<br/>22 &lt; 0.05<br/>2 &lt; 0.05<br/>2 &lt; 0.05<br/>2 &lt; 0.05</td><td>&lt; 1 &lt; 2 &lt; 1 &lt; 2 &lt; 2</td><td>0.05 &lt;<br/>0.05 &lt;<br/>0.05 &lt;<br/>0.05 &lt;<br/>0.05 &lt;<br/>0.05 &lt;</td><td>0.05 &lt; 0<br/>0.05 &lt; 0<br/>0.05 &lt; 0<br/>0.05 &lt; 0<br/>0.05 &lt; 0<br/>0.05 &lt; 0</td><td>05 &lt; 0.02<br/>05 &lt; 0.02<br/>05 &lt; 0.02<br/>05 &lt; 0.02<br/>05 &lt; 0.02<br/>05 &lt; 0.02<br/>05 &lt; 0.02<br/>06 &lt; 0.02</td><td>&lt; 0.02<br/>&lt; 0.02<br/>&lt; 0.02<br/>&lt; 0.02<br/>&lt; 0.02<br/>&lt; 0.02<br/>&lt; 0.02</td><td>&lt; 0.05<br/>&lt; 0.05<br/>&lt; 0.05<br/>&lt; 0.05<br/>&lt; 0.05<br/>&lt; 0.05<br/>&lt; 0.05</td><td>&lt; 0.05<br/>&lt; 0.05<br/>&lt; 0.05<br/>&lt; 0.05<br/>&lt; 0.05<br/>&lt; 0.05<br/>&lt; 0.05</td><td>&lt; 0.05<br/>&lt; 0.05<br/>&lt; 0.05<br/>&lt; 0.05<br/>&lt; 0.05<br/>&lt; 0.05</td><td>&lt; 0.05 &lt; 0.05 &lt; 0 &lt; 0.05 &lt; 0.05</td><td>01 &lt; 0.01<br/>01 &lt; 0.01<br/>01 &lt; 0.01<br/>01 &lt; 0.01<br/>01 &lt; 0.01<br/>01 &lt; 0.01<br/>01 &lt; 0.01</td><td>&lt; 0.01<br/>&lt; 0.01<br/>&lt; 0.01<br/>&lt; 0.01<br/>&lt; 0.01<br/>&lt; 0.01</td></p<> | < 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | < 0.02<br>< 0.02<br>< 0.02<br>< 0.02<br>< 0.02<br>< 0.02<br>< 0.02           | < 0.1<br>< 0.1<br>< 0.1<br>< 0.1<br>< 0.1<br>< 0.1<br>< 0.1          | <0.02 < 0.02 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < | 2 < 0.02<br>2 < 0.02<br>2 < 0.02<br>2 < 0.02<br>2 < 0.02<br>2 < 0.02<br>2 < 0.02<br>3 < 0.02                                                                                       | < 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01                     | < 0.02<br>< 0.02<br>< 0.02<br>< 0.02<br>< 0.02<br>< 0.02<br>< 0.02           | < 0.02<br>< 0.02<br>< 0.02<br>< 0.02<br>< 0.02<br>< 0.02<br>< 0.02<br>< 0.02 | < 0.02<br>< 0.02<br>< 0.02<br>< 0.02<br>< 0.02<br>< 0.02<br>< 0.02           | < 0.02 < 1<br>< 0.02 < 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 5.02 <<br>5.02 <<br>5.02 <<br>5.02 <<br>5.02 <<br>6.02 <<br>6.02 <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.05 < 0<br>0.05 < 0<br>0.05 < 0<br>0.05 < 0<br>0.05 < 0<br>0.05 < 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 22 < 0.05<br>22 < 0.05<br>22 < 0.05<br>22 < 0.05<br>2 < 0.05<br>2 < 0.05<br>2 < 0.05                                                        | < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 2 < 1 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 | 0.05 <<br>0.05 <<br>0.05 <<br>0.05 <<br>0.05 <<br>0.05 <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.05 < 0<br>0.05 < 0<br>0.05 < 0<br>0.05 < 0<br>0.05 < 0<br>0.05 < 0                                     | 05 < 0.02<br>05 < 0.02<br>05 < 0.02<br>05 < 0.02<br>05 < 0.02<br>05 < 0.02<br>05 < 0.02<br>06 < 0.02              | < 0.02<br>< 0.02<br>< 0.02<br>< 0.02<br>< 0.02<br>< 0.02<br>< 0.02           | < 0.05<br>< 0.05<br>< 0.05<br>< 0.05<br>< 0.05<br>< 0.05<br>< 0.05           | < 0.05<br>< 0.05<br>< 0.05<br>< 0.05<br>< 0.05<br>< 0.05<br>< 0.05                     | < 0.05<br>< 0.05<br>< 0.05<br>< 0.05<br>< 0.05<br>< 0.05                     | < 0.05 < 0.05 < 0 < 0.05 < 0 < 0.05 < 0 < 0.05 < 0 < 0.05 < 0 < 0.05 < 0 < 0.05 < 0 < 0.05 < 0 < 0.05 < 0 < 0.05 < 0 < 0.05 < 0 < 0.05 < 0 < 0.05 < 0 < 0.05 < 0 < 0.05 < 0 < 0.05 < 0 < 0.05 < 0 < 0.05 < 0 < 0.05 < 0 < 0.05 < 0 < 0.05 < 0 < 0.05 < 0 < 0.05 < 0 < 0.05 < 0 < 0.05 < 0 < 0.05 < 0 < 0.05 < 0 < 0.05 < 0 < 0.05 < 0 < 0.05 < 0 < 0.05 < 0 < 0.05 < 0 < 0.05 < 0 < 0.05 < 0 < 0.05 < 0 < 0.05 < 0 < 0.05 < 0 < 0.05 < 0 < 0.05 < 0 < 0.05 < 0 < 0.05 < 0 < 0.05 < 0 < 0.05 < 0 < 0.05 < 0 < 0.05 < 0 < 0.05 < 0 < 0.05 < 0 < 0.05 < 0 < 0.05 < 0 < 0.05 < 0 < 0.05 < 0 < 0.05 < 0 < 0.05 < 0 < 0.05 < 0 < 0.05 < 0 < 0.05 < 0 < 0.05 < 0 < 0.05 < 0 < 0.05 < 0 < 0.05 < 0 < 0.05 < 0 < 0.05 < 0 < 0.05 < 0 < 0.05 < 0 < 0.05 < 0 < 0.05 < 0 < 0.05 < 0 < 0.05 < 0 < 0.05 < 0 < 0.05 < 0 < 0.05 < 0 < 0.05 < 0 < 0.05 < 0 < 0.05 < 0 < 0.05 < 0 < 0.05 < 0 < 0.05 < 0 < 0.05 < 0 < 0.05 < 0 < 0.05 < 0 < 0.05 < 0 < 0.05 < 0 < 0.05 < 0 < 0.05 < 0 < 0.05 < 0 < 0.05 < 0 < 0.05 < 0 < 0.05 < 0 < 0.05 < 0 < 0.05 < 0 < 0.05 < 0 < 0.05 < 0 < 0.05 < 0 < 0.05 < 0 < 0.05 < 0 < 0.05 < 0 < 0.05 < 0 < 0.05 < 0 < 0.05 < 0 < 0.05 < 0 < 0.05 < 0 < 0.05 < 0 < 0.05 < 0 < 0.05 < 0.05 < 0 < 0.05 < 0 < 0.05 < 0 < 0.05 < 0 < 0.05 < 0 < 0.05 < 0 < 0.05 < 0.05 < 0 < 0.05 < 0.05 < 0 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 | 01 < 0.01<br>01 < 0.01<br>01 < 0.01<br>01 < 0.01<br>01 < 0.01<br>01 < 0.01<br>01 < 0.01                           | < 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 22-feb 19 < 0.00<br>14-Mar-19 < 0.00<br>23-Apr-19 < 0.00<br>25-Apr-19 < 0.00<br>15-May-19 < 0.00<br>16-May-19 < 0.00<br>16-May-19 < 0.00<br>16-May-19 < 0.00<br>15-May-19 < 0.00<br>15-May-19 < 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | < 0.02<br>< 0.02<br>< 0.02<br>< 0.02<br>< 0.02<br>< 0.02<br>< 0.02<br>< 0.02           | < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | < 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | < 0.02<br>< 0.02<br>< 0.02<br>< 0.02<br>< 0.02<br>< 0.02<br>< 0.02<br>< 0.02 | < 0.1<br>< 0.1<br>< 0.1<br>< 0.1<br>< 0.1<br>< 0.1<br>< 0.1<br>< 0.1 | < 0.02 < 0.<br>< 0.02 < 0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2 < 0.02<br>2 < 0.02                                                               | < 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01           | < 0.02<br>< 0.02<br>< 0.02<br>< 0.02<br>< 0.02<br>< 0.02<br>< 0.02<br>< 0.02 | < 0.02<br>< 0.02<br>< 0.02<br>< 0.02<br>< 0.02<br>< 0.02<br>< 0.02<br>< 0.02 | < 0.02<br>< 0.02<br>< 0.02<br>< 0.02<br>< 0.02<br>< 0.02<br>< 0.02<br>< 0.02 | < 0.02 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 5.02 < 5.02 < 5.02 < 5.02 < 5.02 < 5.02 < 5.02 < 5.02 < 5.02 < 5.02 < 5.02 < 5.02 < 5.02 < 5.02 < 5.02 < 5.02 < 5.02 < 5.02 < 5.02 < 5.02 < 5.02 < 5.02 < 5.02 < 5.02 < 5.02 < 5.02 < 5.02 < 5.02 < 5.02 < 5.02 < 5.02 < 5.02 < 5.02 < 5.02 < 5.02 < 5.02 < 5.02 < 5.02 < 5.02 < 5.02 < 5.02 < 5.02 < 5.02 < 5.02 < 5.02 < 5.02 < 5.02 < 5.02 < 5.02 < 5.02 < 5.02 < 5.02 < 5.02 < 5.02 < 5.02 < 5.02 < 5.02 < 5.02 < 5.02 < 5.02 < 5.02 < 5.02 < 5.02 < 5.02 < 5.02 < 5.02 < 5.02 < 5.02 < 5.02 < 5.02 < 5.02 < 5.02 < 5.02 < 5.02 < 5.02 < 5.02 < 5.02 < 5.02 < 5.02 < 5.02 < 5.02 < 5.02 < 5.02 < 5.02 < 5.02 < 5.02 < 5.02 < 5.02 < 5.02 < 5.02 < 5.02 < 5.02 < 5.02 < 5.02 < 5.02 < 5.02 < 5.02 < 5.02 < 5.02 < 5.02 < 5.02 < 5.02 < 5.02 < 5.02 < 5.02 < 5.02 < 5.02 < 5.02 < 5.02 < 5.02 < 5.02 < 5.02 < 5.02 < 5.02 < 5.02 < 5.02 < 5.02 < 5.02 < 5.02 < 5.02 < 5.02 < 5.02 < 5.02 < 5.02 < 5.02 < 5.02 < 5.02 < 5.02 < 5.02 < 5.02 < 5.02 < 5.02 < 5.02 < 5.02 < 5.02 < 5.02 < 5.02 < 5.02 < 5.02 < 5.02 < 5.02 < 5.02 < 5.02 < 5.02 < 5.02 < 5.02 < 5.02 < 5.02 < 5.02 < 5.02 < 5.02 < 5.02 < 5.02 < 5.02 < 5.02 < 5.02 < 5.02 < 5.02 < 5.02 < 5.02 < 5.02 < 5.02 < 5.02 < 5.02 < 5.02 < 5.02 < 5.02 < 5.02 < 5.02 < 5.02 < 5.02 < 5.02 < 5.02 < 5.02 < 5.02 < 5.02 < 5.02 < 5.02 < 5.02 < 5.02 < 5.02 < 5.02 < 5.02 < 5.02 < 5.02 < 5.02 < 5.02 < 5.02 < 5.02 < 5.02 < 5.02 < 5.02 < 5.02 < 5.02 < 5.02 < 5.02 < 5.02 < 5.02 < 5.02 < 5.02 < 5.02 < 5.02 < 5.02 < 5.02 < 5.02 < 5.02 < 5.02 < 5.02 < 5.02 < 5.02 < 5.02 < 5.02 < 5.02 < 5.02 < 5.02 < 5.02 < 5.02 < 5.02 < 5.02 < 5.02 < 5.02 < 5.02 < 5.02 < 5.02 < 5.02 < 5.02 < 5.02 < 5.02 < 5.02 < 5.02 < 5.02 < 5.02 < 5.02 < 5.02 < 5.02 < 5.02 < 5.02 < 5.02 < 5.02 < 5.02 < 5.02 < 5.02 < 5.02 < 5.02 < 5.02 < 5.02 < 5.02 < 5.02 < 5.02 < 5.02 < 5.02 < 5.02 < 5.02 < 5.02 < 5.02 < 5.02 < 5.02 < 5.02 < 5.02 < 5.02 < 5.02 < 5.02 < 5.02 < 5.02 < 5.02 < 5.02 < 5.02 < 5.02 < 5.02 < 5.02 < 5.02 < 5.02 < 5.02 < 5.02 < 5.02 < 5.02 < 5.02 < 5.02 < 5.02 < 5.02 < 5.02 < 5.02 < 5.02 < 5.02 < 5.02 < 5.02 < 5.02 < 5.02 < 5.02 < 5.02 < 5.02 < 5.02 < 5. | 0.05 < 0<br>0.05 < 0<br>0.05 < 0<br>0.05 < 0<br>0.05 < 0<br>0.05 < 0<br>0.05 < 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 22 < 0.05<br>32 < 0.05 | ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0. | 0.05 < 0<br>0.05 < 0<br>0.05 < 0<br>0.05 < 0<br>0.05 < 0<br>0.05 < 0<br>0.05 < 0                         | 05 < 0.02<br>05 < 0.02              | < 0.02<br>< 0.02<br>< 0.02<br>< 0.02<br>< 0.02<br>< 0.02<br>< 0.02<br>< 0.02 | < 0.05<br>< 0.05<br>< 0.05<br>< 0.05<br>< 0.05<br>< 0.05<br>< 0.05<br>< 0.05 | < 0.05<br>< 0.05<br>< 0.05<br>< 0.05<br>< 0.05<br>< 0.05<br>< 0.05<br>< 0.05           | < 0.05<br>< 0.05<br>< 0.05<br>< 0.05<br>< 0.05<br>< 0.05<br>< 0.05           | < 0.05 < 0<br>< 0.05 < 0<br>< 0.05 < 0<br>< 0.05 < 0<br>< 0.05 < 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 01 < 0.01<br>01 < 0.01 | < 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 15 - Cet - 19 < 0.02<br>58 - Nov - 19 < 0.02<br>17 - Cec - 19 < 0.02<br>16 - Jan - 20 < 0.02<br>27 - Nov - 19 < 0.02<br>28 - Mar - 20 < 0.02<br>27 - Nov - 20 < 0.02<br>27 - Nov - 20 < 0.02<br>27 - Nov - 20 < 0.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | < 0.02<br>< 0.02<br>< 0.02<br>< 0.02<br>< 0.02<br>< 0.02<br>< 0.02<br>< 0.02           | < 0.02 < 0.02<br>< 0.02 < 0.02<br>< 0.02 < 0.02<br>< 0.02 < 0.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | < 0.01<br>< 0.01<br>< 0.01<br>< 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | < 0.02<br>< 0.02<br>< 0.02<br>< 0.02<br>< 0.02<br>< 0.02<br>< 0.02<br>< 0.02 | < 0.1<br>< 0.1<br>< 0.1<br>< 0.1<br>< 0.1<br>< 0.1<br>< 0.1          | < 0.02 < 0.<br>< 0.02 < 0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2 < 0.02<br>12 < 0.02<br>13 < 0.02                                                                   | < 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01           | < 0.02<br>< 0.02<br>< 0.02<br>< 0.02<br>< 0.02<br>< 0.02<br>< 0.02           | < 0.02<br>< 0.02<br>< 0.02<br>< 0.02<br>< 0.02<br>< 0.02<br>< 0.02<br>< 0.02 | < 0.02<br>< 0.02<br>< 0.02<br>< 0.02<br>< 0.02<br>< 0.02<br>< 0.02<br>< 0.02 | < 0.02 < 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.02 <<br>0.02 <<br>0.02 <<br>0.02 <<br>0.02 <<br>0.02 <<br>0.02 <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.05 < 0<br>0.05 < 0<br>0.05 < 0<br>0.05 < 0<br>0.05 < 0<br>0.05 < 0<br>0.05 < 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2                                                                                                                                           | ()<br>()<br>()<br>()<br>()<br>()                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0. | 0.05 < 0<br>0.05 < 0             | 05 < 0.02<br>05 < 0.02 | < 0.02<br>< 0.02<br>< 0.02<br>< 0.02<br>< 0.02<br>< 0.02<br>< 0.02           | < 0.05<br>< 0.05<br>< 0.05<br>< 0.05<br>< 0.05<br>< 0.05<br>< 0.05<br>< 0.05 | < 0.05<br>< 0.05<br>< 0.05<br>< 0.05<br>< 0.05<br>< 0.05<br>< 0.05<br>< 0.05           | < 0.05<br>< 0.05<br>< 0.05<br>< 0.05<br>< 0.05<br>< 0.05<br>< 0.05           | \$\begin{array}{c} \cdot 0.05 & | 01 < 0.01<br>01 < 0.01              | < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 16-Oct-20 < 0.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | < 0.02<br>< 0.02<br>< 0.02<br>< 0.02<br>< 0.02<br>< 0.02<br>< 0.02                     | < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | < 0.01<br>< 0.01 | < 0.02<br>< 0.02<br>< 0.02<br>< 0.02<br>< 0.02<br>< 0.02<br>< 0.02           | < 0.1<br>< 0.1<br>< 0.1<br>< 0.1<br>< 0.1<br>< 0.1<br>< 0.1          | < 0.02 < 0.<br>< 0.02 < 0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 22 < 0.02<br>22 < 0.02<br>22 < 0.02<br>22 < 0.02<br>22 < 0.02<br>22 < 0.02<br>20 < 0.02<br>20 < 0.02                                                                               | < 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01           | < 0.02<br>< 0.02<br>< 0.02<br>< 0.02<br>< 0.02<br>< 0.02<br>< 0.02<br>< 0.02 | < 0.02<br>< 0.02<br>< 0.02<br>< 0.02<br>< 0.02<br>< 0.02<br>< 0.02           | < 0.02<br>< 0.02<br>< 0.02<br>< 0.02<br>< 0.02<br>< 0.02<br>< 0.02<br>< 0.02 | < 0.02 < 1<br>< 0.02 < 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 5.02 <<br>5.02 <<br>5.02 <<br>5.02 <<br>5.02 <<br>5.02 <<br>6.02 <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.05 < 0<br>0.05 < 0<br>0.05 < 0<br>0.05 < 0<br>0.05 < 0<br>0.05 < 0<br>0.05 < 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 22 < 0.05<br>22 < 0.05<br>32 < 0.05<br>32 < 0.05<br>32 < 0.05<br>32 < 0.05<br>32 < 0.05<br>32 < 0.05                                        | <   <   <   <   <   <   <   <   <   <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0. | 0.05 < 0<br>0.05 < 0<br>0.05 < 0<br>0.05 < 0<br>0.05 < 0<br>0.05 < 0<br>0.05 < 0                         | 05 < 0.02<br>05 < 0.02<br>05 < 0.02<br>05 < 0.02<br>05 < 0.02<br>05 < 0.02<br>05 < 0.02<br>06 < 0.02              | < 0.02<br>< 0.02<br>< 0.02<br>< 0.02<br>< 0.02<br>< 0.02<br>< 0.02           | < 0.05<br>< 0.05<br>< 0.05<br>< 0.05<br>< 0.05<br>< 0.05<br>< 0.05           | < 0.05<br>< 0.05<br>< 0.05<br>< 0.05<br>< 0.05<br>< 0.05<br>< 0.05<br>< 0.05           | < 0.05<br>< 0.05<br>< 0.05<br>< 0.05<br>< 0.05<br>< 0.05<br>< 0.05           | < 0.05 < 0<br>< 0.05 < 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 01 < 0.01<br>01 < 0.01              | < 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 16-feav-70 < 0.02<br>16-feav-70 < 0.02<br>14-feav-21 < 0.02<br>16-feav-21 < 0.02<br>17-feav-21 < 0.02<br>22-feav-21 < 0.02<br>25-feav-21 < 0.02<br>18-feav-21 < 0.02<br>18-feav-21 < 0.02<br>18-feav-21 < 0.02<br>18-feav-21 < 0.02<br>18-feav-21 < 0.02<br>18-feav-21 < 0.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | < 0.02<br>< 0.02<br>< 0.02<br>< 0.02<br>< 0.02<br>< 0.02<br>< 0.02                     | < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | < 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | < 0.02<br>< 0.02<br>< 0.02<br>< 0.02<br>< 0.02<br>< 0.02<br>< 0.02<br>< 0.02 | < 0.1<br>< 0.1<br>< 0.1<br>< 0.1<br>< 0.1<br>< 0.1<br>< 0.1<br>< 0.1 | <0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0 | 2 < 0.02<br>2 < 0.02                                                               | < 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01           | < 0.02<br>< 0.02<br>< 0.02<br>< 0.02<br>< 0.02<br>< 0.02<br>< 0.02           | < 0.02<br>< 0.02<br>< 0.02<br>< 0.02<br>< 0.02<br>< 0.02<br>< 0.02<br>< 0.02 | < 0.02<br>< 0.02<br>< 0.02<br>< 0.02<br>< 0.02<br>< 0.02<br>< 0.02<br>< 0.02 | < 0.02 < 1.02 < 1.02 < 1.02 < 1.02 < 1.02 < 1.02 < 1.02 < 1.02 < 1.02 < 1.02 < 1.02 < 1.02 < 1.02 < 1.02 < 1.02 < 1.02 < 1.02 < 1.02 < 1.02 < 1.02 < 1.02 < 1.02 < 1.02 < 1.02 < 1.02 < 1.02 < 1.02 < 1.02 < 1.02 < 1.02 < 1.02 < 1.02 < 1.02 < 1.02 < 1.02 < 1.02 < 1.02 < 1.02 < 1.02 < 1.02 < 1.02 < 1.02 < 1.02 < 1.02 < 1.02 < 1.02 < 1.02 < 1.02 < 1.02 < 1.02 < 1.02 < 1.02 < 1.02 < 1.02 < 1.02 < 1.02 < 1.02 < 1.02 < 1.02 < 1.02 < 1.02 < 1.02 < 1.02 < 1.02 < 1.02 < 1.02 < 1.02 < 1.02 < 1.02 < 1.02 < 1.02 < 1.02 < 1.02 < 1.02 < 1.02 < 1.02 < 1.02 < 1.02 < 1.02 < 1.02 < 1.02 < 1.02 < 1.02 < 1.02 < 1.02 < 1.02 < 1.02 < 1.02 < 1.02 < 1.02 < 1.02 < 1.02 < 1.02 < 1.02 < 1.02 < 1.02 < 1.02 < 1.02 < 1.02 < 1.02 < 1.02 < 1.02 < 1.02 < 1.02 < 1.02 < 1.02 < 1.02 < 1.02 < 1.02 < 1.02 < 1.02 < 1.02 < 1.02 < 1.02 < 1.02 < 1.02 < 1.02 < 1.02 < 1.02 < 1.02 < 1.02 < 1.02 < 1.02 < 1.02 < 1.02 < 1.02 < 1.02 < 1.02 < 1.02 < 1.02 < 1.02 < 1.02 < 1.02 < 1.02 < 1.02 < 1.02 < 1.02 < 1.02 < 1.02 < 1.02 < 1.02 < 1.02 < 1.02 < 1.02 < 1.02 < 1.02 < 1.02 < 1.02 < 1.02 < 1.02 < 1.02 < 1.02 < 1.02 < 1.02 < 1.02 < 1.02 < 1.02 < 1.02 < 1.02 < 1.02 < 1.02 < 1.02 < 1.02 < 1.02 < 1.02 < 1.02 < 1.02 < 1.02 < 1.02 < 1.02 < 1.02 < 1.02 < 1.02 < 1.02 < 1.02 < 1.02 < 1.02 < 1.02 < 1.02 < 1.02 < 1.02 < 1.02 < 1.02 < 1.02 < 1.02 < 1.02 < 1.02 < 1.02 < 1.02 < 1.02 < 1.02 < 1.02 < 1.02 < 1.02 < 1.02 < 1.02 < 1.02 < 1.02 < 1.02 < 1.02 < 1.02 < 1.02 < 1.02 < 1.02 < 1.02 < 1.02 < 1.02 < 1.02 < 1.02 < 1.02 < 1.02 < 1.02 < 1.02 < 1.02 < 1.02 < 1.02 < 1.02 < 1.02 < 1.02 < 1.02 < 1.02 < 1.02 < 1.02 < 1.02 < 1.02 < 1.02 < 1.02 < 1.02 < 1.02 < 1.02 < 1.02 < 1.02 < 1.02 < 1.02 < 1.02 < 1.02 < 1.02 < 1.02 < 1.02 < 1.02 < 1.02 < 1.02 < 1.02 < 1.02 < 1.02 < 1.02 < 1.02 < 1.02 < 1.02 < 1.02 < 1.02 < 1.02 < 1.02 < 1.02 < 1.02 < 1.02 < 1.02 < 1.02 < 1.02 < 1.02 < 1.02 < 1.02 < 1.02 < 1.02 < 1.02 < 1.02 < 1.02 < 1.02 < 1.02 < 1.02 < 1.02 < 1.02 < 1.02 < 1.02 < 1.02 < 1.02 < 1.02 < 1.02 < 1.02 < 1.02 < 1.02 < 1.02 < 1.02 < 1.02 < 1.02 < 1.02 < 1.02 < 1.02 < 1.02 < 1.02 < 1.02 <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 5.02 <<br>5.02 <<br>5.02 <<br>5.02 <<br>5.02 <<br>5.02 <<br>5.02 <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.05 < 0<br>0.05 < 0<br>0.05 < 0<br>0.05 < 0<br>0.05 < 0<br>0.05 < 0<br>0.05 < 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 22 < 0.05<br>32 < 0.05 | ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0. | 0.05 < 0<br>0.05 < 0<br>0.05 < 0<br>0.05 < 0<br>0.05 < 0<br>0.05 < 0<br>0.05 < 0                         | 05 < 0.02<br>05 < 0.02              | < 0.02<br>< 0.02<br>< 0.02<br>< 0.02<br>< 0.02<br>< 0.02<br>< 0.02<br>< 0.02 | < 0.05<br>< 0.05<br>< 0.05<br>< 0.05<br>< 0.05<br>< 0.05<br>< 0.05<br>< 0.05 | < 0.05<br>< 0.05<br>< 0.05<br>< 0.05<br>< 0.05<br>< 0.05<br>< 0.05<br>< 0.05           | < 0.05<br>< 0.05<br>< 0.05<br>< 0.05<br>< 0.05<br>< 0.05<br>< 0.05           | < 0.05 < 0<br>< 0.05 < 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 601 < 0.01<br>601 < 0.01      | < 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 21.Fab.19 < 0.02<br>14.Mar-19 < 0.02<br>23.Apr-19 < 0.02<br>16.Mar-19 < 0.02<br>16.Mar-19 < 0.02<br>14.Jun-19 < 0.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <0.02<br>< 0.02<br>< 0.02<br>< 0.02<br>< 0.02<br>< 0.02<br>< 0.02<br>< 0.02            | <pre>&lt;0.02 &lt;0.02 &lt; 0.01 &lt; 0.02 &lt; 0.02</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | < 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <0.02<br>< 0.02<br>< 0.02<br>< 0.02<br>< 0.02<br>< 0.02<br>< 0.02            | < 0.1<br>< 0.1<br>< 0.1<br>< 0.1<br>< 0.1<br>< 0.1<br>< 0.1          | <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02  | 2 <0.02<br>2 <0.02<br>2 <0.02<br>2 <0.02<br>2 <0.02<br>2 <0.02<br>2 <0.02<br>2 <0.02<br>2 <0.02                                                                                    | < 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01           | <0.02<br>< 0.02<br>< 0.02<br>< 0.02<br>< 0.02<br>< 0.02<br>< 0.02<br>< 0.02  | <0.02<br>< 0.02<br>< 0.02<br>< 0.02<br>< 0.02<br>< 0.02<br>< 0.02<br>< 0.02  | <0.02<br>< 0.02<br>< 0.02<br>< 0.02<br>< 0.02<br>< 0.02<br>< 0.02<br>< 0.02  | <0.02 <0.02 <1 <0.02 <1 <0.02 <1 <0.02 <1 <0.02 <1 <0.02 <1 <0.02 <1 <0.02 <1 <0.02 <1 <0.02 <1 <0.02 <1 <0.02 <1 <0.02 <1 <0.02 <1 <0.02 <1 <0.02 <1 <0.02 <1 <0.02 <1 <0.02 <1 <0.02 <1 <0.02 <1 <0.02 <1 <0.02 <1 <0.02 <1 <0.02 <1 <0.02 <1 <0.02 <1 <0.02 <1 <0.02 <1 <0.02 <1 <0.02 <1 <0.02 <1 <0.02 <1 <0.02 <1 <0.02 <1 <0.02 <1 <0.02 <1 <0.02 <1 <0.02 <1 <0.02 <1 <0.02 <1 <0.02 <1 <0.02 <1 <0.02 <1 <0.02 <1 <0.02 <1 <0.02 <1 <0.02 <1 <0.02 <1 <0.02 <1 <0.02 <1 <0.02 <1 <0.02 <1 <0.02 <1 <0.02 <1 <0.02 <1 <0.02 <1 <0.02 <1 <0.02 <1 <0.02 <1 <0.02 <1 <0.02 <1 <0.02 <1 <0.02 <1 <0.02 <1 <0.02 <1 <0.02 <1 <0.02 <1 <0.02 <1 <0.02 <1 <0.02 <1 <0.02 <1 <0.02 <1 <0.02 <1 <0.02 <1 <0.02 <1 <0.02 <1 <0.02 <1 <0.02 <1 <0.02 <1 <0.02 <1 <0.02 <1 <0.02 <1 <0.02 <1 <0.02 <1 <0.02 <1 <0.02 <1 <0.02 <1 <0.02 <1 <0.02 <1 <0.02 <1 <0.02 <1 <0.02 <1 <0.02 <1 <0.02 <1 <0.02 <1 <0.02 <1 <0.02 <1 <0.02 <1 <0.02 <1 <0.02 <1 <0.02 <1 <0.02 <1 <0.02 <1 <0.02 <1 <0.02 <1 <0.02 <1 <0.02 <1 <0.02 <1 <0.02 <1 <0.02 <1 <0.02 <1 <0.02 <0.02 <1 <0.02 <1 <0.02 <1 <0.02 <1 <0.02 <1 <0.02 <1 <0.02 <1 <0.02 <1 <0.02 <1 <0.02 <1 <0.02 <1 <0.02 <1 <0.02 <1 <0.02 <1 <0.02 <1 <0.02 <1 <0.02 <1 <0.02 <1 <0.02 <1 <0.02 <1 <0.02 <1 <0.02 <1 <0.02 <1 <0.02 <1 <0.02 <1 <0.02 <1 <0.02 <1 <0.02 <1 <0.02 <1 <0.02 <1 <0.02 <1 <0.02 <1 <0.02 <1 <0.02 <1 <0.02 <1 <0.02 <1 <0.02 <1 <0.02 <1 <0.02 <1 <0.02 <1 <0.02 <1 <0.02 <1 <0.02 <0.02 <1 <0.02 <1 <0.02 <1 <0.02 <1 <0.02 <1 <0.02 <1 <0.02 <1 <0.02 <1 <0.02 <1 <0.02 <1 <0.02 <1 <0.02 <1 <0.02 <1 <0.02 <1 <0.02 <1 <0.02 <1 <0.02 <1 <0.02 <1 <0.02 <1 <0.02 <1 <0.02 <1 <0.02 <1 <0.02 <1 <0.02 <1 <0.02 <1 <0.02 <1 <0.02 <1 <0.02 <1 <0.02 <1 <0.02 <1 <0.02 <1 <0.02 <1 <0.02 <1 <0.02 <1 <0.02 <1 <0.02 <1 <0.02 <1 <0.02 <1 <0.02 <1 <0.02 <1 <0.02 <1 <0.02 <1 <0.02 <0.02 <1 <0.02 <1 <0.02 <1 <0.02 <1 <0.02 <1 <0.02 <1 <0.02 <1 <0.02 <1 <0.02 <1 <0.02 <1 <0.02 <1 <0.02 <1 <0.02 <1 <0.02 <1 <0.02 <1 <0.02 <1 <0.02 <1 <0.02 <1 <0.02 <1 <0.02 <1 <0.02 <1 <0.02 <1 <0.02 <1 <0.02 <1 <0.02 <1 <0.02 <1 <0.02 <1 <0.02 <1 <0.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.02 <<br>0.02 <<br>0.02 <<br>0.02 <<br>0.02 <<br>0.02 <<br>0.02 <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 < | 2 < 0.05<br>22 < 0.05                                         | <   <   <   <   <   <   <   <   <   <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0. | 0.05 < 0<br>0.05 < 0 | 05 <0.02<br>05 <0.02<br>05 <0.02<br>05 <0.02<br>05 <0.02<br>05 <0.02<br>05 <0.02<br>05 <0.02                      | <0.02<br>< 0.02<br>< 0.02<br>< 0.02<br>< 0.02<br>< 0.02<br>< 0.02            | < 0.05<br>< 0.05<br>< 0.05<br>< 0.05<br>< 0.05<br>< 0.05<br>< 0.05           | < 0.05<br>< 0.05<br>< 0.05<br>< 0.05<br>< 0.05<br>< 0.05<br>< 0.05<br>< 0.05           | < 0.05<br>< 0.05<br>< 0.05<br>< 0.05<br>< 0.05<br>< 0.05<br>< 0.05           | <ul> <li>0.05</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 01 < 0.01<br>01 < 0.01<br>01 < 0.01                                                                               | < 0.01<br>< 0.01<br>< 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 16:36:19 < 0.00 15:40:0-19 < 0.00 16:50:19 < 0.00 16:50:19 < 0.00 18:50:19 < 0.00 18:40:19 < 0.00 18:40:19 < 0.00 17:00:19 < 0.00 17:00:19 < 0.00 16:30:20 < 0.00 16:30:20 < 0.00 17:00:19 < 0.00 17:00:19 < 0.00 17:00:19 < 0.00 17:00:19 < 0.00 17:00:19 < 0.00 17:00:19 < 0.00 17:00:10 < 0.00 17:00:10 < 0.00 17:00:10 < 0.00 17:00:10 < 0.00 17:00:10 < 0.00 17:00:10 < 0.00 17:00:10 < 0.00 17:00:10 < 0.00 17:00:10 < 0.00 17:00:10 < 0.00 17:00:10 < 0.00 17:00:10 < 0.00 17:00:10 < 0.00 17:00:10 < 0.00 17:00:10 < 0.00 17:00:10 < 0.00 17:00:10 < 0.00 17:00:10 < 0.00 17:00:10 < 0.00 17:00:10 < 0.00 17:00:10 < 0.00 17:00:10 < 0.00 17:00:10 < 0.00 17:00:10 < 0.00 17:00:10 < 0.00 17:00:10 < 0.00 17:00:10 < 0.00 17:00:10 < 0.00 17:00:10 < 0.00 17:00:10 < 0.00 17:00:10 < 0.00 17:00:10 < 0.00 17:00:10 < 0.00 17:00:10 < 0.00 17:00:10 < 0.00 17:00:10 < 0.00 17:00:10 < 0.00 17:00:10 < 0.00 17:00:10 < 0.00 17:00:10 < 0.00 17:00:10 < 0.00 17:00:10 < 0.00 17:00:10 < 0.00 17:00:10 < 0.00 17:00:10 < 0.00 17:00:10 < 0.00 17:00:10 < 0.00 17:00:10 < 0.00 17:00:10 < 0.00 17:00:10 < 0.00 17:00:10 < 0.00 17:00:10 < 0.00 17:00:10 < 0.00 17:00:10 < 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | < 0.02<br>< 0.02<br>< 0.02<br>< 0.02<br>< 0.02<br>< 0.02<br>< 0.02<br>< 0.02<br>< 0.02 | <ul> <li>0.02</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | < 0.01<br>< 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | < 0.02<br>< 0.02<br>< 0.02<br>< 0.02<br>< 0.02<br>< 0.02<br>< 0.02<br>< 0.02 | < 0.1<br>< 0.1<br>< 0.1<br>< 0.1<br>< 0.1<br>< 0.1<br>< 0.1<br>< 0.1 | < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 22 < 0.02<br>22 < 0.02<br>22 < 0.02<br>22 < 0.02<br>22 < 0.02<br>23 < 0.02<br>24 < 0.02<br>25 < 0.02<br>26 < 0.02<br>27 < 0.02<br>28 < 0.02<br>29 < 0.02<br>20 < 0.02<br>20 < 0.02 | < 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01 | < 0.02<br>< 0.02<br>< 0.02<br>< 0.02<br>< 0.02<br>< 0.02<br>< 0.02<br>< 0.02 | < 0.02<br>< 0.02<br>< 0.02<br>< 0.02<br>< 0.02<br>< 0.02<br>< 0.02<br>< 0.02 | < 0.02<br>< 0.02<br>< 0.02<br>< 0.02<br>< 0.02<br>< 0.02<br>< 0.02<br>< 0.02 | < 0.00 < 1<br>< 0.00 < 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 5.02 <<br>5.02 <<br>9.02 <<br>9.02 <<br>0.02 <<br>0.02 <<br>0.02 <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.05 < 0<br>0.05 < 0<br>0.05 < 0<br>0.05 < 0<br>0.05 < 0<br>0.05 < 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 22 < 0.05<br>22 < 0.05                                        | ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.05 <<br>0.05 <<br>0.05 <<br>0.05 <<br>0.05 <<br>0.05 <<br>0.05 <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.05 < 0<br>0.05 < 0<br>0.05 < 0<br>0.05 < 0<br>0.05 < 0<br>0.05 < 0<br>0.05 < 0                         | 05 < 0.02<br>05 < 0.02              | < 0.02<br>< 0.02<br>< 0.02<br>< 0.02<br>< 0.02<br>< 0.02<br>< 0.02<br>< 0.02 | < 0.05<br>< 0.05<br>< 0.05<br>< 0.05<br>< 0.05<br>< 0.05<br>< 0.05<br>< 0.05 | < 0.05<br>< 0.05<br>< 0.05<br>< 0.05<br>< 0.05<br>< 0.05<br>< 0.05<br>< 0.05           | < 0.05<br>< 0.05<br>< 0.05<br>< 0.05<br>< 0.05<br>< 0.05<br>< 0.05<br>< 0.05 | < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 <p< td=""><td>01 &lt; 0.01<br/>01 &lt; 0.01</td><td>&lt; 0.01<br/>&lt; 0.01</td></p<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 01 < 0.01<br>01 < 0.01              | < 0.01<br>< 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| BH8 15-May-20 < 0.02<br>19-Jun-20 < 0.02<br>16-Jul-20 < 0.02<br>16-Jul-20 < 0.02<br>14-Aug-20 < 0.02<br>16-Sup-20 < 0.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | < 0.02<br>< 0.02<br>< 0.02<br>< 0.02<br>< 0.02<br>< 0.02<br>< 0.02<br>< 0.02           | < 0.02 < 0.02<br>< 0.02 < 0.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | < 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | < 0.02<br>< 0.02<br>< 0.02<br>< 0.02<br>< 0.02<br>< 0.02<br>< 0.02<br>< 0.02 | < 0.1<br>< 0.1<br>< 0.1<br>< 0.1<br>< 0.1<br>< 0.1<br>< 0.1<br>< 0.1 | < 0.02 < 0.<br>< 0.02 < 0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2 < 0.02<br>2 < 0.02                                                                                       | < 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01           | < 0.02<br>< 0.02<br>< 0.02<br>< 0.02<br>< 0.02<br>< 0.02<br>< 0.02           | < 0.02<br>< 0.02<br>< 0.02<br>< 0.02<br>< 0.02<br>< 0.02<br>< 0.02<br>< 0.02 | < 0.02<br>< 0.02<br>< 0.02<br>< 0.02<br>< 0.02<br>< 0.02<br>< 0.02<br>< 0.02 | < 0.02 < 1<br>< 0.02 < 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.02 <<br>0.02 <<br>0.02 <<br>0.02 <<br>0.02 <<br>0.02 <<br>0.02 <<br>0.02 <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.05 < 0<br>0.05 < 0<br>0.05 < 0<br>0.05 < 0<br>0.05 < 0<br>0.05 < 0<br>0.05 < 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2                                                                                                                                           | ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0. | 0.05 < 0<br>0.05 < 0<br>0.05 < 0<br>0.05 < 0<br>0.05 < 0<br>0.05 < 0<br>0.05 < 0                         | 05 < 0.02<br>05 < 0.02 | < 0.02<br>< 0.02<br>< 0.02<br>< 0.02<br>< 0.02<br>< 0.02<br>< 0.02           | < 0.05<br>< 0.05<br>< 0.05<br>< 0.05<br>< 0.05<br>< 0.05<br>< 0.05           | < 0.05<br>< 0.05<br>< 0.05<br>< 0.05<br>< 0.05<br>< 0.05<br>< 0.05<br>< 0.05           | < 0.05<br>< 0.05<br>< 0.05<br>< 0.05<br>< 0.05<br>< 0.05<br>< 0.05           | < 0.05 < 0<br>< 0.05 < 0<br>< 0.05 < 0<br>< 0.05 < 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 01 < 0.01<br>01 < 0.01              | < 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 16-Oct-20 < 0.02<br>26-Nov-20 < 0.02<br>16-Doc-20 < 0.02<br>16-Doc-20 < 0.02<br>14-Jan-21 < 0.02<br>16-Fab-21 < 0.02<br>27-Apr-21 < 0.02<br>20-Apr-21 < 0.02<br>20-May-21 < 0.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | < 0.02<br>< 0.02<br>< 0.02<br>< 0.02<br>< 0.02<br>< 0.02<br>< 0.02<br>< 0.02           | < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | < 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | < 0.02<br>< 0.02<br>< 0.02<br>< 0.02<br>< 0.02<br>< 0.02<br>< 0.02<br>< 0.02 | < 0.1<br>< 0.1<br>< 0.1<br>< 0.1<br>< 0.1<br>< 0.1<br>< 0.1          | < 0.02 < 0.02 < 0. < 0.02 < 0. < 0.02 < 0. < 0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2 < 0.02<br>2 < 0.02                                                                           | < 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01           | < 0.02<br>< 0.02<br>< 0.02<br>< 0.02<br>< 0.02<br>< 0.02<br>< 0.02           | < 0.02<br>< 0.02<br>< 0.02<br>< 0.02<br>< 0.02<br>< 0.02<br>< 0.02<br>< 0.02 | < 0.02<br>< 0.02<br>< 0.02<br>< 0.02<br>< 0.02<br>< 0.02<br>< 0.02<br>< 0.02 | < 0.02 < 1<br>< 0.02 < 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 5.02 < 5.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0. | 0.05 < 0<br>0.05 < 0<br>0.05 < 0<br>0.05 < 0<br>0.05 < 0<br>0.05 < 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 22 < 0.05<br>22 < 0.05                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0. | 0.05 < 0<br>0.05 < 0             | US < 0.02<br>05 < 0.02 | < 0.02<br>< 0.02<br>< 0.02<br>< 0.02<br>< 0.02<br>< 0.02<br>< 0.02<br>< 0.02 | < 0.05<br>< 0.05<br>< 0.05<br>< 0.05<br>< 0.05<br>< 0.05<br>< 0.05<br>< 0.05 | < 0.05<br>< 0.05<br>< 0.05<br>< 0.05<br>< 0.05<br>< 0.05<br>< 0.05<br>< 0.05<br>< 0.05 | < 0.05<br>< 0.05<br>< 0.05<br>< 0.05<br>< 0.05<br>< 0.05<br>< 0.05           | <ul> <li>0.05</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 01 < 0.01<br>01 < 0.01              | < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 15-762-21 < 0.00<br>17-762-21 < 0.00<br>27-762-21 < 0.00<br>27-762-21 < 0.00<br>28-762-21 < 0.00<br>18-30-21 < 0.00<br>19-30-21 < 0.00<br>19-30-21 < 0.00<br>19-30-21 < 0.00<br>19-30-21 < 0.00<br>19-30-20 < 0.00<br>19-30-20 < 0.00<br>19-30-20 < 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <0.02<br><0.02<br><0.02<br><0.02<br><0.02<br><0.02<br><0.05<br><0.02                   | <0.02 <0.02<br><0.02 <0.02<br><0.02 <0.02<br><0.01 <0.02<br><0.02 <0.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | < 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <0.02<br><0.02<br><0.02<br><0.02<br><0.02<br><0.02<br><0.05<br><0.05         | < 0.1<br>< 0.1<br>< 0.1<br>< 0.1<br>< 0.1<br>< 0.1<br>< 0.2<br>< 0.1 | <0.02 < 0.<br><0.02 < 0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2 < 0.02<br>2 <0.02<br>2 <0.02<br>2 <0.02<br>2 < 0.02<br>2 < 0.02<br>5 <0.05<br>2 < 0.05                                                                                           | < 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.05<br>< 0.00 | < 0.02<br><0.02<br><0.02<br>< 0.02<br>< 0.02<br>< 0.02<br><0.05<br>< 0.02    | < 0.02<br><0.02<br><0.02<br>< 0.02<br>< 0.02<br>< 0.03<br>< 0.03             | < 0.02<br>< 0.02<br>< 0.02<br>< 0.02<br>< 0.02<br>< 0.03<br>< 0.05<br>< 0.02 | < 0.00 < 1<br>< 0.02 < 5<br>< 0.02 < 5<br>< 0.02 < 1<br>< 0.02 < 1<br>< 0.00 < 1<br>< 0.05 < 6<br>< 0.00 < 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0. | 0.05 < 0<br>0.05 < 0<br>0.05 < 0<br>0.05 < 0<br>0.05 < 0<br>0.05 < 0<br>0.05 < 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 22 < 0.05<br>2 < 0.05<br>2 < 0.05<br>2 < 0.05<br>2 < 0.05<br>2 < 0.05<br>2 < 0.05<br>5 < 0.12<br>2 < 0.05                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0. | 0.05 < 0<br>0.05 < 0 | 05 < 0.02<br>05 < 0.02<br>05 < 0.02<br>05 < 0.02<br>05 < 0.02<br>05 < 0.02<br>12 < 0.05<br>05 < 0.02              | <0.02<br><0.02<br><0.02<br><0.02<br><0.02<br><0.02<br><0.02                  | < 0.05<br>< 0.05<br>< 0.05<br>< 0.05<br>< 0.05<br>< 0.05<br>< 0.05<br>< 0.05 | < 0.05<br>< 0.05<br>< 0.05<br>< 0.05<br>< 0.05<br><b>0.14</b><br>< 0.05<br>< 0.05      | < 0.05<br>< 0.05<br>< 0.05<br>< 0.05<br>< 0.05<br>< 0.05<br>< 0.05<br>< 0.05 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 01 < 0.01<br>01 < 0.01<br>01 < 0.01<br>01 < 0.01<br>01 < 0.01<br>01 < 0.01<br>01 < 0.00<br>01 < 0.00              | < 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>0.14<br>< 0.05<br>< 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 16-5ap-20 * < 0.05<br>16-0a-20 < 0.02<br>16-0a-20 < 0.02<br>16-0a-20 < 0.02<br>16-0a-20 < 0.02<br>16-0a-21 < 0.02<br>16-0a-21 < 0.02<br>16-0a-21 < 0.02<br>17-0a-21 < 0.02<br>22-0a-21 < 0.02<br>18-0a-21 < 0.02<br>18-0a-21 < 0.02<br>18-0a-21 < 0.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | < 0.02<br>< 0.02<br>< 0.02<br>< 0.02<br>< 0.02<br>< 0.02<br>< 0.02<br>< 0.02           | < 0.02 < 0.02<br>< 0.02 < 0.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <0.05<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | < 0.02<br>< 0.02<br>< 0.02<br>< 0.02<br>< 0.02<br>< 0.02<br>< 0.02<br>< 0.02 | < 0.1<br>< 0.1<br>< 0.1<br>< 0.1<br>< 0.1<br>< 0.1<br>< 0.1<br>< 0.1 | < 0.02 < 0.<br>< 0.02 < 0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 22 < 0.02<br>22 < 0.02<br>2 < 0.02                                                                         | < 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01 | < 0.02<br>< 0.02<br>< 0.02<br>< 0.02<br>< 0.02<br>< 0.02<br>< 0.02<br>< 0.02 | < 0.02<br>< 0.02<br>< 0.02<br>< 0.02<br>< 0.02<br>< 0.02<br>< 0.02<br>< 0.02 | < 0.02<br>< 0.02<br>< 0.02<br>< 0.02<br>< 0.02<br>< 0.02<br>< 0.02<br>< 0.02 | < 0.02 < 1 < 0.02 < 1 < 0.02 < 1 < 0.02 < 1 < 0.02 < 1 < 0.02 < 1 < 0.02 < 1 < 0.02 < 1 < 0.02 < 1 < 0.02 < 1 < 0.02 < 1 < 0.02 < 1 < 0.02 < 1 < 0.02 < 1 < 0.02 < 1 < 0.02 < 1 < 0.02 < 1 < 0.02 < 1 < 0.02 < 1 < 0.02 < 1 < 0.02 < 1 < 0.02 < 1 < 0.02 < 1 < 0.02 < 1 < 0.02 < 1 < 0.02 < 1 < 0.02 < 1 < 0.02 < 1 < 0.02 < 1 < 0.02 < 1 < 0.02 < 1 < 0.02 < 1 < 0.02 < 1 < 0.02 < 1 < 0.02 < 1 < 0.02 < 1 < 0.02 < 1 < 0.02 < 1 < 0.02 < 1 < 0.02 < 1 < 0.02 < 1 < 0.02 < 1 < 0.02 < 1 < 0.02 < 1 < 0.02 < 1 < 0.02 < 1 < 0.02 < 1 < 0.02 < 1 < 0.02 < 1 < 0.02 < 1 < 0.02 < 1 < 0.02 < 1 < 0.02 < 1 < 0.02 < 1 < 0.02 < 1 < 0.02 < 1 < 0.02 < 1 < 0.02 < 1 < 0.02 < 1 < 0.02 < 1 < 0.02 < 1 < 0.02 < 1 < 0.02 < 1 < 0.02 < 1 < 0.02 < 1 < 0.02 < 1 < 0.02 < 1 < 0.02 < 1 < 0.02 < 1 < 0.02 < 1 < 0.02 < 1 < 0.02 < 1 < 0.02 < 1 < 0.02 < 1 < 0.02 < 1 < 0.02 < 1 < 0.02 < 1 < 0.02 < 1 < 0.02 < 1 < 0.02 < 1 < 0.02 < 1 < 0.02 < 1 < 0.02 < 1 < 0.02 < 1 < 0.02 < 1 < 0.02 < 1 < 0.02 < 1 < 0.02 < 1 < 0.02 < 1 < 0.02 < 1 < 0.02 < 1 < 0.02 < 1 < 0.02 < 1 < 0.02 < 1 < 0.02 < 1 < 0.02 < 1 < 0.02 < 1 < 0.02 < 1 < 0.02 < 1 < 0.02 < 1 < 0.02 < 1 < 0.02 < 1 < 0.02 < 1 < 0.02 < 1 < 0.02 < 1 < 0.02 < 1 < 0.02 < 1 < 0.02 < 1 < 0.02 < 1 < 0.02 < 1 < 0.02 < 1 < 0.02 < 1 < 0.02 < 1 < 0.02 < 1 < 0.02 < 1 < 0.02 < 1 < 0.02 < 1 < 0.02 < 1 < 0.02 < 1 < 0.02 < 1 < 0.02 < 1 < 0.02 < 1 < 0.02 < 1 < 0.02 < 1 < 0.02 < 1 < 0.02 < 1 < 0.02 < 1 < 0.02 < 1 < 0.02 < 1 < 0.02 < 1 < 0.02 < 1 < 0.02 < 1 < 0.02 < 1 < 0.02 < 1 < 0.02 < 1 < 0.02 < 1 < 0.02 < 1 < 0.02 < 1 < 0.02 < 1 < 0.02 < 1 < 0.02 < 1 < 0.02 < 1 < 0.02 < 1 < 0.02 < 1 < 0.02 < 1 < 0.02 < 1 < 0.02 < 1 < 0.02 < 1 < 0.02 < 1 < 0.02 < 1 < 0.02 < 1 < 0.02 < 1 < 0.02 < 1 < 0.02 < 1 < 0.02 < 1 < 0.02 < 1 < 0.02 < 1 < 0.02 < 1 < 0.02 < 1 < 0.02 < 1 < 0.02 < 1 < 0.02 < 1 < 0.02 < 1 < 0.02 < 1 < 0.02 < 1 < 0.02 < 1 < 0.02 < 1 < 0.02 < 1 < 0.02 < 1 < 0.02 < 1 < 0.02 < 1 < 0.02 < 1 < 0.02 < 1 < 0.02 < 1 < 0.02 < 1 < 0.02 < 1 < 0.02 < 0.02 < 1 < 0.02 < 0.02 < 1 < 0.02 < 0.02 < 1 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0. | 0.05 < 0<br>0.05 < 0<br>0.05 < 0<br>0.05 < 0<br>0.05 < 0<br>0.05 < 0<br>0.05 < 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 22 < 0.05<br>22 < 0.05                                        | ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0. | 0.05 < 0<br>0.05 < 0<br>0.05 < 0<br>0.05 < 0<br>0.05 < 0<br>0.05 < 0<br>0.05 < 0                         | 05 < 0.02<br>05 < 0.02 | < 0.02<br>< 0.02<br>< 0.02<br>< 0.02<br>< 0.02<br>< 0.02<br>< 0.02           | < 0.05<br>< 0.05<br>< 0.05<br>< 0.05<br>< 0.05<br>< 0.05<br>< 0.05<br>< 0.05 | < 0.05<br>< 0.05<br>< 0.05<br>< 0.05<br>< 0.05<br>< 0.05<br>< 0.05<br>< 0.05<br>< 0.05 | < 0.05<br>< 0.05<br>< 0.05<br>< 0.05<br>< 0.05<br>< 0.05<br>< 0.05<br>< 0.05 | <ul> <li>&lt; 0.05</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 01 < 0.01<br>01 < 0.01 | 0.14 <0.05 <0.01 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 15:30:21 < 50:02<br>10:40:02 : +n n2<br>22:30:p.21 < 0.02<br>13:30:21 < 0.02<br>16:40:-21 < 0.02<br>22:40:-21 < 0.02<br>22:40:-21 < 0.02<br>8H10 20:May-21 < 0.02<br>18:Jun-21 < 0.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <0.02<br>+0.02<br>< 0.02<br>< 0.02<br>< 0.02<br>< 0.02<br>< 0.02<br>< 0.02             | x0.02         x0.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | < 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <0.02<br><0.02<br><0.02<br><0.02<br><0.02<br><0.02<br><0.02                  | < 0.1<br>< 0.1<br>< 0.1<br>< 0.1<br>< 0.1<br>< 0.1<br>< 0.1          | <0.02 <0.02 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.0 | 2 <0.02<br>2 <0.02<br>2 <0.02<br>2 <0.02<br>2 <0.02<br>2 <0.02<br>2 <0.02                                                                                                          | < 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01                     | <0.02<br>< 0.02<br>< 0.02<br>< 0.02<br>< 0.02<br>< 0.02<br>< 0.02<br>< 0.02  | <0.02<br><0.02<br><0.02<br><0.02<br><0.02<br><0.02<br><0.02                  | <0.02<br><0.02<br><0.02<br><0.02<br><0.02<br><0.02<br><0.02                  | -0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 5.02 < 5.02 < 5.02 < 6.002 < 6.002 < 6.002 < 6.002 < 6.002 < 6.002 < 6.002 < 6.002 < 6.002 < 6.002 < 6.002 < 6.002 < 6.002 < 6.002 < 6.002 < 6.002 < 6.002 < 6.002 < 6.002 < 6.002 < 6.002 < 6.002 < 6.002 < 6.002 < 6.002 < 6.002 < 6.002 < 6.002 < 6.002 < 6.002 < 6.002 < 6.002 < 6.002 < 6.002 < 6.002 < 6.002 < 6.002 < 6.002 < 6.002 < 6.002 < 6.002 < 6.002 < 6.002 < 6.002 < 6.002 < 6.002 < 6.002 < 6.002 < 6.002 < 6.002 < 6.002 < 6.002 < 6.002 < 6.002 < 6.002 < 6.002 < 6.002 < 6.002 < 6.002 < 6.002 < 6.002 < 6.002 < 6.002 < 6.002 < 6.002 < 6.002 < 6.002 < 6.002 < 6.002 < 6.002 < 6.002 < 6.002 < 6.002 < 6.002 < 6.002 < 6.002 < 6.002 < 6.002 < 6.002 < 6.002 < 6.002 < 6.002 < 6.002 < 6.002 < 6.002 < 6.002 < 6.002 < 6.002 < 6.002 < 6.002 < 6.002 < 6.002 < 6.002 < 6.002 < 6.002 < 6.002 < 6.002 < 6.002 < 6.002 < 6.002 < 6.002 < 6.002 < 6.002 < 6.002 < 6.002 < 6.002 < 6.002 < 6.002 < 6.002 < 6.002 < 6.002 < 6.002 < 6.002 < 6.002 < 6.002 < 6.002 < 6.002 < 6.002 < 6.002 < 6.002 < 6.002 < 6.002 < 6.002 < 6.002 < 6.002 < 6.002 < 6.002 < 6.002 < 6.002 < 6.002 < 6.002 < 6.002 < 6.002 < 6.002 < 6.002 < 6.002 < 6.002 < 6.002 < 6.002 < 6.002 < 6.002 < 6.002 < 6.002 < 6.002 < 6.002 < 6.002 < 6.002 < 6.002 < 6.002 < 6.002 < 6.002 < 6.002 < 6.002 < 6.002 < 6.002 < 6.002 < 6.002 < 6.002 < 6.002 < 6.002 < 6.002 < 6.002 < 6.002 < 6.002 < 6.002 < 6.002 < 6.002 < 6.002 < 6.002 < 6.002 < 6.002 < 6.002 < 6.002 < 6.002 < 6.002 < 6.002 < 6.002 < 6.002 < 6.002 < 6.002 < 6.002 < 6.002 < 6.002 < 6.002 < 6.002 < 6.002 < 6.002 < 6.002 < 6.002 < 6.002 < 6.002 < 6.002 < 6.002 < 6.002 < 6.002 < 6.002 < 6.002 < 6.002 < 6.002 < 6.002 < 6.002 < 6.002 < 6.002 < 6.002 < 6.002 < 6.002 < 6.002 < 6.002 < 6.002 < 6.002 < 6.002 < 6.002 < 6.002 < 6.002 < 6.002 < 6.002 < 6.002 < 6.002 < 6.002 < 6.002 < 6.002 < 6.002 < 6.002 < 6.002 < 6.002 < 6.002 < 6.002 < 6.002 < 6.002 < 6.002 < 6.002 < 6.002 < 6.002 < 6.002 < 6.002 < 6.002 < 6.002 < 6.002 < 6.002 < 6.002 < 6.002 < 6.002 < 6.002 < 6.002 < 6.002 < 6.002 < 6.002 < 6.002 < 6.002 < 6.002 < 6.002 < 6.002 < 6.002 < 6 | 0.05 c0<br>0.05 c0<br>0.05 c0<br>0.05 c0<br>0.05 c0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2 < 0.05<br>0 < 0.05                                                | < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 2 < 1 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 | 0.05 <<br>0.05 <<br>0.05 <<br>0.05 <<br>0.05 <<br>0.05 <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.05 < 0<br>0.05 < 0<br>0.05 < 0<br>0.05 < 0<br>0.05 < 0<br>0.05 < 0<br>0.05 < 0                         |                                                                                                                   | <0.02<br><0.02<br><0.02<br><0.02<br><0.02<br><0.02<br><0.02                  | < 0.05<br>< 0.05<br>< 0.05<br>< 0.05<br>< 0.05<br>< 0.05<br>< 0.05           | < 0.05<br>< 0.05<br>< 0.05<br>< 0.05<br>< 0.05<br>< 0.05<br>< 0.05                     | < 0.05<br>< 0.05<br>< 0.05<br>< 0.05<br>< 0.05<br>< 0.05<br>< 0.05           | < 0.05 < 0.05 < 0 < 0.05 < 0 < 0.05 < 0 < 0.05 < 0 < 0.05 < 0 < 0.05 < 0 < 0.05 < 0 < 0.05 < 0 < 0.05 < 0 < 0.05 < 0 < 0.05 < 0 < 0.05 < 0 < 0.05 < 0 < 0.05 < 0 < 0.05 < 0 < 0.05 < 0 < 0.05 < 0 < 0.05 < 0 < 0.05 < 0 < 0.05 < 0 < 0.05 < 0 < 0.05 < 0 < 0.05 < 0 < 0.05 < 0 < 0.05 < 0 < 0.05 < 0 < 0.05 < 0 < 0.05 < 0 < 0.05 < 0 < 0 < 0.05 < 0 < 0.05 < 0 < 0.05 < 0 < 0.05 < 0 < 0.05 < 0 < 0.05 < 0 < 0.05 < 0 < 0.05 < 0 < 0.05 < 0 < 0.05 < 0 < 0.05 < 0 < 0.05 < 0 < 0.05 < 0 < 0.05 < 0 < 0.05 < 0 < 0.05 < 0 < 0.05 < 0 < 0.05 < 0 < 0.05 < 0 < 0.05 < 0 < 0.05 < 0 < 0.05 < 0 < 0.05 < 0 < 0.05 < 0 < 0.05 < 0 < 0.05 < 0 < 0.05 < 0 < 0.05 < 0 < 0.05 < 0 < 0.05 < 0 < 0.05 < 0 < 0.05 < 0 < 0.05 < 0 < 0.05 < 0 < 0.05 < 0 < 0.05 < 0 < 0.05 < 0 < 0.05 < 0 < 0.05 < 0 < 0.05 < 0 < 0.05 < 0 < 0.05 < 0 < 0.05 < 0 < 0.05 < 0 < 0.05 < 0 < 0.05 < 0 < 0.05 < 0 < 0.05 < 0 < 0.05 < 0 < 0.05 < 0 < 0.05 < 0 < 0.05 < 0 < 0.05 < 0 < 0.05 < 0 < 0.05 < 0 < 0.05 < 0 < 0.05 < 0 < 0.05 < 0 < 0.05 < 0 < 0.05 < 0 < 0.05 < 0 < 0.05 < 0 < 0.05 < 0.05 < 0 < 0.05 < 0 < 0.05 < 0 < 0.05 < 0 < 0.05 < 0 < 0.05 < 0 < 0.05 < 0 < 0.05 < 0 < 0.05 < 0 < 0.05 < 0 < 0.05 < 0 < 0.05 < 0.05 < 0 < 0.05 < 0 < 0.05 < 0 < 0.05 < 0 < 0.05 < 0 < 0.05 < 0 < 0.05 < 0.05 < 0 < 0.05 < 0 < 0.05 < 0.05 < 0 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 <  | 001 < 0.01<br>001 < 0.01<br>001 < 0.01<br>001 < 0.01<br>001 < 0.01<br>001 < 0.01<br>001 < 0.01                    | < 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |



|                           |                                            |                                  |                                   | Perfluoroalityl St               | (York Acids                    |                                  |               |                   |                             |                                   |                             | Dard                             | luoroalkyl Carboxylis            | - Arids                          |                              |                              |                               |                                          |                                |                                             | Dan                        | fluoroalkyl Sulfona         | mides                      |                             |                            |                                              | (n:2) Fluorotelomer S                        | dfonir Arida |                                       |                          | Sum of PFAS                  |             |
|---------------------------|--------------------------------------------|----------------------------------|-----------------------------------|----------------------------------|--------------------------------|----------------------------------|---------------|-------------------|-----------------------------|-----------------------------------|-----------------------------|----------------------------------|----------------------------------|----------------------------------|------------------------------|------------------------------|-------------------------------|------------------------------------------|--------------------------------|---------------------------------------------|----------------------------|-----------------------------|----------------------------|-----------------------------|----------------------------|----------------------------------------------|----------------------------------------------|--------------|---------------------------------------|--------------------------|------------------------------|-------------|
| Ar                        |                                            | Perfluorobutane<br>sulfonic acid | Perfluoropentane<br>sulfonic acid | Perfluorohexane<br>sulfonic acid | Perfluorohepta<br>ne sulfonate | Perfluorosctane<br>sulfonic acid | sulfenic acid | Perfluorobutanoic | Perfluoropenta<br>noic acid | Perfluorohexanoic<br>acid (PFHxA) | Perflucrohepta<br>noic acid | Perfluorooctanoic<br>acid (PFOA) | Perfluorononanoic<br>acid (PFNA) | Perfluorodecanoic<br>acid (PFDA) | Perfluoroundeca<br>noic acid | Perfluorododeca<br>noic acid | Perfluorotrideca<br>noic acid | Perfluorotetradeca<br>noic acid (PFTeDA) | Perfluorooctane<br>sulfonamide | N-Methyl-<br>perfluorooctane<br>sulfonamide | N-Ethyl<br>perfluorooctane | N-Methyl<br>perfluorooctane | N-Ethyl<br>perfluorooctane | N-Methyl<br>perfluorosctane | N-Ethyl<br>perfluorooctane | 4:2 Fluorotelomer sulfonic<br>acid (4:2 FTS) | 6:2 Fluorotelomer sulfonic<br>acid (6:2 FTS) |              | 10:2<br>Nucrotelomer<br>sulfonic acid | Sum of PFHxS<br>and PFOS | Sum of PFAS (WA<br>DER List) | Sum of PFAS |
|                           |                                            | (PFBS)                           | (PFPeS)                           | (PFHxS)                          | (PFHpS)                        | (PFOS)                           | (PFDS)        | acid (PFBA)       | (PFPeA)                     |                                   | (PFHpA)                     |                                  |                                  |                                  | (PFUnDA)                     | (PFDeDA)                     | (PFTrDA)                      |                                          | (FOSA)                         | (MeFOSA)                                    | (EtFOSA)                   | anol (MeFOSE)               | anol (EtFOSE)              | acid (MeFOSAA)              | acid (EtFOSAA)             |                                              |                                              |              | (10:2 FTS)                            |                          |                              |             |
|                           | .0R                                        | 0.02                             | 0.02                              | 0.02                             | 0.02                           |                                  | 0.02          | 0.1               | 0.02                        | 0.02                              | 0.02                        | 0.01                             | 0.02                             | 0.02                             | 0.02                         | 0.02                         | 0.02                          | 0.05                                     |                                | 0.65                                        | 0.05                       | 0.05                        | 0.65                       | 0.02                        | 0.02                       | 0.05                                         | 0.05                                         | 0.05         | 0.05                                  | 0.01                     |                              | 0.01        |
|                           | Inits                                      | µg/L                             | µg/L                              | yg/L                             | pg/L                           | µg/L                             | pg/L          | pg/L              | pg/L                        | pg/L                              | µg/L                        | pg/L                             | μg/L                             | P2/L                             | yg/L                         | pg/L                         | µg/L                          | μα/L                                     | pg/L                           | µg/L                                        | pg/L                       | µg/L                        | pg/L                       | µg/L                        | µg/L                       | pg/L                                         | µg/L                                         | µg/L         | pg/L                                  | pg/L                     | µg/L                         | pg/L        |
| Adopted Site<br>Values (S | Specific Trigger<br>WMP 20211 <sup>2</sup> |                                  |                                   | 0.07                             |                                | 0.07                             |               |                   |                             |                                   |                             | 0.56                             |                                  |                                  |                              |                              |                               |                                          |                                |                                             |                            |                             |                            |                             |                            |                                              |                                              |              |                                       | 0.07                     |                              |             |
|                           | 34P 2020***                                |                                  |                                   |                                  |                                | 0.00023                          |               |                   |                             |                                   |                             | 19                               |                                  |                                  |                              |                              |                               |                                          |                                |                                             |                            |                             |                            |                             |                            |                                              |                                              |              | -                                     |                          |                              |             |
| HEPA N                    | EMP 2020*                                  |                                  |                                   |                                  |                                |                                  |               |                   |                             |                                   |                             | 5.6                              |                                  |                                  |                              |                              |                               |                                          |                                |                                             |                            |                             |                            |                             |                            |                                              |                                              |              |                                       | 0.7                      |                              |             |
|                           | 15-Jul-21                                  | <0.02                            | e0.02                             | c0.02                            | <0.02                          | < 0.01                           | e0.02         | < 0.1             | e0.02                       | e0.02                             | e0.02                       | < 0.01                           | e0.02                            | c0.02                            | <0.02                        | e0.02                        | e0.02                         | < 0.05                                   | e0.02                          | < 0.05                                      | < 0.05                     | < 0.05                      | < 0.05                     | e0.02                       | e0.02                      | < 0.05                                       | < 0.05                                       | < 0.05       | < 0.05                                | < 0.01                   | < 0.01                       | < 0.01      |
|                           | 21-Feb-19                                  | < 0.02                           | < 0.02                            | < 0.02                           | < 0.02                         | < 0.01                           | < 0.02        | < 0.1             | < 0.02                      | < 0.02                            | < 0.02                      | < 0.01                           | < 0.02                           | < 0.02                           | < 0.02                       | < 0.02                       | < 0.02                        | < 0.05                                   | < 0.02                         | < 0.05                                      | < 0.05                     | < 0.05                      | < 0.05                     | < 0.02                      | < 0.02                     | < 0.05                                       | < 0.05                                       | < 0.05       | < 0.05                                | < 0.01                   | < 0.01                       | < 0.01      |
|                           | 14-Aug-20                                  | < 0.02                           | < 0.02                            | < 0.02                           | < 0.02                         | < 0.01                           | < 0.02        | < 0.1             | < 0.02                      | < 0.02                            | < 0.02                      | < 0.01                           | < 0.02                           | < 0.02                           | < 0.02                       | < 0.02                       | < 0.02                        | < 0.05                                   | < 0.02                         | < 0.05                                      | < 0.05                     | < 0.05                      | < 0.05                     | < 0.02                      | < 0.02                     | < 0.05                                       | < 0.05                                       | < 0.05       | < 0.05                                | < 0.01                   | < 0.01                       | < 0.01      |
|                           | 16-Sep-20                                  | < 0.02                           | < 0.02                            | < 0.02                           | < 0.02                         | < 0.01                           | < 0.02        | < 0.1             | < 0.02                      | < 0.02                            | < 0.02                      | < 0.01                           | < 0.02                           | < 0.02                           | < 0.02                       | < 0.02                       | < 0.02                        | < 0.05                                   | < 0.02                         | < 0.05                                      | < 0.05                     | < 0.05                      | < 0.05                     | < 0.02                      | < 0.02                     | < 0.05                                       | < 0.05                                       | < 0.05       | < 0.05                                | < 0.01                   | < 0.01                       | < 0.01      |
|                           | 16-Oct-20                                  | < 0.02                           | < 0.02                            | < 0.02                           | < 0.02                         | < 0.01                           | < 0.02        | < 0.1             | < 0.02                      | < 0.02                            | < 0.02                      | < 0.01                           | < 0.02                           | < 0.02                           | < 0.02                       | < 0.02                       | < 0.02                        | < 0.05                                   | < 0.02                         | < 0.05                                      | < 0.05                     | < 0.05                      | < 0.05                     | < 0.02                      | < 0.02                     | < 0.05                                       | < 0.05                                       | < 0.05       | < 0.05                                | < 0.01                   | < 0.01                       | < 0.01      |
|                           | 16-Nov-20                                  | < 0.02                           | < 0.02                            | < 0.02                           | < 0.02                         | < 0.01                           | < 0.02        | < 0.1             | < 0.02                      | < 0.02                            | < 0.02                      | < 0.01                           | < 0.02                           | < 0.02                           | < 0.02                       | < 0.02                       | < 0.02                        | < 0.05                                   | < 0.02                         | < 0.05                                      | < 0.05                     | < 0.05                      | < 0.05                     | < 0.02                      | < 0.02                     | < 0.05                                       | < 0.05                                       | < 0.05       | < 0.05                                | < 0.01                   | < 0.01                       | < 0.01      |
|                           | 16-Dec-20                                  | < 0.02                           | < 0.02                            | < 0.02                           | < 0.02                         | < 0.01                           | < 0.02        | < 0.1             | < 0.02                      | < 0.02                            | < 0.02                      | < 0.01                           | < 0.02                           | < 0.02                           | < 0.02                       | < 0.02                       | < 0.02                        | < 0.05                                   | < 0.02                         | < 0.05                                      | < 0.05                     | < 0.05                      | < 0.05                     | < 0.02                      | < 0.02                     | < 0.05                                       | < 0.05                                       | < 0.05       | < 0.05                                | < 0.01                   | < 0.01                       | < 0.01      |
|                           | 16-Feb-21                                  | < 0.02                           | < 0.02                            | < 0.02                           | < 0.02                         | < 0.01                           | < 0.02        | < 0.1             | < 0.02                      | < 0.02                            | < 0.02                      | < 0.01                           | < 0.02                           | < 0.02                           | < 0.02                       | < 0.02                       | < 0.02                        | < 0.05                                   | < 0.02                         | < 0.05                                      | < 0.05                     | < 0.05                      | < 0.05                     | < 0.02                      | < 0.02                     | < 0.05                                       | < 0.05                                       | < 0.05       | < 0.05                                | < 0.01                   | < 0.01                       | < 0.01      |
| BH11                      | 27-7947-21                                 | < 0.02                           | < 0.02                            | < 0.02                           | < 0.02                         | < 0.01                           | < 0.02        | < 0.1             | < 0.02                      | < 0.02                            | < 0.02                      | < 0.01                           | < 0.02                           | < 0.02                           | < 0.02                       | < 0.02                       | < 0.02                        | < 0.05                                   | < 0.02                         | < 0.05                                      | < 0.05                     | < 0.05                      | < 0.05                     | < 0.02                      | < 0.02                     | < 0.05                                       | < 0.05                                       | < 0.05       | < 0.05                                | < 0.01                   | < 0.01                       | < 0.01      |
|                           | 22-Apr-21<br>20-May-21                     | < 0.02                           | < 0.02                            | < 0.02                           | < 0.02                         | < 0.01                           | < 0.02        | < 0.1             | < 0.02                      | < 0.02                            | < 0.02                      | < 0.01                           | < 0.02                           | < 0.02                           | < 0.02                       | < 0.02                       | < 0.02                        | < 0.05                                   | < 0.02                         | < 0.05                                      | < 0.05                     | < 0.05                      | < 0.05                     | < 0.02                      | < 0.02                     | < 0.05                                       | < 0.05                                       | < 0.05       | < 0.05                                | < 0.01                   | < 0.01                       | < 0.01      |
|                           | 20-PM9-21<br>18-hm-21                      | < 0.02                           | < 0.02                            | < 0.02                           | < 0.02                         | < 0.01                           | < 0.02        | < 0.1             | < 0.02                      | < 0.02                            | < 0.02                      | < 0.01                           | < 0.02                           | < 0.02                           | < 0.02                       | < 0.02                       | < 0.02                        | < 0.05                                   | < 0.02                         | < 0.05                                      | < 0.05                     | < 0.05                      | < 0.05                     | < 0.02                      | < 0.02                     | < 0.05                                       | < 0.05                                       | < 0.05       | < 0.05                                | < 0.01                   | < 0.01                       | < 0.01      |
|                           | 15-Jul-21                                  | <0.02                            | <0.02                             | -0.02                            | <0.02                          | < 0.01                           | e0.02         | < 0.1             | <0.02                       | <0.02                             | e0.02                       | < 0.01                           | <0.02                            | <0.02                            | <0.02                        | <0.02                        | <0.02                         | < 0.05                                   | <0.02                          | < 0.05                                      | < 0.05                     | < 0.05                      | < 0.05                     | e0.02                       | <0.02                      | Z 0.05                                       | £ 0.05                                       | < 0.05       | < 0.05                                | < 0.01                   | < 0.01                       | < 0.01      |
|                           | 19-Aug-21                                  | <0.02                            | e0.02                             | -0.02                            | <0.02                          | < 0.01                           | +0.02         | < 0.1             | <0.02                       | c0.02                             | <0.02                       | < 0.01                           | e0.02                            | <0.02                            | <0.02                        | <0.02                        | <0.02                         | < 0.05                                   | -0.02                          | < 0.05                                      | < 0.05                     | < 0.05                      | < 0.05                     | +0.02                       | +0.02                      | < 0.05                                       | < 0.05                                       | < 0.05       | < 0.05                                | < 0.01                   | < 0.01                       | < 0.01      |
|                           | 22-Sep-21                                  | < 0.02                           | < 0.02                            | < 0.02                           | < 0.02                         | < 0.01                           | < 0.02        | < 0.1             | < 0.02                      | < 0.02                            | < 0.02                      | < 0.01                           | < 0.02                           | < 0.02                           | < 0.02                       | < 0.02                       | < 0.02                        | < 0.05                                   | < 0.02                         | < 0.05                                      | < 0.05                     | < 0.05                      | < 0.05                     | < 0.02                      | < 0.02                     | < 0.05                                       | < 0.05                                       | < 0.05       | < 0.05                                | < 0.01                   | < 0.01                       | < 0.01      |
|                           | 13-Oct-21                                  | < 0.02                           | < 0.02                            | < 0.02                           | < 0.02                         | < 0.01                           | < 0.02        | < 0.1             | < 0.02                      | < 0.02                            | < 0.02                      | < 0.01                           | < 0.02                           | < 0.02                           | < 0.02                       | < 0.02                       | < 0.02                        | < 0.05                                   | < 0.02                         | < 0.05                                      | < 0.05                     | < 0.05                      | < 0.05                     | < 0.02                      | < 0.02                     | < 0.05                                       | < 0.05                                       | < 0.05       | < 0.05                                | < 0.01                   | < 0.01                       | < 0.01      |
|                           | 16-Nov-21                                  | < 0.02                           | < 0.02                            | < 0.01                           | < 0.02                         | < 0.01                           | < 0.02        | < 0.1             | < 0.02                      | < 0.02                            | < 0.02                      | < 0.01                           | < 0.02                           | < 0.02                           | < 0.02                       | < 0.02                       | < 0.02                        | < 0.05                                   | < 0.02                         | < 0.05                                      | < 0.05                     | < 0.05                      | < 0.05                     | < 0.02                      | < 0.02                     | < 0.05                                       | < 0.05                                       | < 0.05       | < 0.05                                | < 0.01                   | < 0.01                       | < 0.01      |
| BH12                      | 14-Aug-20                                  | < 0.02                           | < 0.02                            | < 0.02                           | < 0.02                         | < 0.01                           | < 0.02        | < 0.1             | < 0.02                      | < 0.02                            | < 0.02                      | < 0.01                           | < 0.02                           | < 0.02                           | < 0.02                       | < 0.02                       | < 0.02                        | < 0.05                                   | < 0.02                         | < 0.05                                      | < 0.05                     | < 0.05                      | < 0.05                     | < 0.02                      | < 0.02                     | < 0.05                                       | < 0.05                                       | < 0.05       | < 0.05                                | < 0.01                   | < 0.01                       | < 0.01      |
|                           | 22-Feb-19                                  | < 0.02                           | < 0.02                            | < 0.02                           | < 0.02                         | < 0.01                           | < 0.02        | < 0.1             | < 0.02                      | < 0.02                            | < 0.02                      | < 0.01                           | < 0.02                           | < 0.02                           | < 0.02                       | < 0.02                       | < 0.02                        | < 0.05                                   | < 0.02                         | < 0.05                                      | < 0.05                     | < 0.05                      | < 0.05                     | < 0.02                      | < 0.02                     | < 0.05                                       | < 0.05                                       | < 0.05       | < 0.05                                | < 0.01                   | < 0.01                       | < 0.01      |
|                           | 14-Aug-20                                  | < 0.02                           | < 0.02                            | < 0.02                           | < 0.02                         | < 0.01                           | < 0.02        | < 0.1             | < 0.02                      | < 0.02                            | < 0.02                      | < 0.01                           | < 0.02                           | < 0.02                           | < 0.02                       | < 0.02                       | < 0.02                        | < 0.05                                   | < 0.02                         | < 0.05                                      | < 0.05                     | < 0.05                      | < 0.05                     | < 0.02                      | < 0.02                     | < 0.05                                       | < 0.05                                       | < 0.05       | < 0.05                                | < 0.01                   | < 0.01                       | < 0.01      |
|                           | 16-Sep-20                                  | < 0.02                           | < 0.02                            | < 0.02                           | < 0.02                         | < 0.01                           | < 0.02        | < 0.1             | < 0.02                      | < 0.02                            | < 0.02                      | < 0.01                           | < 0.02                           | < 0.02                           | < 0.02                       | < 0.02                       | < 0.02                        | < 0.05                                   | < 0.02                         | < 0.05                                      | < 0.05                     | < 0.05                      | < 0.05                     | < 0.02                      | < 0.02                     | < 0.05                                       | < 0.05                                       | < 0.05       | < 0.05                                | < 0.01                   | < 0.01                       | < 0.01      |
|                           | 16-Oct-20                                  | < 0.02                           | < 0.02                            | < 0.02                           | < 0.02                         | < 0.01                           | < 0.02        | < 0.1             | < 0.02                      | < 0.02                            | < 0.02                      | < 0.01                           | < 0.02                           | < 0.02                           | < 0.02                       | < 0.02                       | < 0.02                        | < 0.05                                   | < 0.02                         | < 0.05                                      | < 0.05                     | < 0.05                      | < 0.05                     | < 0.02                      | < 0.02                     | < 0.05                                       | < 0.05                                       | < 0.05       | < 0.05                                | < 0.01                   | < 0.01                       | < 0.01      |
|                           | 16-Nov-20                                  | < 0.02                           | < 0.02                            | < 0.02                           | < 0.02                         | < 0.01                           | < 0.02        | < 0.1             | < 0.02                      | < 0.02                            | < 0.02                      | < 0.01                           | < 0.02                           | < 0.02                           | < 0.02                       | < 0.02                       | < 0.02                        | < 0.05                                   | < 0.02                         | < 0.05                                      | < 0.05                     | < 0.05                      | < 0.05                     | < 0.02                      | < 0.02                     | < 0.05                                       | < 0.05                                       | < 0.05       | < 0.05                                | < 0.01                   | < 0.01                       | < 0.01      |
|                           | 16-Dec-20                                  | < 0.02                           | < 0.02                            | < 0.02                           | < 0.02                         | < 0.01                           | < 0.02        | < 0.1             | < 0.02                      | < 0.02                            | < 0.02                      | < 0.01                           | < 0.02                           | < 0.02                           | < 0.02                       | < 0.02                       | < 0.02                        | < 0.05                                   | < 0.02                         | < 0.05                                      | < 0.05                     | < 0.05                      | < 0.05                     | < 0.02                      | < 0.02                     | < 0.05                                       | < 0.05                                       | < 0.05       | < 0.05                                | < 0.01                   | < 0.01                       | < 0.01      |
| 1                         | 14-Jan-21                                  | < 0.02                           | < 0.02                            | < 0.02                           | < 0.02                         | < 0.01                           | < 0.02        | < 0.1             | < 0.02                      | < 0.02                            | < 0.02                      | < 0.01                           | < 0.02                           | < 0.02                           | < 0.02                       | < 0.02                       | < 0.02                        | < 0.05                                   | < 0.02                         | < 0.05                                      | < 0.05                     | < 0.05                      | < 0.05                     | < 0.02                      | < 0.02                     | < 0.05                                       | < 0.05                                       | < 0.05       | < 0.05                                | < 0.01                   | < 0.01                       | < 0.01      |
| MW2395                    | 16-Feb-21                                  | < 0.02                           | < 0.02                            | < 0.02                           | < 0.02                         | < 0.01                           | < 0.02        | < 0.1             | < 0.02                      | < 0.02                            | < 0.02                      | < 0.01                           | < 0.02                           | < 0.02                           | < 0.02                       | < 0.02                       | < 0.02                        | < 0.05                                   | < 0.02                         | < 0.05                                      | < 0.05                     | < 0.05                      | < 0.05                     | < 0.02                      | < 0.02                     | < 0.05                                       | < 0.05                                       | < 0.05       | < 0.05                                | < 0.01                   | < 0.01                       | < 0.01      |
|                           | 22-Apr-21                                  | < 0.02                           | < 0.02                            | < 0.02                           | < 0.02                         | < 0.01                           | < 0.02        | < 0.1             | < 0.02                      | < 0.02                            | < 0.02                      | < 0.01                           | < 0.02                           | < 0.02                           | < 0.02                       | < 0.02                       | < 0.02                        | < 0.05                                   | < 0.02                         | < 0.05                                      | < 0.05                     | < 0.05                      | < 0.05                     | < 0.02                      | < 0.02                     | < 0.05                                       | < 0.05                                       | × 0.05       | < 0.05                                | < 0.01                   | < 0.01                       | < 0.01      |
| 1                         | 20-May-21                                  | < 0.02                           | < 0.02                            | - 0.02                           | - 0.02                         | < 0.01                           | - 0.02        | < 0.1             | < 0.02                      | < 0.02                            | - 0.02                      | < 0.01                           | < 0.02                           | < 0.02                           | < 0.02                       | < 0.02                       | < 0.02                        | < 0.05                                   | < 0.02                         | < 0.05                                      | < 0.05                     | < 0.05                      | < 0.05                     | < 0.02                      | - 0.02                     | < 0.05                                       | 10.05                                        | - 0.05       | < 0.05                                | < 0.01                   | < 0.01                       | < 0.01      |
| 1                         | 18-Jun-21                                  | < 0.02                           | < 0.02                            | < 0.02                           | < 0.02                         | < 0.01                           | < 0.02        | < 0.1             | < 0.02                      | < 0.02                            | < 0.02                      | < 0.01                           | < 0.02                           | < 0.02                           | < 0.02                       | < 0.02                       | < 0.02                        | < 0.05                                   | < 0.02                         | < 0.05                                      | < 0.05                     | < 0.05                      | < 0.05                     | < 0.02                      | < 0.02                     | Z 0.05                                       | £ 0.05                                       | < 0.05       | < 0.05                                | < 0.01                   | < 0.01                       | < 0.01      |
|                           | 15-Jul-21                                  | <0.02                            | e0.02                             | <0.02                            | <0.02                          | < 0.01                           | e0.02         | < 0.1             | <0.02                       | e0.02                             | e0.02                       | < 0.01                           | e0.02                            | <0.02                            | <0.02                        | e0.02                        | c0.02                         | < 0.05                                   | c0.02                          | < 0.05                                      | < 0.05                     | < 0.05                      | < 0.05                     | e0.02                       | e0.02                      | < 0.05                                       | < 0.05                                       | < 0.05       | < 0.05                                | < 0.01                   | < 0.01                       | < 0.01      |
| 1                         | 19-Aup-21                                  | <0.02                            | <0.02                             | <0.02                            | <0.02                          | < 0.01                           | r0.02         | < 0.1             | <0.02                       | c0.02                             | <0.02                       | < 0.01                           | <0.02                            | <0.02                            | <0.02                        | <0.02                        | <0.02                         | < 0.05                                   | <0.02                          | < 0.05                                      | < 0.05                     | < 0.05                      | < 0.05                     | e0.02                       | ¢0.02                      | < 0.05                                       | < 0.05                                       | < 0.05       | < 0.05                                | < 0.01                   | < 0.01                       | < 0.01      |
| 1                         | 22-Sep-21                                  | < 0.02                           | < 0.02                            | < 0.02                           | < 0.02                         | < 0.01                           | < 0.02        | < 0.1             | < 0.02                      | < 0.02                            | < 0.02                      | < 0.01                           | < 0.02                           | < 0.02                           | < 0.02                       | < 0.02                       | < 0.02                        | < 0.05                                   | < 0.02                         | < 0.05                                      | < 0.05                     | < 0.05                      | < 0.05                     | < 0.02                      | < 0.02                     | < 0.05                                       | < 0.05                                       | < 0.05       | < 0.05                                | < 0.01                   | < 0.01                       | < 0.01      |
| 1                         | 13-Oct-21                                  | < 0.02                           | < 0.02                            | < 0.02                           | < 0.02                         | < 0.01                           | < 0.02        | < 0.1             | < 0.02                      | < 0.02                            | < 0.02                      | < 0.01                           | < 0.02                           | < 0.02                           | < 0.02                       | < 0.02                       | < 0.02                        | < 0.05                                   | < 0.02                         | < 0.05                                      | < 0.05                     | < 0.05                      | < 0.05                     | < 0.02                      | < 0.02                     | < 0.05                                       | < 0.05                                       | < 0.05       | < 0.05                                | < 0.01                   | < 0.01                       | < 0.01      |
|                           | 16-Nov-21                                  | < 0.02                           | < 0.02                            | < 0.01                           | < 0.02                         | < 0.01                           | < 0.02        | < 0.1             | < 0.02                      | < 0.02                            | < 0.02                      | < 0.01                           | < 0.02                           | < 0.02                           | < 0.02                       | < 0.02                       | < 0.02                        | < 0.05                                   | < 0.02                         | < 0.05                                      | < 0.05                     | < 0.05                      | < 0.05                     | < 0.02                      | < 0.02                     | < 0.05                                       | < 0.05                                       | < 0.05       | < 0.05                                | < 0.01                   | < 0.01                       | < 0.01      |
|                           |                                            |                                  |                                   |                                  |                                |                                  |               |                   |                             |                                   |                             |                                  |                                  |                                  |                              |                              |                               |                                          |                                |                                             |                            |                             |                            |                             |                            |                                              |                                              |              |                                       |                          |                              |             |

Notes: -- Not and

< - Less than laboratory limit of reporting uo/L - Micrograms per litre

\*\*\* 99% Level of protection in fresh Soil and Water Management Plan 3

Denotes duolicate value used.
 Denotes triolicate vbalue used.

BH9A 16/09/2020 Sample required dilution prior to extraction due to matrix interferences. LOR values have been adjusted according

19302.001A

|                                                                    |                                     |                                               | Perfluoro                                    | ilkyl Sulfonic Acids                |                                            |                                     |                                     |                                  | _                           | _                                       |                                 | Perfluoroalkyi Car                | rboxylic Acids                  |                                       |                                      |                                    |                                         |                               |                                                |                                           | Perfluoroalkyl Sulfon                             | amides                                          |                                                            |                                         |                                       | n:2) Fluorotelomi                     | er Sulfonic Acids                     |                                                        | Sum of PFAS                         | •                                 |
|--------------------------------------------------------------------|-------------------------------------|-----------------------------------------------|----------------------------------------------|-------------------------------------|--------------------------------------------|-------------------------------------|-------------------------------------|----------------------------------|-----------------------------|-----------------------------------------|---------------------------------|-----------------------------------|---------------------------------|---------------------------------------|--------------------------------------|------------------------------------|-----------------------------------------|-------------------------------|------------------------------------------------|-------------------------------------------|---------------------------------------------------|-------------------------------------------------|------------------------------------------------------------|-----------------------------------------|---------------------------------------|---------------------------------------|---------------------------------------|--------------------------------------------------------|-------------------------------------|-----------------------------------|
| Analyte                                                            | Perfluoro<br>sulfonio<br>(PFB       | obutane Perfluoropent<br>ic acid ane sulfonic | Perfluorohexan<br>e sulfonic acid<br>(PFHxS) | arfluoroheptane<br>ilionate (PFHpS) | Perfluorooctane<br>sulfonic acid<br>(PFOS) | erfluorodecanesulfon<br>acid (PFDS) | ic Perfluorobutanois<br>acid (PFSA) | Perfluoropentano<br>acid (PFPeA) | c acid (PFHx)               | noi Perfluoroheptanoi<br>c acid (PFHpA) | Perfluoroctanoic<br>acid (PFOA) | Perfluorononanci<br>c acid (PFNA) | Perfluorodecanoi<br>acid (PFDA) | Perfluoroundecanoi<br>c acid (PFUnDA) | Perfluorododecanoic<br>acid (PFDoDA) | Perfluorotridecanoic acid (PFTrDA) | Perfluorotetradecanoic<br>acid (PFTeDA) | Perfluorooctar<br>sulfonamide | ne N-Methyl-<br>perfluorooctane<br>sulfonamide | N-Ethyl<br>perfluorcoctane<br>sulfonamide | N-Methyl<br>perfluorooctane<br>sulfonamidoethanol | N-Ethyl<br>perfluorooctane<br>sulfonamidoethano | N-Methyl<br>perfluorooctane per<br>sulfonamidoacetic sulfo | N-Ethyl<br>fluorooctane<br>onamidoaceti | 4:2<br>Fluorotelomer<br>sulfonic acid | 6:2<br>Fluorotelomer<br>sulfonic acid | 8:2<br>Fluorotelomer<br>sulfonic acid | 10:2<br>Fluorotelomer Sum of P<br>sulfonic acid and PI | FHxS Sum of PFAS<br>OS (WA DER List | S Sum of PFAS                     |
| LOR<br>Units                                                       | 0.0                                 |                                               | 0.02                                         | 0.02                                | 0.01                                       | 0.02                                | 0.1                                 | 0.02                             | 0.02                        | 0.02                                    | 0.01                            | 0.02                              | 0.02                            | 0.02                                  | 0.02                                 | 0.02                               | 0.05                                    | 0.02                          | (MeFOSA)<br>0.05                               | (EtFOSA)<br>0.05                          | (NeFOSE)<br>0.05                                  | (ENFOSE)<br>0.05                                | acid (MeFOSAA) c ac                                        | 0.02                                    | (4:2 FTS)<br>0.05                     | (6:2 FTS)<br>0.05                     | (8:2 FTS)<br>0.05                     | (10:2 FTS)<br>0.05 0.01                                | 0.01                                | 0.01                              |
| Adopted Site Specific 1<br>Values (SWMP 202                        |                                     |                                               | 0.07                                         |                                     | 0.07                                       |                                     |                                     | 0072                             |                             | 1072                                    | 0.56                            | 557                               |                                 |                                       |                                      |                                    | 50/2                                    |                               |                                                |                                           |                                                   |                                                 |                                                            | 3072                                    | 50/2                                  | 3072                                  | 33.2                                  | - 0.0                                                  |                                     |                                   |
| HEPA NEMP 2018*<br>HEPA NEMP 2011                                  | ***                                 |                                               | - :                                          |                                     | 0.01 2                                     |                                     |                                     |                                  |                             |                                         | 19<br>5.6                       |                                   |                                 |                                       |                                      |                                    |                                         |                               |                                                |                                           | - :                                               |                                                 |                                                            |                                         |                                       |                                       | - 1                                   | - 0.7                                                  |                                     |                                   |
| Sample Sample D                                                    | Date                                |                                               |                                              |                                     |                                            |                                     |                                     |                                  |                             |                                         |                                 |                                   |                                 |                                       |                                      |                                    |                                         |                               |                                                |                                           |                                                   |                                                 |                                                            |                                         |                                       |                                       |                                       |                                                        |                                     |                                   |
| 22-Feb<br>16-May<br>16-Sep                                         | -19 < 0:<br>-19 < 0:                | 3.02 < 0.02<br>3.02 < 0.02                    | < 0.02                                       | < 0.02                              | < 0.01                                     | < 0.02                              | < 0.1                               | < 0.02                           | < 0.02                      | < 0.02                                  | < 0.01<br>< 0.01                | < 0.02                            | < 0.02                          | < 0.02                                | < 0.02                               | < 0.02                             | < 0.05                                  | < 0.02                        | < 0.05                                         | < 0.05                                    | < 0.05                                            | < 0.05                                          | < 0.02                                                     | < 0.02                                  | < 0.05                                | < 0.05                                | < 0.05                                | < 0.05 < 0.0<br>< 0.05 < 0.0                           | 1 < 0.01                            | < 0.01                            |
| 18-Nov<br>27-Jan                                                   | (-19 < 0)<br>(-20 < 0)              | 1.02 < 0.02<br>1.02 < 0.02<br>1.02 < 0.02     | < 0.02                                       | < 0.02                              | < 0.01                                     | < 0.02<br>< 0.02                    | < 0.1<br>< 0.1                      | < 0.02<br>< 0.02                 | < 0.02                      | < 0.02                                  | < 0.01                          | < 0.02<br>< 0.02                  | < 0.02                          | < 0.02<br>< 0.02                      | < 0.02<br>< 0.02                     | < 0.02<br>< 0.02                   | < 0.05<br>< 0.05                        | < 0.02                        | < 0.05<br>< 0.05                               | < 0.05<br>< 0.05                          | < 0.05<br>< 0.05                                  | < 0.05<br>< 0.05                                | < 0.02<br>< 0.02                                           | < 0.02                                  | < 0.05<br>< 0.05                      | < 0.05                                | < 0.05<br>< 0.05                      | < 0.05 < 0.0<br>< 0.05 <b>0.0</b> 0                    | 1 < 0.01                            | < 0.01<br>0.02                    |
| 15-May<br>19-Jun<br>16-Jul                                         | r-20 < 0:<br>r-20 < 0:<br>r-20 < 0: | 0.02 < 0.02<br>0.02 < 0.02<br>0.02 < 0.02     | < 0.02<br>< 0.02                             | < 0.02                              | < 0.01                                     | < 0.02                              | < 0.1<br>< 0.1<br>< 0.1             | < 0.02                           | < 0.02<br>< 0.02            | < 0.02                                  | < 0.01<br>< 0.01                | < 0.02<br>< 0.02                  | < 0.02<br>< 0.02                | < 0.02                                | < 0.02<br>< 0.02                     | < 0.02                             | < 0.05<br>< 0.05                        | < 0.02                        | < 0.05                                         | < 0.05<br>< 0.05                          | < 0.05                                            | < 0.05                                          | < 0.02<br>< 0.02                                           | < 0.02<br>< 0.02<br>< 0.02              | < 0.05<br>< 0.05                      | < 0.05<br>< 0.05<br>< 0.05            | < 0.05<br>< 0.05                      | < 0.05 < 0.0<br>< 0.05 < 0.0                           | 1 < 0.01<br>1 < 0.01<br>1 < 0.01    | < 0.01<br>< 0.01                  |
| 14-Aug                                                             | -20 < 0.                            | 1.02 < 0.02                                   | < 0.02                                       | < 0.02                              | < 0.01                                     | < 0.02<br>< 0.02<br>< 0.02          | < 0.1                               | < 0.02<br>< 0.02<br>< 0.02       | < 0.02                      | < 0.02                                  | < 0.01                          | < 0.02                            | < 0.02                          | < 0.02                                | < 0.02                               | < 0.02                             | < 0.05                                  | < 0.02<br>< 0.02<br>< 0.02    | < 0.05                                         | < 0.05                                    | < 0.05                                            | < 0.05                                          | < 0.02                                                     | < 0.02                                  | < 0.05                                | < 0.05                                | < 0.05                                | < 0.05 < 0.0                                           | 1 < 0.01                            | < 0.01                            |
| SW1 16-Nov                                                         |                                     | 1.02 < 0.02                                   | < 0.02<br>< 0.02<br>< 0.02                   | < 0.02<br>< 0.02<br>< 0.02          | < 0.01<br>< 0.01<br>< 0.01                 | < 0.02                              | < 0.1<br>< 0.1<br>< 0.1             | < 0.02                           | < 0.02<br>< 0.02<br>< 0.02  | < 0.02<br>< 0.02<br>< 0.02              | < 0.01<br>< 0.01<br>< 0.01      | < 0.02<br>< 0.02<br>< 0.02        | < 0.02<br>< 0.02<br>< 0.02      | < 0.02<br>< 0.02<br>< 0.02            | < 0.02<br>< 0.02<br>< 0.02           | < 0.02<br>< 0.02<br>< 0.02         | < 0.05<br>< 0.05<br>< 0.05              | < 0.02                        | < 0.05<br>< 0.05<br>< 0.05                     | < 0.05<br>< 0.05<br>< 0.05                | < 0.05                                            | < 0.05<br>< 0.05<br>< 0.05                      | < 0.02                                                     | < 0.02<br>< 0.02<br>< 0.02              | < 0.05<br>< 0.05<br>< 0.05            | < 0.05<br>< 0.05<br>< 0.05            | < 0.05<br>< 0.05<br>< 0.05            | < 0.05 < 0.0<br>< 0.05 < 0.0<br>< 0.05 < 0.0           | 1 < 0.01                            | < 0.01<br>< 0.01<br>< 0.01        |
| 16-Dec                                                             |                                     | 1.02 < 0.02<br>1.02 < 0.02<br>1.02 < 0.02     |                                              | < 0.02                              | < 0.01<br>< 0.01<br>0.01                   | < 0.02<br>< 0.02                    | < 0.1<br>< 0.1                      | < 0.02                           | < 0.02<br>< 0.02<br>< 0.02  | < 0.02                                  | < 0.01<br>< 0.01<br>< 0.01      | < 0.02                            | < 0.02                          | < 0.02                                | < 0.02<br>< 0.02                     | < 0.02<br>< 0.02                   | < 0.05<br>< 0.05                        | < 0.02                        | < 0.05<br>< 0.05<br>< 0.05                     | < 0.05<br>< 0.05<br>< 0.05                | < 0.05<br>< 0.05                                  | < 0.05                                          |                                                            | < 0.02<br>< 0.02<br>< 0.02              | < 0.05<br>< 0.05<br>< 0.05            | < 0.05<br>< 0.05                      | < 0.05<br>< 0.05                      | < 0.05 < 0.0<br>< 0.05 < 0.0<br>< 0.05 <b>0.0</b>      | 1 < 0.01<br>1 < 0.01<br>0.01        | < 0.01<br>< 0.01<br>0.01          |
| 17-Man                                                             | -21 < 0.                            | 1.02 < 0.02                                   | < 0.02                                       | < 0.02<br>< 0.02<br>< 0.02          | < 0.01<br>< 0.01<br>< 0.01                 | < 0.02<br>< 0.02                    | < 0.1<br>< 0.1<br>< 0.1             | < 0.02                           | < 0.02                      | < 0.02<br>< 0.02<br>< 0.02              | < 0.01<br>< 0.01<br>< 0.01      | < 0.02<br>< 0.02                  | < 0.02<br>< 0.02<br>< 0.02      | < 0.02<br>< 0.02<br>< 0.02            | < 0.02<br>< 0.02<br>< 0.02           | < 0.02<br>< 0.02<br>< 0.02         | < 0.05<br>< 0.05<br>< 0.05              | < 0.02<br>< 0.02<br>< 0.02    | < 0.05                                         | < 0.05<br>< 0.05<br>< 0.05                | < 0.05<br>< 0.05                                  | < 0.05<br>< 0.05<br>< 0.05                      | < 0.02                                                     | < 0.02<br>< 0.02<br>< 0.02              | < 0.05<br>< 0.05<br>< 0.05            | < 0.05                                | < 0.05<br>< 0.05<br>< 0.05            | < 0.05 0.00<br>< 0.05 < 0.0<br>< 0.05 < 0.0            | 1 < 0.01                            | < 0.01                            |
| 22-Apr-<br>20-May<br>18-Jun                                        | -21 < 0.                            | 1.02 < 0.02                                   | < 0.02                                       | < 0.02                              | < 0.01                                     | < 0.02                              | < 0.1                               | < 0.02                           | < 0.02<br>< 0.02<br>< 0.02  | < 0.02                                  | < 0.01                          | < 0.02                            | < 0.02                          | < 0.02                                | < 0.02                               | < 0.02<br>< 0.02                   | < 0.05<br>< 0.05                        | < 0.02                        | < 0.05<br>< 0.05<br>< 0.05                     | < 0.05<br>< 0.05                          | < 0.05<br>< 0.05                                  | < 0.05                                          | < 0.02                                                     | < 0.02                                  | < 0.05                                | < 0.05<br>< 0.05<br>< 0.05            | < 0.05                                | < 0.05 < 0.0                                           | 1 < 0.01                            | < 0.01<br>< 0.01<br>< 0.01        |
| 15-Jul-<br>19-Aug                                                  | -21 < 0.<br>-21 < 0.                | 1.02 < 0.02<br>1.02 < 0.02                    | < 0.02                                       | < 0.02                              | < 0.01<br>< 0.01                           | < 0.02<br>< 0.02                    | < 0.1                               | < 0.02                           | < 0.02                      | < 0.02                                  | < 0.01                          | < 0.02<br>< 0.02                  | < 0.02<br>< 0.02                | < 0.02<br>< 0.02                      | < 0.02<br>< 0.02                     | < 0.02<br>< 0.02                   | < 0.05                                  | < 0.02                        | < 0.05<br>< 0.05                               | < 0.05                                    | < 0.05<br>< 0.05                                  | < 0.05<br>< 0.05                                | < 0.02<br>< 0.02                                           | < 0.02                                  | < 0.05                                | < 0.05                                | < 0.05                                | < 0.05 < 0.0                                           | 1 < 0.01                            | < 0.01                            |
| 13-Oct                                                             | -21 < 0.<br>-21 < 0.<br>-21 < 0.    | 1.02 < 0.02<br>1.02 < 0.02<br>1.02 < 0.02     | < 0.02<br>< 0.02                             | < 0.02                              | < 0.01<br>< 0.01                           | < 0.02<br>< 0.02                    | < 0.1<br>< 0.1                      | < 0.02<br>< 0.02                 | < 0.02<br>< 0.02<br>< 0.02  | < 0.02<br>< 0.02                        | < 0.01<br>< 0.01                | < 0.02<br>< 0.02                  | < 0.02<br>< 0.02                | < 0.02<br>< 0.02                      | < 0.02<br>< 0.02                     | < 0.02<br>< 0.02                   | < 0.05<br>< 0.05                        | < 0.02<br>< 0.02              | < 0.05                                         | < 0.05<br>< 0.05                          | < 0.05<br>< 0.05                                  | < 0.05<br>< 0.05                                | < 0.02                                                     | < 0.02<br>< 0.02<br>< 0.02              | < 0.05<br>< 0.05                      | < 0.05<br>< 0.05                      | < 0.05<br>< 0.05                      | < 0.05 < 0.0<br>< 0.05 < 0.0<br>< 0.05 < 0.0           | 1 < 0.01                            | < 0.01<br>< 0.01<br>< 0.01        |
| 22-Feb<br>16-May<br>16-Sep<br>18-Nov<br>16-Jan<br>27-Feb<br>15-May | -19                                 |                                               |                                              |                                     |                                            |                                     |                                     |                                  |                             |                                         |                                 |                                   |                                 |                                       |                                      |                                    |                                         |                               | ,                                              |                                           |                                                   |                                                 |                                                            |                                         |                                       |                                       |                                       |                                                        | ,                                   |                                   |
| 16-Sep<br>18-Nov                                                   | -19<br>-19                          |                                               |                                              |                                     |                                            |                                     |                                     |                                  |                             |                                         |                                 |                                   |                                 |                                       |                                      |                                    |                                         |                               |                                                |                                           |                                                   |                                                 |                                                            |                                         |                                       |                                       |                                       |                                                        |                                     |                                   |
| 27-feb<br>15-May                                                   | 1-20<br>1-20<br>1-20                |                                               |                                              |                                     |                                            |                                     |                                     |                                  |                             |                                         |                                 |                                   |                                 |                                       |                                      |                                    |                                         |                               |                                                |                                           |                                                   |                                                 |                                                            |                                         |                                       |                                       |                                       |                                                        |                                     |                                   |
|                                                                    |                                     |                                               |                                              |                                     |                                            |                                     |                                     |                                  |                             |                                         |                                 |                                   |                                 |                                       |                                      | DRY                                |                                         |                               |                                                |                                           |                                                   |                                                 |                                                            |                                         |                                       |                                       |                                       |                                                        |                                     |                                   |
| 16-Jul-<br>14-Aug<br>16-Sep                                        | -20<br>-20                          |                                               |                                              |                                     |                                            |                                     |                                     |                                  |                             |                                         |                                 |                                   |                                 |                                       |                                      |                                    |                                         |                               |                                                |                                           |                                                   |                                                 |                                                            |                                         |                                       |                                       |                                       |                                                        |                                     |                                   |
| SW2 16-Oct<br>16-Nov<br>16-Dec                                     | -20<br>-20                          |                                               |                                              |                                     |                                            |                                     |                                     |                                  |                             |                                         |                                 |                                   |                                 |                                       |                                      |                                    |                                         |                               |                                                |                                           |                                                   |                                                 |                                                            |                                         |                                       |                                       |                                       |                                                        |                                     |                                   |
| 14-Jan                                                             | -21                                 |                                               |                                              |                                     |                                            |                                     |                                     |                                  |                             |                                         |                                 |                                   |                                 |                                       |                                      |                                    |                                         |                               |                                                |                                           |                                                   |                                                 |                                                            |                                         |                                       |                                       |                                       |                                                        |                                     |                                   |
| 16-Feb<br>17-Man<br>22-Apr                                         | -21 < 0.                            |                                               | < 0.02                                       | < 0.02                              | < 0.01                                     | < 0.02                              | < 0.1                               | < 0.02                           | < 0.02                      | < 0.02                                  | < 0.01                          | < 0.02                            | < 0.02                          | < 0.02                                | < 0.02                               | < 0.02<br>< 0.02                   | < 0.05<br>< 0.05                        | < 0.02                        | < 0.05                                         | < 0.05<br>< 0.05                          | < 0.05                                            | < 0.05                                          |                                                            | < 0.02                                  | < 0.05                                | < 0.05                                | < 0.05                                | < 0.05 < 0.0<br>< 0.05 < 0.0                           |                                     | < 0.01<br>< 0.01                  |
| 20-May<br>18-Jun<br>15-Jul                                         | r-21 < 0:<br>r-21 < 0:<br>r-21 < 0: | 0.02 < 0.02<br>0.02 < 0.02<br>0.02 < 0.02     | < 0.02<br>< 0.02<br>< 0.02                   | < 0.02<br>< 0.02<br>< 0.02          | < 0.01<br>< 0.01<br>< 0.01                 | < 0.02<br>< 0.02<br>< 0.02          | < 0.1<br>< 0.1<br>< 0.1             | < 0.02<br>< 0.02                 | < 0.02<br>< 0.02<br>< 0.02  | < 0.02<br>< 0.02<br>< 0.02              | < 0.01<br>< 0.01<br>< 0.01      | < 0.02<br>< 0.02<br>< 0.02        | < 0.02<br>< 0.02<br>< 0.02      | < 0.02<br>< 0.02                      | < 0.02<br>< 0.02<br>< 0.02           | < 0.02<br>< 0.02<br>< 0.02         | < 0.05<br>< 0.05<br>< 0.05              | < 0.02<br>< 0.02<br>< 0.02    | < 0.05<br>< 0.05<br>< 0.05                     | < 0.05<br>< 0.05<br>< 0.05                | < 0.05<br>< 0.05                                  | < 0.05<br>< 0.05<br>< 0.05                      |                                                            | < 0.02<br>< 0.02<br>< 0.02              | < 0.05<br>< 0.05<br>< 0.05            | < 0.05<br>< 0.05<br>< 0.05            | < 0.05                                | < 0.05 < 0.0<br>< 0.05 < 0.0<br>< 0.05 < 0.0           | 1 < 0.01                            | < 0.01<br>< 0.01<br>< 0.01        |
| 19-Aug<br>22-Sep                                                   | -21 < 0.<br>-21 < 0.                | 0.02 < 0.02<br>0.02 < 0.02                    | < 0.02                                       | < 0.02                              | < 0.01                                     | < 0.02                              | < 0.1                               | < 0.02                           | < 0.02                      | < 0.02                                  | < 0.01<br>< 0.01                | < 0.02<br>< 0.02                  | < 0.02                          | < 0.02<br>< 0.02                      | < 0.02                               | < 0.02<br>< 0.02                   | < 0.05<br>< 0.05                        | < 0.02                        | < 0.05<br>< 0.05                               | < 0.05<br>< 0.05                          | < 0.05<br>< 0.05                                  | < 0.05<br>< 0.05                                | < 0.02<br>< 0.02                                           | < 0.02                                  | < 0.05                                | < 0.05                                | < 0.05                                | < 0.05 < 0.0<br>< 0.05 < 0.0                           | 1 < 0.01                            | < 0.01<br>< 0.01                  |
| 16-Nov                                                             | r-21 < 0.                           | 102 < 0.02                                    | < 0.02                                       | < 0.02                              | < 0.01<br>< 0.01                           | < 0.02                              | < 0.1                               | < 0.02                           | < 0.02                      | < 0.02                                  | < 0.01                          | < 0.02                            | < 0.02                          | < 0.02                                | < 0.02<br>< 0.02                     | < 0.02<br>< 0.02                   | < 0.05<br>< 0.05                        | < 0.02                        | < 0.05                                         | < 0.05<br>< 0.05                          | < 0.05                                            | < 0.05                                          | < 0.02                                                     | < 0.02                                  | < 0.05                                | < 0.05<br>< 0.05                      | < 0.05                                | < 0.05 < 0.0<br>< 0.05 < 0.0                           | 1 < 0.01                            | < 0.01<br>< 0.01                  |
| 22-Feb<br>16-May<br>16-Sen                                         | -19 < 0.<br>-19 < 0.<br>-19 < 0.    | 1.02 < 0.02<br>1.02 < 0.02<br>1.02 < 0.02     | < 0.02<br>< 0.02<br>< 0.02                   | < 0.02<br>< 0.02<br>< 0.02          | < 0.01<br>< 0.01<br>< 0.01                 | < 0.02<br>< 0.02<br>< 0.02          | < 0.1<br>< 0.1<br>< 0.1             | < 0.02                           | < 0.02<br>< 0.02<br>< 0.02  | < 0.02<br>< 0.02<br>< 0.02              | < 0.01<br>< 0.01<br>< 0.01      | < 0.02<br>< 0.02<br>< 0.02        | < 0.02<br>< 0.02<br>< 0.02      | < 0.02<br>< 0.02<br>< 0.02            | < 0.02<br>< 0.02<br>< 0.02           | < 0.02<br>< 0.02<br>< 0.02         | < 0.05<br>< 0.05<br>< 0.05              | < 0.02<br>< 0.02<br>< 0.02    | < 0.05<br>< 0.05                               | < 0.05<br>< 0.05<br>< 0.05                | < 0.05<br>< 0.05                                  | < 0.05<br>< 0.05<br>< 0.05                      | < 0.02<br>< 0.02<br>< 0.02                                 | < 0.02<br>< 0.02<br>< 0.02              | < 0.05<br>< 0.05<br>< 0.05            | < 0.05<br>< 0.05<br>< 0.05            | < 0.05<br>< 0.05                      | < 0.05 < 0.0<br>< 0.05 < 0.0<br>< 0.05 < 0.0           | 1 < 0.01<br>1 < 0.01<br>1 < 0.01    | < 0.01<br>< 0.01<br>< 0.01        |
| 18-Nov<br>16-Jan                                                   | r-19 < 0:<br>r-20                   | 3.02 < 0.02                                   | < 0.02                                       | < 0.02                              | < 0.01                                     | < 0.02                              | < 0.1                               | < 0.02                           | < 0.02                      | < 0.02                                  | < 0.01                          | < 0.02                            | < 0.02                          | < 0.02                                | < 0.02                               | < 0.02<br>DRY                      | < 0.05                                  | < 0.02                        | < 0.05                                         | < 0.05                                    | < 0.05                                            | < 0.05                                          | < 0.02                                                     | < 0.02                                  | < 0.05                                | < 0.05                                | < 0.05                                | < 0.05 < 0.0                                           | 1 < 0.01                            | < 0.01                            |
| 27-Feb<br>15-May                                                   | -20 < 0.<br>-20 < 0.<br>-20 < 0.    | 0.02 < 0.02<br>0.02 < 0.02<br>0.02 < 0.02     | < 0.02<br>< 0.02                             | < 0.02<br>< 0.02<br>< 0.02          | < 0.01<br>< 0.01<br>< 0.01                 | < 0.02<br>< 0.02<br>< 0.02          | < 0.1<br>< 0.1                      | < 0.02                           | < 0.02<br>< 0.02<br>< 0.02  | < 0.02<br>< 0.02                        | < 0.01<br>< 0.01<br>< 0.01      | < 0.02<br>< 0.02<br>< 0.02        | < 0.02<br>< 0.02<br>< 0.02      | < 0.02<br>< 0.02                      | < 0.02<br>< 0.02                     | < 0.02<br>< 0.02                   | < 0.05<br>< 0.05<br>< 0.05              | < 0.02<br>< 0.02<br>< 0.02    | < 0.05<br>< 0.05<br>< 0.05                     | < 0.05<br>< 0.05<br>< 0.05                | < 0.05<br>< 0.05                                  | < 0.05<br>< 0.05                                | < 0.02<br>< 0.02<br>< 0.02                                 | < 0.02<br>< 0.02<br>< 0.02              | < 0.05<br>< 0.05<br>< 0.05            | < 0.05<br>< 0.05<br>< 0.05            | < 0.05<br>< 0.05<br>< 0.05            | < 0.05 < 0.0<br>< 0.05 < 0.0<br>< 0.05 < 0.0           | 1 < 0.01<br>1 < 0.01<br>1 < 0.01    | < 0.01<br>< 0.01                  |
| 16-Jul-                                                            | -20 < 0.                            | 1.02 < 0.02                                   | < 0.02                                       | < 0.02                              | < 0.01<br>< 0.01                           | < 0.02<br>< 0.02                    | < 0.1<br>< 0.1                      | < 0.02                           | < 0.02                      | < 0.02                                  | < 0.01                          | < 0.02<br>< 0.02<br>< 0.02        | < 0.02                          | < 0.02                                | < 0.02                               | < 0.02                             | < 0.05                                  | < 0.02                        | < 0.05                                         | < 0.05                                    | < 0.05                                            | < 0.05                                          | < 0.02                                                     | < 0.02                                  | < 0.05                                | < 0.05                                | < 0.05                                | < 0.05 < 0.0                                           | 1 < 0.01                            | < 0.01                            |
| 14-Aug<br>16-Sep<br>SW3 16-Oct                                     |                                     | 1.02 < 0.02                                   | < 0.02<br>< 0.02<br>< 0.02                   | < 0.02<br>< 0.02<br>< 0.02          | < 0.01                                     | < 0.02                              | < 0.1                               | < 0.02                           | < 0.02<br>< 0.02<br>< 0.02  | < 0.02                                  | < 0.01<br>< 0.01<br>< 0.01      | < 0.02                            | < 0.02<br>< 0.02<br>< 0.02      | < 0.02                                | < 0.02                               | < 0.02<br>< 0.02                   | < 0.05<br>< 0.05<br>< 0.05              | < 0.02<br>< 0.02<br>< 0.02    | < 0.05                                         | < 0.05<br>< 0.05<br>< 0.05                | < 0.05                                            | < 0.05                                          |                                                            | < 0.02<br>< 0.02<br>< 0.02              | < 0.05<br>< 0.05<br>< 0.05            | < 0.05<br>< 0.05<br>< 0.05            | < 0.05<br>< 0.05<br>< 0.05            | < 0.05 < 0.0<br>< 0.05 < 0.0<br>< 0.05 < 0.0           | 1 < 0.01                            | < 0.01                            |
| 16-Nov<br>16-Dec<br>14-Jan                                         |                                     | 3.02 < 0.02<br>3.02 < 0.02                    | < 0.02                                       | < 0.02                              | < 0.01<br>< 0.01<br>< 0.01                 | < 0.02<br>< 0.02                    | < 0.1                               | < 0.02                           | < 0.02<br>< 0.02<br>< 0.02  | < 0.02                                  | < 0.01<br>< 0.01<br>< 0.01      | < 0.02                            | < 0.02<br>< 0.02<br>< 0.02      | < 0.02                                | < 0.02                               | < 0.02<br>< 0.02                   | < 0.05<br>< 0.05<br>< 0.05              | < 0.02<br>< 0.02<br>< 0.02    | < 0.05<br>< 0.05<br>< 0.05                     | < 0.05<br>< 0.05<br>< 0.05                | < 0.05<br>< 0.05                                  | < 0.05<br>< 0.05<br>< 0.05                      |                                                            | < 0.02<br>< 0.02<br>< 0.02              | < 0.05<br>< 0.05<br>< 0.05            | < 0.05<br>< 0.05<br>< 0.05            | < 0.05<br>< 0.05<br>< 0.05            | < 0.05 < 0.0<br>< 0.05 < 0.0<br>< 0.05 < 0.0           | 1 < 0.01                            | < 0.01<br>< 0.01<br>< 0.01        |
| 16-Feb                                                             | -21 < 0.                            | 1.02 < 0.02                                   | < 0.02                                       | < 0.02<br>< 0.02<br>< 0.02          | < 0.01<br>< 0.01<br>< 0.01                 | < 0.02<br>< 0.02<br>< 0.02          | < 0.1<br>< 0.1<br>< 0.1             | < 0.02<br>< 0.02<br>< 0.02       | < 0.02<br>< 0.02<br>< 0.02  | < 0.02<br>< 0.02<br>< 0.02              | < 0.01<br>< 0.01<br>< 0.02      | < 0.02<br>< 0.02<br>< 0.02        | < 0.02<br>< 0.02<br>< 0.02      | < 0.02<br>< 0.02<br>< 0.02            | < 0.02<br>< 0.02<br>< 0.02           | < 0.02<br>< 0.02<br>< 0.02         | < 0.05<br>< 0.05<br>< 0.05              | < 0.02<br>< 0.02<br>< 0.02    | < 0.05<br>< 0.05<br>< 0.05                     | < 0.05<br>< 0.05<br>< 0.05                | < 0.05<br>< 0.05<br>< 0.05                        | < 0.05<br>< 0.05<br>< 0.05                      | < 0.02                                                     | < 0.02<br>< 0.02<br>< 0.02              | < 0.05<br>< 0.05<br>< 0.05            | < 0.05                                | < 0.05                                | < 0.05 < 0.0<br>< 0.05 < 0.0<br>< 0.05 < 0.0           | 1 < 0.01                            | < 0.01                            |
| 17-Mar<br>22-Apr<br>20-May                                         | r-21 < 0:                           | 102 < 0.02<br>102 < 0.02                      | < 0.02                                       | < 0.02                              | < 0.01                                     | < 0.02                              | < 0.1                               | < 0.02                           | < 0.02                      | < 0.02                                  | < 0.01                          | < 0.02<br>< 0.02                  | < 0.02                          | < 0.02<br>< 0.02                      | < 0.02<br>< 0.02                     | < 0.02                             | < 0.05                                  | < 0.02                        | < 0.05                                         | < 0.05                                    | < 0.05                                            | < 0.05                                          | < 0.62<br>< 0.02                                           | < 0.02                                  | < 0.05                                | < 0.05<br>< 0.05<br>< 0.05            | < 0.05<br>< 0.05<br>< 0.05            | < 0.05 < 0.0<br>< 0.05 < 0.0                           | 1 < 0.01                            | < 0.01                            |
| 18-Jun<br>15-Jul                                                   | -21 < 0:                            | 0.02 < 0.02<br>0.02 < 0.02                    | < 0.02                                       | < 0.02                              | < 0.01                                     | < 0.02                              | < 0.1                               | < 0.02                           | < 0.02                      | < 0.02                                  | < 0.01                          | < 0.02                            | < 0.02<br>< 0.02                | < 0.02                                | < 0.02<br>< 0.02                     | < 0.02                             | < 0.05<br>< 0.05                        | < 0.02                        | < 0.05                                         | < 0.05<br>< 0.05                          | < 0.05                                            | < 0.05                                          | < 0.02<br>< 0.02                                           | < 0.02                                  | < 0.05                                | < 0.05                                | < 0.05                                | < 0.05 < 0.0<br>< 0.05 < 0.0                           | 1 < 0.01                            | < 0.01<br>< 0.01                  |
| 16-Nov                                                             | r-21 < 0.                           |                                               | < 0.01                                       | < 0.02                              | < 0.01                                     | < 0.02<br>< 0.02                    | < 0.1<br>< 0.1                      | < 0.02                           | < 0.02                      | < 0.02<br>< 0.02                        | < 0.01<br>< 0.01                | < 0.02<br>< 0.02                  | < 0.02<br>< 0.02                | < 0.02<br>< 0.02                      | < 0.02<br>< 0.02                     | < 0.02                             | < 0.05<br>< 0.05                        | < 0.02                        | < 0.05                                         | < 0.05<br>< 0.05                          | < 0.05<br>< 0.05                                  | < 0.05<br>< 0.05                                | < 0.02                                                     | < 0.02                                  | < 0.05<br>< 0.05                      | < 0.05<br>< 0.05                      | < 0.05                                | < 0.05 < 0.0<br>< 0.05 < 0.0                           | 1 < 0.01                            | < 0.01<br>< 0.01                  |
| 25-Sep                                                             | -19 < 0.                            |                                               | < 0.02                                       | < 0.02<br>< 0.02<br>< 0.02          | < 0.01<br>0.03 *<br>0.05                   | < 0.02<br>< 0.02<br>< 0.02          | < 0.1<br>< 0.1<br>< 0.1             | < 0.02<br>< 0.02<br>< 0.02       | < 0.02<br>< 0.02<br>< 0.02  | < 0.02                                  | < 0.01<br>< 0.01<br>< 0.01      | < 0.02<br>< 0.02<br>< 0.02        | < 0.02                          | < 0.02<br>< 0.02<br>< 0.02            | < 0.02<br>< 0.02<br>< 0.02           | < 0.02<br>< 0.02<br>< 0.02         | < 0.05<br>< 0.05<br>< 0.05              | < 0.02<br>< 0.02<br>< 0.02    | < 0.05<br>< 0.05<br>< 0.05                     | < 0.05<br>< 0.05<br>< 0.05                | < 0.05<br>< 0.05<br>< 0.05                        | < 0.05<br>< 0.05<br>< 0.05                      | < 0.02                                                     | < 0.02<br>< 0.02<br>< 0.02              | < 0.05                                | < 0.05                                | < 0.05                                | < 0.05 0.00                                            | 1 < 0.01<br>+ 0.01<br>0.05          | < 0.01<br>0.01<br>0.05            |
| 18-Nov<br>16-Jan<br>27-Feb                                         | r-19 < 0:                           | 3.02 < 0.02                                   |                                              | < 0.02                              | < 0.01                                     | < 0.02                              | < 0.1                               | < 0.02                           | < 0.02                      | < 0.02                                  | < 0.01                          | < 0.02                            |                                 | < 0.02                                | < 0.02                               | < 0.02<br>DRY                      | < 0.05                                  | < 0.02                        | < 0.05                                         | < 0.05                                    | < 0.05                                            | < 0.05                                          |                                                            | < 0.02                                  | < 0.05                                |                                       |                                       | < 0.05 < 0.1                                           | 1 < 0.01                            | < 0.01                            |
| 27-Feb<br>15-May<br>19-Jun                                         | -20 < 0.<br>-20 < 0.<br>-20 < 0.    | 1.02 < 0.02<br>1.02 < 0.02<br>1.02 < 0.02     | < 0.02<br>< 0.02<br>< 0.02                   | < 0.02                              | 0.01<br>0.01<br>0.01                       | < 0.02<br>< 0.02                    | < 0.1<br>< 0.1<br>< 0.1             | < 0.02<br>< 0.02                 | < 0.02<br>< 0.02<br>< 0.02  | < 0.02                                  | < 0.01<br>< 0.01                | < 0.02<br>< 0.02                  | < 0.02<br>< 0.02<br>< 0.02      | < 0.02<br>< 0.02                      | < 0.02<br>< 0.02                     | < 0.02<br>< 0.02                   | < 0.05<br>< 0.05<br>< 0.05              | < 0.02<br>< 0.02<br>< 0.02    | < 0.05<br>< 0.05<br>< 0.05                     | < 0.05<br>< 0.05<br>< 0.05                | < 0.05<br>< 0.05                                  | < 0.05<br>< 0.05                                |                                                            | < 0.02<br>< 0.02<br>< 0.02              | < 0.05<br>< 0.05                      | < 0.05<br>< 0.05<br>< 0.05            | < 0.05<br>< 0.05                      | < 0.05 0.00<br>< 0.05 0.00<br>< 0.05 0.00              |                                     | 0.01<br>0.01                      |
| 16-Jul-                                                            | -20 < 0.                            |                                               |                                              | < 0.02<br>< 0.02<br>< 0.02          | < 0.01                                     | < 0.02<br>< 0.02<br>< 0.02          | < 0.1<br>< 0.1<br>< 0.1             | < 0.02<br>< 0.02                 | < 0.02                      | < 0.02<br>< 0.02<br>< 0.02              | < 0.01<br>< 0.01                | < 0.02<br>< 0.02<br>< 0.02        | < 0.02                          | < 0.02<br>< 0.02<br>< 0.02            | < 0.02                               | < 0.02<br>< 0.02<br>< 0.02         | < 0.05<br>< 0.05<br>< 0.05<br>< 0.05    | < 0.02                        | < 0.05                                         | < 0.05                                    | < 0.05<br>< 0.05<br>< 0.05                        | < 0.05<br>< 0.05                                | < 0.02                                                     | < 0.02                                  | < 0.05<br>< 0.05                      | < 0.05                                | < 0.05<br>< 0.05<br>< 0.05            | < 0.05 < 0.0                                           | 1 <0.01                             | < 0.01                            |
| 14-Aug<br>16-Sep<br>16-Oct<br>SW4 16-New                           | -20 < 0.                            | 1.02 < 0.02                                   | < 0.02                                       | < 0.02                              | 0.01<br>0.02<br>< 0.01                     | < 0.02                              | < 0.1                               | < 0.02                           | < 0.02<br>< 0.02<br>< 0.02  | < 0.02                                  | < 0.01<br>< 0.01<br>< 0.01      | < 0.02                            | < 0.02<br>< 0.02<br>< 0.02      | < 0.02                                | < 0.02<br>< 0.02<br>< 0.02           | < 0.02                             | < 0.05                                  | < 0.02<br>< 0.02<br>< 0.02    | < 0.05<br>< 0.05<br>< 0.05                     | < 0.05<br>< 0.05<br>< 0.05                | < 0.05                                            | < 0.05<br>< 0.05<br>< 0.05                      | < 0.02                                                     | < 0.02<br>< 0.02<br>< 0.02              | < 0.05<br>< 0.05<br>< 0.05            | < 0.05<br>< 0.05<br>< 0.05            | < 0.05                                | < 0.05 < 0.0<br>< 0.05 < 0.0<br>< 0.05 < 0.0           | 1 < 0.01                            | < 0.01<br>< 0.01<br>< 0.01        |
| SW4 16-Nov<br>16-Dec<br>14-Jan                                     |                                     |                                               | 0.16 <sup>3</sup><br>0.03                    | < 0.02                              | 0.02<br>0.02<br>0.04                       | < 0.02<br>< 0.02                    | < 0.1<br>< 0.1<br>< 0.1             | < 0.02<br>0.09 <sup>3</sup>      | < 0.02<br>0.08 <sup>3</sup> | < 0.02<br>0.03 <sup>3</sup>             | < 0.01<br>0.02 <sup>3</sup>     | < 0.02<br>< 0.02                  | < 0.02<br>< 0.02                | < 0.02                                | < 0.02<br>< 0.02                     | < 0.02                             | < 0.05<br>< 0.05                        | < 0.02<br>< 0.02<br>< 0.02    | < 0.05<br>< 0.05                               | < 0.05<br>< 0.05                          | < 0.05<br>< 0.05                                  | < 0.05                                          | < 0.02<br>< 0.02                                           | < 0.02<br>< 0.02<br>< 0.02              | < 0.05<br>< 0.05<br>< 0.05            | < 0.05<br>< 0.05<br>< 0.05            | < 0.05<br>< 0.05<br>< 0.05            | < 0.05 0.00<br>< 0.05 0.55<br>< 0.05 0.00              | 0.02<br>3 0.8 3<br>9.07             | 0.02<br>0.82 <sup>3</sup>         |
| 16-Feb                                                             | -21 < 0.                            | 102 < 0.02                                    | < 0.02                                       | < 0.02                              | 0.04                                       | < 0.02<br>< 0.02<br>< 0.02          | < 0.1<br>< 0.1<br>< 0.1             | < 0.02                           | < 0.02                      | < 0.02<br>< 0.02<br>< 0.02              | < 0.01                          | < 0.02<br>< 0.02                  | < 0.02<br>< 0.02<br>< 0.02      | < 0.02                                | < 0.02<br>< 0.02<br>< 0.02           | < 0.02<br>< 0.02<br>< 0.02         | < 0.05                                  | < 0.02<br>< 0.02<br>< 0.02    | < 0.05                                         | < 0.05<br>< 0.05<br>< 0.05                | < 0.05<br>< 0.05                                  | < 0.05<br>< 0.05<br>< 0.05                      | < 0.02<br>< 0.02<br>< 0.02                                 | < 0.02                                  | < 0.05                                | < 0.05                                | < 0.05                                | < 0.05 0.00                                            | 0.03                                | 0.82 <sup>3</sup><br>0.07<br>0.03 |
| 20-May                                                             |                                     | 3.02 < 0.02                                   | < 0.02                                       | < 0.02                              | < 0.01<br>0.01                             | < 0.02<br>< 0.02                    | < 0.1                               | < 0.02                           | < 0.02<br>< 0.02<br>< 0.02  | < 0.02                                  | < 0.01<br>< 0.01<br>< 0.01      | < 0.02                            | < 0.02                          | < 0.02                                | < 0.02                               | < 0.02                             | < 0.05<br>< 0.05<br>< 0.05              | < 0.02                        | < 0.05<br>< 0.05<br>< 0.05                     | < 0.05                                    | < 0.05<br>< 0.05                                  | < 0.05                                          | < 0.02                                                     | < 0.02<br>< 0.02<br>< 0.02              | < 0.05<br>< 0.05<br>< 0.05            | < 0.05<br>< 0.05<br>< 0.05            | < 0.05<br>< 0.05<br>< 0.05            | < 0.05 < 0.0                                           | 0.01                                | 0.04<br>< 0.01<br>0.01            |
| 18-Jun<br>15-Jul                                                   | -21 < 0:<br>-21 < 0:                | 0.02 < 0.02<br>0.02 < 0.02                    | < 0.02<br>< 0.02                             | < 0.02<br>< 0.02                    | < 0.01                                     | < 0.02<br>< 0.02                    | < 0.1<br>< 0.1                      | < 0.02<br>< 0.02                 | < 0.02<br>< 0.02            | < 0.02<br>< 0.02                        | < 0.01<br>< 0.01                | < 0.02<br>< 0.02                  | < 0.02<br>< 0.02                | < 0.02<br>< 0.02                      | < 0.02<br>< 0.02                     | < 0.02<br>< 0.02                   | < 0.05<br>< 0.05                        | < 0.02<br>< 0.02              | < 0.05<br>< 0.05                               | < 0.05<br>< 0.05                          | < 0.05<br>< 0.05                                  | < 0.05<br>< 0.05                                | < 0.02<br>< 0.02                                           | < 0.02<br>< 0.02                        | < 0.05<br>< 0.05                      | < 0.05<br>< 0.05                      | < 0.05<br>< 0.05                      | < 0.05 < 0.0                                           | 1 < 0.01                            | < 0.01<br>< 0.01                  |
| 22-Sep                                                             | -21 < 0.<br>-21 < 0.                | 1.02 < 0.02                                   | < 0.02                                       | < 0.02                              | < 0.01<br>< 0.01                           | < 0.02<br>< 0.02                    | < 0.1<br>< 0.1                      | < 0.02                           | < 0.02                      | < 0.02                                  | < 0.01<br>< 0.01                | < 0.02                            | < 0.02<br>< 0.02                | < 0.02                                | < 0.02<br>< 0.02                     | < 0.02                             | < 0.05<br>< 0.05                        | < 0.02                        | < 0.05<br>< 0.05                               | < 0.05<br>< 0.05                          | < 0.05<br>< 0.05                                  | < 0.05                                          | < 0.02                                                     | < 0.02                                  | < 0.05                                |                                       |                                       | < 0.05 < 0.0<br>< 0.05 < 0.0                           | 1 < 0.01                            | < 0.01<br>< 0.01                  |
| 13-Oct-<br>16-Nov                                                  | :21 < 0.<br>:21 < 0.                | 0.02 < 0.02<br>0.02 < 0.02                    | < 0.02                                       | < 0.02                              | < 0.01<br>< 0.01                           | < 0.02<br>< 0.02                    | < 0.1                               | < 0.02                           | < 0.02                      | < 0.02                                  | < 0.01                          | < 0.02                            | < 0.02                          | < 0.02                                | < 0.02                               | < 0.02<br>< 0.02                   | < 0.05<br>< 0.05                        | < 0.02                        | < 0.05                                         | < 0.05<br>< 0.05                          | < 0.05                                            | < 0.05                                          | < 0.02                                                     | < 0.02                                  | < 0.05                                | < 0.05                                | < 0.05                                | < 0.05 < 0.0<br>< 0.05 < 0.0                           | 1 < 0.01                            | < 0.01<br>< 0.01                  |

Notes:
- - Not analysed
< - Less than laboratory lim

< - Lass than laboratory limit of reporting µg/L - Micrograms per litre

\*\*\* 99% Level of protection in freshwa 1 Oritoria is 100

Denotes duplicate value used
 Denotes triplicate value used
 Denotes triplicate value used

Table 3 Wash Plant Sediment Analytical Data - PFAS Williamtown Sand Syndicate

|                                   |                |                                                   | Perf                                                    | luoroalkyl | Sulfonic A                           | Acids    |                             | 1                  |                     |                                           |                                 | Perfluoroa                     | ilkyl Carbo                    | xvlic Acid                     | s                   |                                                  |                       |                                                   |                                                  |                                | Perfluore                                                    | oalkyl Sulf                                               | fonamides |                                                                                 |                                                                                   | (n:2) F                                                      | luorotelon                                                   | ner Sulfon                                                   | ic Acids                                                       | S                              | um of PFA                             | S              |
|-----------------------------------|----------------|---------------------------------------------------|---------------------------------------------------------|------------|--------------------------------------|----------|-----------------------------|--------------------|---------------------|-------------------------------------------|---------------------------------|--------------------------------|--------------------------------|--------------------------------|---------------------|--------------------------------------------------|-----------------------|---------------------------------------------------|--------------------------------------------------|--------------------------------|--------------------------------------------------------------|-----------------------------------------------------------|-----------|---------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|--------------------------------------------------------------|--------------------------------------------------------------|--------------------------------------------------------------|----------------------------------------------------------------|--------------------------------|---------------------------------------|----------------|
| Analyt                            | e              | Perfluor<br>obutane<br>sulfonic<br>acid<br>(PFBS) | Perfluor<br>opentan<br>e<br>sulfonic<br>acid<br>(PFPeS) |            | Perfluor<br>oheptan<br>e<br>sulfonat |          | odecane<br>sulfonic<br>acid | obutano<br>ic acid | opentan<br>oic acid | Perfluor<br>ohexano<br>ic acid<br>(PFHxA) | Perfluor<br>oheptan<br>oic acid | Perfluor<br>ooctanoi<br>c acid | Perfluor<br>ononano<br>ic acid | Perfluor<br>odecano<br>ic acid | Perfluor<br>oundeca | Perfluor<br>ododeca<br>noic acid<br>(PFDoD<br>A) | otrideca<br>noic acid | Perfluor<br>otetrade<br>canoic<br>acid<br>(PFTeDA | Perfluor<br>ooctane<br>sulfona<br>mide<br>(FOSA) | perfluor<br>ooctane<br>sulfona | N-Ethyl<br>perfluor<br>ooctane<br>sulfona<br>mide<br>(EtFOSA | N-<br>Methyl<br>perfluor<br>ooctane<br>sulfona<br>midoeth | N. Ethord | N-<br>Methyl<br>perfluor<br>ooctane<br>sulfona<br>midoace<br>tic acid<br>(MeFOS | N-Ethyl<br>perfluor<br>ooctane<br>sulfona<br>midoace<br>tic acid<br>(EtFOSA<br>A) | 4:2<br>Fluorote<br>Iomer<br>sulfonic<br>acid<br>(4:2<br>FTS) | 6:2<br>Fluorote<br>Iomer<br>sulfonic<br>acid<br>(6:2<br>FTS) | 8:2<br>Fluorote<br>Iomer<br>sulfonic<br>acid<br>(8:2<br>FTS) | 10:2<br>Fluorote<br>Iomer<br>sulfonic<br>acid<br>(10:2<br>FTS) | Sum of<br>PFHxS<br>and<br>PFOS | Sum of<br>PFAS<br>(WA<br>DER<br>List) | Sum of<br>PFAS |
| LOR                               |                | 0.0002                                            | 0.0002                                                  | 0.0002     | 0.0002                               | 0.0002   | 0.0002                      | 0.001              | 0.0002              | 0.0002                                    | 0.0002                          | 0.0002                         | 0.0002                         | 0.0002                         | 0.0002              | 0.0002                                           | 0.0002                | 0.0005                                            | 0.0002                                           | 0.0005                         | 0.0005                                                       | 0.0005                                                    | 0.0005    | 0.0002                                                                          | 0.0002                                                                            | 0.0005                                                       | 0.0005                                                       | 0.0005                                                       | 0.0005                                                         | 0.0002                         | 0.0002                                | 0.0002         |
| Units                             |                | mg/kg                                             | mg/kg                                                   | mg/kg      | mg/kg                                | mg/kg    | mg/kg                       | mg/kg              | mg/kg               | mg/kg                                     | mg/kg                           | mg/kg                          | mg/kg                          | mg/kg                          | mg/kg               | mg/kg                                            | mg/kg                 | mg/kg                                             | mg/kg                                            | mg/kg                          | mg/kg                                                        | mg/kg                                                     | mg/kg     | mg/kg                                                                           | mg/kg                                                                             | mg/kg                                                        | mg/kg                                                        | mg/kg                                                        | mg/kg                                                          | mg/kg                          | mg/kg                                 | mg/kg          |
| Adopted Site Spec<br>Values (SWMF |                |                                                   |                                                         | 0.01       |                                      | 0.01     | _                           |                    |                     |                                           |                                 | 0.1                            |                                | _                              |                     |                                                  |                       |                                                   |                                                  | _                              |                                                              | _                                                         |           |                                                                                 |                                                                                   | _                                                            | _                                                            |                                                              |                                                                | 0.01                           |                                       | _              |
| HEPA NEMP 2                       |                | -                                                 | -                                                       | -          | -                                    | -        | -                           | -                  | -                   | -                                         | -                               | 50                             | -                              | -                              | -                   | -                                                | -                     | -                                                 | -                                                | -                              | -                                                            | -                                                         | -         | -                                                                               | -                                                                                 | -                                                            | -                                                            | -                                                            | -                                                              | 20                             | -                                     | -              |
| Sample Name                       | Sample<br>Date |                                                   |                                                         |            |                                      |          |                             |                    |                     |                                           |                                 |                                |                                |                                |                     |                                                  |                       |                                                   |                                                  |                                |                                                              |                                                           |           |                                                                                 |                                                                                   |                                                              |                                                              |                                                              |                                                                |                                |                                       |                |
| WPF                               | 19-Aug-21      |                                                   |                                                         |            | < 0.0002                             |          | < 0.0002                    | < 0.001            |                     | < 0.0002                                  |                                 | 0.0006                         |                                |                                |                     |                                                  |                       |                                                   |                                                  |                                |                                                              |                                                           |           |                                                                                 | < 0.0002                                                                          |                                                              |                                                              |                                                              |                                                                | < 0.0002                       | 0.0006                                | 0.0006         |
| WPF (secondary)                   |                |                                                   |                                                         | < 0.0002   | < 0.0002                             |          | < 0.0002                    | < 0.001            |                     | < 0.0002                                  | < 0.0002                        |                                |                                |                                |                     |                                                  |                       |                                                   | < 0.0002                                         |                                |                                                              |                                                           |           | < 0.0002                                                                        | < 0.0002                                                                          | < 0.0005                                                     | < 0.0005                                                     | < 0.0005                                                     | < 0.0005                                                       | 0.0005                         | 0.0048                                | 0.0048         |
| SAND1 (secondary                  | 27-Aug-21      | < 0.0002                                          | < 0.0002                                                | < 0.0002   | < 0.0002                             | < 0.0002 | < 0.0002                    | < 0.001            | < 0.0002            | < 0.0002                                  | < 0.0002                        | < 0.0002                       | < 0.0002                       | < 0.0002                       | < 0.0002            | < 0.0002                                         | < 0.0002              | < 0.0005                                          | < 0.0002                                         | < 0.0005                       | < 0.0005                                                     | < 0.0005                                                  | < 0.0005  | < 0.0002                                                                        | < 0.0002                                                                          | < 0.0005                                                     | < 0.0005                                                     | < 0.0005                                                     | < 0.0005                                                       | < 0.0002                       | < 0.0002                              | < 0.0002       |
| RFS                               | 22-Sep-21      |                                                   | < 0.0002                                                | < 0.0002   |                                      |          | < 0.0002                    |                    |                     |                                           |                                 |                                |                                | < 0.0002                       |                     |                                                  | < 0.0002              |                                                   | < 0.0002                                         |                                |                                                              | < 0.0005                                                  |           | < 0.0002                                                                        |                                                                                   |                                                              | < 0.0005                                                     | < 0.0005                                                     | < 0.0005                                                       | < 0.0002                       | < 0.0002                              | < 0.0002       |
| WASHED                            | 22-Sep-21      |                                                   |                                                         |            |                                      |          |                             |                    |                     |                                           |                                 |                                |                                |                                |                     |                                                  |                       |                                                   |                                                  |                                |                                                              |                                                           |           |                                                                                 | < 0.0002                                                                          |                                                              |                                                              |                                                              |                                                                | < 0.0002                       | < 0.0002                              | < 0.0002       |
| WPF                               | 22-Sep-21      |                                                   |                                                         |            |                                      |          |                             |                    |                     |                                           |                                 |                                |                                |                                |                     |                                                  |                       |                                                   |                                                  |                                |                                                              |                                                           |           |                                                                                 | < 0.0002                                                                          |                                                              |                                                              |                                                              |                                                                |                                |                                       |                |
| WPF                               | 19-Nov-21      | < 0.0002                                          | < 0.0002                                                | < 0.0002   | < 0.0002                             | 0.0005   | < 0.0002                    | < 0.001            | < 0.0002            | < 0.0002                                  | < 0.0002                        | < 0.0002                       | < 0.0002                       | < 0.0002                       | < 0.0002            | < 0.0002                                         | < 0.0002              | < 0.0005                                          | < 0.0002                                         | < 0.0005                       | < 0.0005                                                     | < 0.0005                                                  | < 0.0005  | < 0.0002                                                                        | < 0.0002                                                                          | < 0.0005                                                     | < 0.0005                                                     | < 0.0005                                                     | < 0.0005                                                       | 0.0005                         | 0.0005                                | 0.0005         |

Notes:
- Not analysed
- Less than laboratory limit of reporting mg/ka - Milligrams per kilogram
\*\*\* - Soil Human Health Screening Criteria

<sup>1</sup> Soil and Water Management Plan July 2021

#### Table 4 Wash Plant Water Analytical Data - PFAS Williamtown Sand Syndicate

|                |                        |                                                   | Perf                                                    | fluoroalkyl | Sulfonic                                             | Acids                                             |                                                   |                                          |                     |                    | F       | Perfluoroa         | ilkyl Carbo        | xylic Acid | s      |                                                     |                                                 |                            |        |                                                                         | Perfluoro | alkyl Sulf                                | onamides                                                                     |                                                                                 |                                                                                   | (n:2) F                                                      | luorotelon                                                   | ner Sulfon                                                   | ic Acids                                                       | S                              | um of PFA                             | S              |
|----------------|------------------------|---------------------------------------------------|---------------------------------------------------------|-------------|------------------------------------------------------|---------------------------------------------------|---------------------------------------------------|------------------------------------------|---------------------|--------------------|---------|--------------------|--------------------|------------|--------|-----------------------------------------------------|-------------------------------------------------|----------------------------|--------|-------------------------------------------------------------------------|-----------|-------------------------------------------|------------------------------------------------------------------------------|---------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|--------------------------------------------------------------|--------------------------------------------------------------|--------------------------------------------------------------|----------------------------------------------------------------|--------------------------------|---------------------------------------|----------------|
| A              | nalyte                 | Perfluor<br>obutane<br>sulfonic<br>acid<br>(PFBS) | Perfluor<br>opentan<br>e<br>sulfonic<br>acid<br>(PFPeS) | Perfluor    | Perfluor<br>oheptan<br>e<br>sulfonat<br>e<br>(PFHpS) | Perfluor<br>ooctane<br>sulfonic<br>acid<br>(PFOS) | Perfluor<br>odecane<br>sulfonic<br>acid<br>(PFDS) | Perfluor<br>obutano<br>ic acid<br>(PFBA) | opentan<br>oic acid | ohexano<br>ic acid | oheptan | ooctanoi<br>c acid | ononano<br>ic acid |            |        | Perfluor<br>ododeca<br>noic<br>acid<br>(PFDoD<br>A) | Perfluor<br>otrideca<br>noic<br>acid<br>(PFTrDA | otetrade<br>canoic<br>acid |        | N-<br>Methyl-<br>perfluor<br>ooctane<br>sulfona<br>mide<br>(MeFOS<br>A) | mide      | perfluor<br>ooctane<br>sulfona<br>midoeth | N-Ethyl<br>perfluor<br>ooctane<br>sulfona<br>midoeth<br>anol<br>(EtFOSE<br>) | N-<br>Methyl<br>perfluor<br>ooctane<br>sulfona<br>midoace<br>tic acid<br>(MeFOS | N-Ethyl<br>perfluor<br>ooctane<br>sulfona<br>midoace<br>tic acid<br>(EtFOSA<br>A) | 4:2<br>Fluorote<br>lomer<br>sulfonic<br>acid<br>(4:2<br>FTS) | 6:2<br>Fluorote<br>lomer<br>sulfonic<br>acid<br>(6:2<br>FTS) | 8:2<br>Fluorote<br>lomer<br>sulfonic<br>acid<br>(8:2<br>FTS) | 10:2<br>Fluorote<br>lomer<br>sulfonic<br>acid<br>(10:2<br>FTS) | Sum of<br>PFHxS<br>and<br>PFOS | Sum of<br>PFAS<br>(WA<br>DER<br>List) | Sum of<br>PFAS |
|                | LOR                    | 0.02                                              | 0.02                                                    | 0.02        | 0.02                                                 | 0.01                                              | 0.02                                              | 0.1                                      | 0.02                | 0.02               | 0.02    | 0.01               | 0.02               | 0.02       | 0.02   | 0.02                                                | 0.02                                            | 0.05                       | 0.02   | 0.05                                                                    | 0.05      | 0.05                                      | 0.05                                                                         | 0.02                                                                            | 0.02                                                                              | 0.05                                                         | 0.05                                                         | 0.05                                                         | 0.05                                                           | 0.01                           | 0.01                                  | 0.01           |
|                | Units                  | μg/L                                              | μg/L                                                    | μg/L        | μg/L                                                 | μg/L                                              | μg/L                                              | μg/L                                     | μg/L                | μg/L               | μg/L    | μg/L               | μg/L               | μg/L       | μg/L   | μg/L                                                | μg/L                                            | μg/L                       | μg/L   | μg/L                                                                    | μg/L      | μg/L                                      | μg/L                                                                         | μg/L                                                                            | μg/L                                                                              | μg/L                                                         | μg/L                                                         | μg/L                                                         | μg/L                                                           | μg/L                           | μg/L                                  | μg/L           |
|                | Site Specific          |                                                   |                                                         | 0.07        |                                                      | 0.07                                              |                                                   |                                          |                     |                    |         | 0.56               |                    |            |        |                                                     |                                                 |                            |        |                                                                         |           |                                           |                                                                              |                                                                                 |                                                                                   |                                                              |                                                              |                                                              |                                                                | 0.07                           |                                       |                |
| HEPA N         | EMP 2020***            |                                                   |                                                         |             |                                                      | 0.13                                              |                                                   |                                          |                     |                    |         | 19                 |                    |            |        |                                                     |                                                 |                            |        |                                                                         |           |                                           |                                                                              |                                                                                 |                                                                                   |                                                              |                                                              |                                                              |                                                                |                                |                                       |                |
| HEPA I         | NEMP 2020 <sup>4</sup> |                                                   |                                                         |             |                                                      |                                                   |                                                   |                                          |                     |                    |         | 5.6                |                    |            |        |                                                     |                                                 |                            |        |                                                                         |           |                                           |                                                                              |                                                                                 |                                                                                   |                                                              |                                                              |                                                              |                                                                | 0.7                            |                                       |                |
| Sample<br>Name | Sample<br>Date         |                                                   |                                                         |             |                                                      |                                                   |                                                   |                                          |                     |                    |         |                    |                    |            |        |                                                     |                                                 |                            |        |                                                                         |           |                                           |                                                                              |                                                                                 |                                                                                   |                                                              |                                                              |                                                              |                                                                |                                |                                       |                |
| INPUT          | 22-Sep-21              | < 0.02                                            | < 0.02                                                  | < 0.02      | < 0.02                                               | < 0.01                                            | < 0.02                                            | < 0.1                                    | < 0.02              | < 0.02             | < 0.02  | < 0.01             | < 0.02             | < 0.02     | < 0.02 | < 0.02                                              | < 0.02                                          | < 0.05                     | < 0.02 | < 0.05                                                                  | < 0.05    | < 0.05                                    | < 0.05                                                                       | < 0.02                                                                          | < 0.02                                                                            | < 0.05                                                       | < 0.05                                                       | < 0.05                                                       | < 0.05                                                         | < 0.01                         | < 0.01                                | < 0.01         |
|                | 19-Aug-21              | < 0.02                                            | < 0.02                                                  | < 0.02      | < 0.02                                               | < 0.01                                            | < 0.02                                            | < 0.1                                    | < 0.02              | < 0.02             | < 0.02  | < 0.01             | < 0.02             | < 0.02     | < 0.02 | < 0.02                                              | < 0.02                                          | < 0.05                     | < 0.02 | < 0.05                                                                  | < 0.05    | < 0.05                                    | < 0.05                                                                       | < 0.02                                                                          | < 0.02                                                                            | < 0.05                                                       | < 0.05                                                       | < 0.05                                                       | < 0.05                                                         | < 0.01                         | < 0.01                                | < 0.01         |
|                | 22-Sep-21              | < 0.02                                            | < 0.02                                                  | < 0.02      | < 0.02                                               | < 0.01                                            | < 0.02                                            | < 0.1                                    | < 0.02              | < 0.02             | < 0.02  | < 0.01             | < 0.02             | < 0.02     |        | < 0.02                                              | < 0.02                                          | < 0.05                     | < 0.02 | < 0.05                                                                  | < 0.05    | < 0.05                                    | < 0.05                                                                       | < 0.02                                                                          | < 0.02                                                                            | < 0.05                                                       | < 0.05                                                       | < 0.05                                                       | < 0.05                                                         | < 0.01                         | < 0.01                                | < 0.01         |
| WPW            | 13-Oct-21              | < 0.02                                            | < 0.02                                                  | < 0.02      | < 0.02                                               | 0.01                                              | < 0.02                                            | < 0.1                                    | < 0.02              | < 0.02             | < 0.02  | < 0.01             | < 0.02             | < 0.02     | < 0.02 | < 0.02                                              | < 0.02                                          | < 0.05                     | < 0.02 | < 0.05                                                                  | < 0.05    | < 0.05                                    | < 0.05                                                                       | < 0.02                                                                          | < 0.02                                                                            | < 0.05                                                       | < 0.05                                                       | < 0.05                                                       | < 0.05                                                         | 0.01                           | 0.01                                  | 0.01           |
|                | 16-Nov-21              | < 0.02                                            | < 0.02                                                  | < 0.01      | < 0.02                                               | < 0.01                                            | < 0.02                                            | < 0.1                                    | < 0.02              | < 0.02             | < 0.02  | < 0.01             | < 0.02             | < 0.02     |        | < 0.02                                              | < 0.02                                          | < 0.05                     | < 0.02 | < 0.05                                                                  | < 0.05    | < 0.05                                    | < 0.05                                                                       | < 0.02                                                                          | < 0.02                                                                            | < 0.05                                                       | < 0.05                                                       | < 0.05                                                       | < 0.05                                                         | < 0.01                         | < 0.01                                | < 0.01         |
|                | 15-Dec-21              | < 0.02                                            | < 0.02                                                  | < 0.01      | < 0.02                                               | 0.03                                              | < 0.02                                            | < 0.1                                    | < 0.02              | < 0.02             | < 0.02  | < 0.01             | < 0.02             | < 0.02     | < 0.02 | < 0.02                                              | < 0.02                                          | < 0.05                     | < 0.02 | < 0.05                                                                  | < 0.05    | < 0.05                                    | < 0.05                                                                       | < 0.02                                                                          | < 0.02                                                                            | < 0.05                                                       | < 0.05                                                       | < 0.05                                                       | < 0.05                                                         | 0.03                           | 0.03                                  | 0.03           |

Notes:
- Not analysed
- Less than laboratory limit of reporting
µg/L - Micrograms per litre
\*\*\* 95% Level of protection in freshwater - slightly to moderately disturbed systems
<sup>1</sup> Soil and Water Management Plan July 2021
<sup>4</sup> Recreation water











# APPENDIX 13. TRUCK MONITORING RECORDS

Ref: CTR Quarry Annual Review Year 2021.docx



# **JANUARY 2021**

# **Monthly Summary of Traffic Movements**

(as per Condition 26 of Consent SSD\_6125)

| (us per es                  |       | 120 0, 001130111 005_0120) |                                  |
|-----------------------------|-------|----------------------------|----------------------------------|
| Date                        | Total | Approved Maximum*          | Percentage of Approved Movements |
| 4-Jan                       | 6     | 116                        | 5.2%                             |
| 5-Jan                       | 6     | 116                        | 5.2%                             |
| 6-Jan                       | 12    | 116                        | 10.3%                            |
| 7-Jan                       | 26    | 116                        | 22.4%                            |
| 8-Jan                       | 23    | 116                        | 19.8%                            |
| 11-Jan                      | 47    | 116                        | 40.5%                            |
| 12-Jan                      | 24    | 116                        | 20.7%                            |
| 13-Jan                      | 22    | 116                        | 19.0%                            |
| 14-Jan                      | 34    | 116                        | 29.3%                            |
| 15-Jan                      | 36    | 116                        | 31.0%                            |
| 16-Jan                      | 12    | 90                         | 13.3%                            |
| 18-Jan                      | 69    | 116                        | 59.5%                            |
| 19-Jan                      | 72    | 116                        | 62.1%                            |
| 20-Jan                      | 59    | 116                        | 50.9%                            |
| 21-Jan                      | 55    | 116                        | 47.4%                            |
| 22-Jan                      | 44    | 116                        | 37.9%                            |
| 23-Jan                      | 5     | 90                         | 5.6%                             |
| 25-Jan                      | 16    | 116                        | 13.8%                            |
| 27-Jan                      | 35    | 116                        | 30.2%                            |
| 28-Jan                      | 21    | 116                        | 18.1%                            |
| 29-Jan                      | 22    | 116                        | 19.0%                            |
| 30-Jan                      | 3     | 90                         | 3.3%                             |
| Total trucks this month     | 649   |                            |                                  |
| Approved maximum for month* |       | 2886                       | 22.5%                            |

- \* Maximum approved haulage as per Condition 23 of Consent SSD\_6125:
- 6 trucks per hour from 6am to 7am Monday to Friday.
- 10 trucks per hour from 7am to 6pm Monday to Friday.
- 10 trucks per hour from 7am to 4pm on Saturday.
- No haulage on Public Holidays.



# February 2021

# **Monthly Summary of Traffic Movements**

(as per Condition 26 of Consent SSD 6125)

| (us per co                  | mailion | 1 26 Of Consent 35D_6125) |                                  |
|-----------------------------|---------|---------------------------|----------------------------------|
| Date                        | Total   | Approved Maximum*         | Percentage of Approved Movements |
| 1-Feb                       | 35      | 116                       | 30.2%                            |
| 2-Feb                       | 21      | 116                       | 18.1%                            |
| 3-Feb                       | 22      | 116                       | 19.0%                            |
| 4-Feb                       | 26      | 116                       | 22.4%                            |
| 5-Feb                       | 26      | 116                       | 22.4%                            |
| 6-Feb                       | 4       | 90                        | 4.4%                             |
| 8-Feb                       | 40      | 116                       | 34.5%                            |
| 9-Feb                       | 43      | 116                       | 37.1%                            |
| 10-Feb                      | 46      | 116                       | 39.7%                            |
| 11-Feb                      | 38      | 116                       | 32.8%                            |
| 12-Feb                      | 48      | 116                       | 41.4%                            |
| 13-Feb                      | 12      | 90                        | 13.3%                            |
| 15-Feb                      | 75      | 116                       | 64.7%                            |
| 16-Feb                      | 74      | 116                       | 63.8%                            |
| 17-Feb                      | 50      | 116                       | 43.1%                            |
| 18-Feb                      | 25      | 116                       | 21.6%                            |
| 19-Feb                      | 35      | 116                       | 30.2%                            |
| 20-Feb                      | 1       | 90                        | 1.1%                             |
| 22-Feb                      | 78      | 116                       | 67.2%                            |
| 23-Feb                      | 77      | 116                       | 66.4%                            |
| 24-Feb                      | 63      | 116                       | 54.3%                            |
| 25-Feb                      | 86      | 116                       | 74.1%                            |
| 26-Feb                      | 49      | 116                       | 42.2%                            |
| 27-Feb                      | 7       | 90                        | 7.8%                             |
| Total trucks this month     | 981     |                           |                                  |
| Approved maximum for month* |         | 2680                      | 36.6%                            |

- \* Maximum approved haulage as per Condition 23 of Consent SSD\_6125:
- 6 trucks per hour from 6am to 7am Monday to Friday.
- 10 trucks per hour from 7am to 6pm Monday to Friday.
- 10 trucks per hour from 7am to 4pm on Saturday.
- No haulage on Public Holidays.





(as per Condition 26 of Consent SSD 6125)

| (as per Co                  | <u>onditior</u> | n 26 of Consent SSD_6125) |                                  |
|-----------------------------|-----------------|---------------------------|----------------------------------|
| Date                        | Total           | Approved Maximum*         | Percentage of Approved Movements |
| 1-Mar                       | 34              | 116                       | 29.3%                            |
| 2-Mar                       | 34              | 116                       | 29.3%                            |
| 3-Mar                       | 34              | 116                       | 29.3%                            |
| 4-Mar                       | 33              | 116                       | 28.4%                            |
| 5-Mar                       | 45              | 116                       | 38.8%                            |
| 6-Mar                       | 6               | 90                        | 6.7%                             |
| 8-Mar                       | 41              | 116                       | 35.3%                            |
| 9-Mar                       | 40              | 116                       | 34.5%                            |
| 10-Mar                      | 34              | 116                       | 29.3%                            |
| 11-Mar                      | 42              | 116                       | 36.2%                            |
| 12-Mar                      | 42              | 116                       | 36.2%                            |
| 13-Mar                      | 7               | 90                        | 7.8%                             |
| 15-Mar                      | 35              | 116                       | 30.2%                            |
| 16-Mar                      | 28              | 116                       | 24.1%                            |
| 17-Mar                      | 31              | 116                       | 26.7%                            |
| 18-Mar                      | 16              | 116                       | 13.8%                            |
| 19-Mar                      | 11              | 116                       | 9.5%                             |
| 22-Mar                      | 3               | 116                       | 2.6%                             |
| 24-Mar                      | 17              | 116                       | 14.7%                            |
| 25-Mar                      | 29              | 116                       | 25.0%                            |
| 26-Mar                      | 37              | 116                       | 31.9%                            |
| 27-Mar                      | 12              | 90                        | 13.3%                            |
| 29-Mar                      | 34              | 116                       | 29.3%                            |
| 30-Mar                      | 32              | 116                       | 27.6%                            |
| 31-Mar                      | 63              | 116                       | 54.3%                            |
| Total trucks this month     | 740             |                           |                                  |
| Approved maximum for month* |                 | 3028                      | 24.4%                            |

- \* Maximum approved haulage as per Condition 23 of Consent SSD\_6125:
- 6 trucks per hour from 6am to 7am Monday to Friday.
- 10 trucks per hour from 7am to 6pm Monday to Friday.
- 10 trucks per hour from 7am to 4pm on Saturday.
- No haulage on Public Holidays.



(as per Condition 26 of Consent SSD 6125)

| (as per el                  | Jilaicion | 1 20 0J CONSENT 33D_0123) | Percentage of Approved |
|-----------------------------|-----------|---------------------------|------------------------|
| Date                        | Total     | Approved Maximum*         | Movements              |
| 1-Apr                       | 66        | 116                       | 56.9%                  |
| 6-Apr                       | 48        | 116                       | 41.4%                  |
| 7-Apr                       | 64        | 116                       | 55.2%                  |
| 8-Apr                       | 66        | 116                       | 56.9%                  |
| 9-Apr                       | 33        | 116                       | 28.4%                  |
| 10-Apr                      | 2         | 90                        | 2.2%                   |
| 12-Apr                      | 46        | 116                       | 39.7%                  |
| 13-Apr                      | 85        | 116                       | 73.3%                  |
| 14-Apr                      | 88        | 116                       | 75.9%                  |
| 15-Apr                      | 79        | 116                       | 68.1%                  |
| 16-Apr                      | 73        | 116                       | 62.9%                  |
| 17-Apr                      | 35        | 90                        | 38.9%                  |
| 19-Apr                      | 61        | 116                       | 52.6%                  |
| 20-Apr                      | 45        | 116                       | 38.8%                  |
| 21-Apr                      | 32        | 116                       | 27.6%                  |
| 22-Apr                      | 29        | 116                       | 25.0%                  |
| 23-Apr                      | 34        | 116                       | 29.3%                  |
| 24-Apr                      | 9         | 90                        | 10.0%                  |
| 26-Apr                      | 32        | 116                       | 27.6%                  |
| 27-Apr                      | 48        | 116                       | 41.4%                  |
| 28-Apr                      | 30        | 116                       | 25.9%                  |
| 29-Apr                      | 38        | 90                        | 42.2%                  |
| 30-Apr                      | 23        | 116                       | 19.8%                  |
| Total trucks this month     | 1066      |                           |                        |
| Approved maximum for month* |           | 2912                      | 36.6%                  |

<sup>\*</sup> Maximum approved haulage as per Condition 23 of Consent SSD\_6125:

<sup>- 6</sup> trucks per hour from 6am to 7am Monday to Friday.

<sup>- 10</sup> trucks per hour from 7am to 6pm Monday to Friday.

<sup>- 10</sup> trucks per hour from 7am to 4pm on Saturday.

<sup>-</sup> No haulage on Public Holidays.



(as per Condition 26 of Consent SSD\_6125)

| (as per e                   | onancioi | 120 0) consent 330_0123) |                                  |
|-----------------------------|----------|--------------------------|----------------------------------|
| Date                        | Total    | Approved Maximum*        | Percentage of Approved Movements |
| 1-May                       | 8        | 90                       | 8.9%                             |
| 3-May                       | 29       | 116                      | 25.0%                            |
| 4-May                       | 29       | 116                      | 25.0%                            |
| 5-May                       | 43       | 116                      | 37.1%                            |
| 6-May                       | 18       | 116                      | 15.5%                            |
| 7-May                       | 17       | 90                       | 18.9%                            |
| 8-May                       | 1        | 90                       | 1.1%                             |
| 10-May                      | 39       | 116                      | 33.6%                            |
| 11-May                      | 30       | 116                      | 25.9%                            |
| 12-May                      | 58       | 116                      | 50.0%                            |
| 13-May                      | 48       | 116                      | 41.4%                            |
| 14-May                      | 45       | 90                       | 50.0%                            |
| 15-May                      | 10       | 116                      | 8.6%                             |
| 17-May                      | 48       | 116                      | 41.4%                            |
| 18-May                      | 69       | 116                      | 59.5%                            |
| 19-May                      | 73       | 116                      | 62.9%                            |
| 20-May                      | 61       | 116                      | 52.6%                            |
| 21-May                      | 66       | 116                      | 56.9%                            |
| 22-May                      | 4        | 90                       | 4.4%                             |
| 24-May                      | 60       | 116                      | 51.7%                            |
| 25-May                      | 26       | 116                      | 22.4%                            |
| 26-May                      | 22       | 116                      | 19.0%                            |
| 27-May                      | 28       | 116                      | 24.1%                            |
| 28-May                      | 30       | 116                      | 25.9%                            |
| 29-May                      | 6        | 90                       | 6.7%                             |
| 31-May                      | 28       | 116                      | 24.1%                            |
| Total trucks this month     | 896      |                          |                                  |
| Approved maximum for month* |          | 2886                     | 31.0%                            |
|                             | -        | -                        |                                  |

- \* Maximum approved haulage as per Condition 23 of Consent SSD\_6125:
- 6 trucks per hour from 6am to 7am Monday to Friday.
- 10 trucks per hour from 7am to 6pm Monday to Friday.
- 10 trucks per hour from 7am to 4pm on Saturday.
- No haulage on Public Holidays.



(as per Condition 26 of Consent SSD 6125)

| martion | 120 0) Consent 330_0123)                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|---------|------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Total   | Approved Maximum*                                                            | Percentage of Approved                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|         |                                                                              | Movements                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|         |                                                                              | 23.3%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| _       |                                                                              | 25.0%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|         |                                                                              | 11.2%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 46      | 116                                                                          | 39.7%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 4       | 90                                                                           | 4.4%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 21      | 116                                                                          | 18.1%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 28      | 116                                                                          | 24.1%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 49      | 116                                                                          | 42.2%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 51      | 116                                                                          | 44.0%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 13      | 116                                                                          | 11.2%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 4       | 90                                                                           | 4.4%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 48      | 116                                                                          | 41.4%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 40      | 116                                                                          | 34.5%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 29      | 116                                                                          | 25.0%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 40      | 116                                                                          | 34.5%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 8       | 90                                                                           | 8.9%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 49      | 116                                                                          | 42.2%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 43      | 116                                                                          | 37.1%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 29      | 116                                                                          | 25.0%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 23      | 116                                                                          | 19.8%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 33      | 116                                                                          | 28.4%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 6       | 90                                                                           | 6.7%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 28      | 116                                                                          | 24.1%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 16      | 116                                                                          | 13.8%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 35      | 116                                                                          | 30.2%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 712     |                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|         | 2912                                                                         | 24.5%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|         | 7otal 27 29 13 46 4 21 28 49 51 13 4 48 40 29 40 8 49 43 29 23 33 6 28 16 35 | 27       116         29       116         13       116         46       116         4       90         21       116         28       116         49       116         51       116         13       116         4       90         48       116         40       116         29       116         40       116         8       90         49       116         43       116         29       116         23       116         33       116         6       90         28       116         35       116         712 |

- \* Maximum approved haulage as per Condition 23 of Consent SSD\_6125:
- 6 trucks per hour from 6am to 7am Monday to Friday.
- 10 trucks per hour from 7am to 6pm Monday to Friday.
- 10 trucks per hour from 7am to 4pm on Saturday.
- No haulage on Public Holidays.



(as per Condition 26 of Consent SSD 6125)

| 4     |                                                                                                                                                   |                        |
|-------|---------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|
| Total | Approved Maximum*                                                                                                                                 | Percentage of Approved |
|       | - 1                                                                                                                                               | Movements              |
| 32    | 116                                                                                                                                               | 27.6%                  |
| 35    | 116                                                                                                                                               | 30.2%                  |
| 11    | 90                                                                                                                                                | 12.2%                  |
| 27    | 116                                                                                                                                               | 23.3%                  |
| 34    | 116                                                                                                                                               | 29.3%                  |
| 36    | 116                                                                                                                                               | 31.0%                  |
| 34    | 116                                                                                                                                               | 29.3%                  |
| 31    | 116                                                                                                                                               | 26.7%                  |
| 2     | 90                                                                                                                                                | 2.2%                   |
| 43    | 116                                                                                                                                               | 37.1%                  |
| 50    | 116                                                                                                                                               | 43.1%                  |
| 34    | 116                                                                                                                                               | 29.3%                  |
| 55    | 116                                                                                                                                               | 47.4%                  |
| 49    | 116                                                                                                                                               | 42.2%                  |
| 3     | 90                                                                                                                                                | 3.3%                   |
| 44    | 116                                                                                                                                               | 37.9%                  |
| 29    | 116                                                                                                                                               | 25.0%                  |
| 55    | 116                                                                                                                                               | 47.4%                  |
| 63    | 116                                                                                                                                               | 54.3%                  |
| 37    | 116                                                                                                                                               | 31.9%                  |
| 5     | 90                                                                                                                                                | 5.6%                   |
| 58    | 116                                                                                                                                               | 50.0%                  |
| 33    | 116                                                                                                                                               | 28.4%                  |
| 39    | 116                                                                                                                                               | 33.6%                  |
| 24    | 116                                                                                                                                               | 20.7%                  |
| 36    | 116                                                                                                                                               | 31.0%                  |
| 4     | 90                                                                                                                                                | 4.4%                   |
| 903   |                                                                                                                                                   |                        |
|       | 3002                                                                                                                                              | 30.1%                  |
|       | 35<br>11<br>27<br>34<br>36<br>34<br>31<br>2<br>43<br>50<br>34<br>55<br>49<br>55<br>63<br>37<br>55<br>63<br>37<br>55<br>63<br>37<br>55<br>63<br>37 | 32                     |

<sup>\*</sup> Maximum approved haulage as per Condition 23 of Consent SSD\_6125:

<sup>- 6</sup> trucks per hour from 6am to 7am Monday to Friday.

<sup>- 10</sup> trucks per hour from 7am to 6pm Monday to Friday.

<sup>- 10</sup> trucks per hour from 7am to 4pm on Saturday.

<sup>-</sup> No haulage on Public Holidays.



(as per Condition 26 of Consent SSD 6125)

| (us per condition 20 b) consent 33D_0123) |        |                    |                        |
|-------------------------------------------|--------|--------------------|------------------------|
| Date                                      | Total  | Approved Maximum*  | Percentage of Approved |
| 34.5                                      | . ota. | 7 ipprovou maximum | Movements              |
| 2-Aug                                     | 37     | 116                | 31.9%                  |
| 3-Aug                                     | 37     | 116                | 31.9%                  |
| 4-Aug                                     | 70     | 116                | 60.3%                  |
| 5-Aug                                     | 58     | 116                | 50.0%                  |
| 6-Aug                                     | 66     | 116                | 56.9%                  |
| 7-Aug                                     | 8      | 90                 | 8.9%                   |
| 9-Aug                                     | 65     | 116                | 56.0%                  |
| 10-Aug                                    | 54     | 116                | 46.6%                  |
| 11-Aug                                    | 68     | 116                | 58.6%                  |
| 12-Aug                                    | 73     | 116                | 62.9%                  |
| 13-Aug                                    | 60     | 116                | 51.7%                  |
| 14-Aug                                    | 7      | 90                 | 7.8%                   |
| 16-Aug                                    | 28     | 116                | 24.1%                  |
| 17-Aug                                    | 46     | 116                | 39.7%                  |
| 18-Aug                                    | 56     | 116                | 48.3%                  |
| 19-Aug                                    | 57     | 116                | 49.1%                  |
| 20-Aug                                    | 41     | 116                | 35.3%                  |
| 21-Aug                                    | 8      | 90                 | 8.9%                   |
| 23-Aug                                    | 39     | 116                | 33.6%                  |
| 24-Aug                                    | 15     | 116                | 12.9%                  |
| 25-Aug                                    | 25     | 116                | 21.6%                  |
| 26-Aug                                    | 43     | 116                | 37.1%                  |
| 27-Aug                                    | 62     | 116                | 53.4%                  |
| 28-Aug                                    | 10     | 90                 | 11.1%                  |
| 30-Aug                                    | 53     | 116                | 45.7%                  |
| 31-Aug                                    | 52     | 116                | 44.8%                  |
|                                           |        |                    |                        |
| Total trucks this month                   | 1138   |                    |                        |
| Approved maximum for month*               |        | 2912               | 39.1%                  |

<sup>\*</sup> Maximum approved haulage as per Condition 23 of Consent SSD\_6125:

<sup>- 6</sup> trucks per hour from 6am to 7am Monday to Friday.

<sup>- 10</sup> trucks per hour from 7am to 6pm Monday to Friday.

<sup>- 10</sup> trucks per hour from 7am to 4pm on Saturday.

<sup>-</sup> No haulage on Public Holidays.



# September 2021

# **Monthly Summary of Traffic Movements**

(as per Condition 26 of Consent SSD 6125)

| (as per Condition 26 of Consent SSD_6125) |       |                   |                        |
|-------------------------------------------|-------|-------------------|------------------------|
| Date                                      | Total | Approved Maximum* | Percentage of Approved |
|                                           |       |                   | Movements              |
| 1-Sep                                     | 51    | 116               |                        |
| 2-Sep                                     | 55    | 116               |                        |
| 3-Sep                                     | 48    | 116               |                        |
| 4-Sep                                     | 9     | 90                | 10.0%                  |
| 6-Sep                                     | 50    | 116               |                        |
| 7-Sep                                     | 47    | 116               |                        |
| 8-Sep                                     | 35    | 116               | 30.2%                  |
| 9-Sep                                     | 41    | 116               | 35.3%                  |
| 10-Sep                                    | 42    | 116               | 36.2%                  |
| 11-Sep                                    | 15    | 90                | 16.7%                  |
| 13-Sep                                    | 46    | 116               | 39.7%                  |
| 14-Sep                                    | 18    | 116               | 15.5%                  |
| 15-Sep                                    | 26    | 116               | 22.4%                  |
| 16-Sep                                    | 44    | 116               | 37.9%                  |
| 17-Sep                                    | 49    | 116               | 42.2%                  |
| 18-Sep                                    | 12    | 90                | 13.3%                  |
| 20-Sep                                    | 54    | 116               | 46.6%                  |
| 21-Sep                                    | 32    | 116               | 27.6%                  |
| 22-Sep                                    | 46    | 116               | 39.7%                  |
| 23-Sep                                    | 48    | 116               | 41.4%                  |
| 24-Sep                                    | 45    | 116               | 38.8%                  |
| 25-Sep                                    | 17    | 90                | 18.9%                  |
| 27-Sep                                    | 37    | 116               | 31.9%                  |
| 28-Sep                                    | 66    | 116               | 56.9%                  |
| 29-Sep                                    | 79    | 116               | 68.1%                  |
| 30-Sep                                    | 75    | 116               |                        |
|                                           |       |                   |                        |
| Total trucks this month                   | 1087  |                   |                        |
| Approved maximum for month*               |       | 2912              | 37.3%                  |

<sup>\*</sup> Maximum approved haulage as per Condition 23 of Consent SSD\_6125:

<sup>- 6</sup> trucks per hour from 6am to 7am Monday to Friday.

<sup>- 10</sup> trucks per hour from 7am to 6pm Monday to Friday.

<sup>- 10</sup> trucks per hour from 7am to 4pm on Saturday.

<sup>-</sup> No haulage on Public Holidays.



# October 2021

# **Monthly Summary of Traffic Movements**

(as per Condition 26 of Consent SSD 6125)

| (as per Condition 26 of Consent SSD_6125) |       |                   |                        |  |
|-------------------------------------------|-------|-------------------|------------------------|--|
| Date                                      | Total | Approved Maximum* | Percentage of Approved |  |
|                                           |       | - 1               | Movements              |  |
| 1-Oct                                     | 67    | 116               | 57.8%                  |  |
| 2-Oct                                     | 8     | 90                | 8.9%                   |  |
| 5-Oct                                     | 81    | 116               | 69.8%                  |  |
| 6-Oct                                     | 69    | 116               | 59.5%                  |  |
| 7-Oct                                     | 80    | 116               | 69.0%                  |  |
| 8-Oct                                     | 64    | 116               | 55.2%                  |  |
| 9-Oct                                     | 18    | 90                | 20.0%                  |  |
| 11-Oct                                    | 57    | 116               | 49.1%                  |  |
| 12-Oct                                    | 20    | 116               | 17.2%                  |  |
| 13-Oct                                    | 25    | 116               | 21.6%                  |  |
| 14-Oct                                    | 14    | 116               | 12.1%                  |  |
| 15-Oct                                    | 35    | 116               | 30.2%                  |  |
| 16-Oct                                    | 3     | 90                | 3.3%                   |  |
| 18-Oct                                    | 40    | 116               | 34.5%                  |  |
| 19-Oct                                    | 44    | 116               | 37.9%                  |  |
| 20-Oct                                    | 74    | 116               | 63.8%                  |  |
| 21-Oct                                    | 71    | 116               | 61.2%                  |  |
| 22-Oct                                    | 74    | 116               | 63.8%                  |  |
| 23-Oct                                    | 11    | 90                | 12.2%                  |  |
| 25-Oct                                    | 69    | 116               | 59.5%                  |  |
| 26-Oct                                    | 79    | 116               | 68.1%                  |  |
| 27-Oct                                    | 59    | 116               | 50.9%                  |  |
| 28-Oct                                    | 62    | 116               | 53.4%                  |  |
| 29-Oct                                    | 32    | 116               | 27.6%                  |  |
| 30-Oct                                    | 12    | 90                | 13.3%                  |  |
|                                           |       |                   |                        |  |
|                                           | 1     |                   |                        |  |
| Total trucks this month                   | 1168  |                   |                        |  |
| Approved maximum for month*               |       | 2886              | 40.5%                  |  |

<sup>\*</sup> Maximum approved haulage as per Condition 23 of Consent SSD\_6125:

- 6 trucks per hour from 6am to 7am Monday to Friday.
- 10 trucks per hour from 7am to 6pm Monday to Friday.
- 10 trucks per hour from 7am to 4pm on Saturday.
- No haulage on Public Holidays.



# **November 2021**

# **Monthly Summary of Traffic Movements**

(as per Condition 26 of Consent SSD\_6125)

| Date                        | Total |                   | Percentage of Approved |
|-----------------------------|-------|-------------------|------------------------|
|                             | Total | Approved Maximum* | Movements              |
| 1-Nov                       | 51    | 116               | 44.0%                  |
| 2-Nov                       | 37    | 116               | 31.9%                  |
| 3-Nov                       | 45    | 116               | 38.8%                  |
| 4-Nov                       | 50    | 116               | 43.1%                  |
| 5-Nov                       | 37    | 116               | 31.9%                  |
| 6-Nov                       | 12    | 90                | 13.3%                  |
| 8-Nov                       | 40    | 116               | 34.5%                  |
| 9-Nov                       | 38    | 116               | 32.8%                  |
| 10-Nov                      | 33    | 116               | 28.4%                  |
| 11-Nov                      | 30    | 116               | 25.9%                  |
| 12-Nov                      | 18    | 116               | 15.5%                  |
| 13-Nov                      | 1     | 9                 | 11.1%                  |
| 15-Nov                      | 51    | 116               | 44.0%                  |
| 16-Nov                      | 43    | 116               | 37.1%                  |
| 17-Nov                      | 63    | 116               | 54.3%                  |
| 18-Nov                      | 60    | 116               | 51.7%                  |
| 19-Nov                      | 35    | 116               | 30.2%                  |
| 20-Nov                      | 14    | 90                | 15.6%                  |
| 22-Nov                      | 42    | 116               | 36.2%                  |
| 23-Nov                      | 26    | 116               | 22.4%                  |
| 24-Nov                      | 24    | 116               | 20.7%                  |
| 25-Nov                      | 36    | 116               | 31.0%                  |
| 26-Nov                      | 13    | 116               | 11.2%                  |
| 29-Nov                      | 30    | 116               | 25.9%                  |
| 30-Nov                      | 33    | 116               | 28.4%                  |
|                             |       |                   |                        |
|                             |       |                   |                        |
| Total trucks this month     | 862   |                   |                        |
| Approved maximum for month* |       | 2912              | 29.6%                  |

<sup>\*</sup> Maximum approved haulage as per Condition 23 of Consent SSD\_6125:

<sup>- 6</sup> trucks per hour from 6am to 7am Monday to Friday.

<sup>- 10</sup> trucks per hour from 7am to 6pm Monday to Friday.

<sup>- 10</sup> trucks per hour from 7am to 4pm on Saturday.

<sup>-</sup> No haulage on Public Holidays.



# December 2021

# **Monthly Summary of Traffic Movements**

(as per Condition 26 of Consent SSD\_6125)

| Date                        | Total |                   | Percentage of Approved |
|-----------------------------|-------|-------------------|------------------------|
|                             |       | Approved Maximum* | Movements              |
| 1-Dec                       | 25    | 116               | 21.6%                  |
| 2-Dec                       | 31    | 116               | 26.7%                  |
| 3-Dec                       | 37    | 116               | 31.9%                  |
| 4-Dec                       | 3     | 90                | 3.3%                   |
| 6-Dec                       | 35    | 116               | 30.2%                  |
| 7-Dec                       | 37    | 116               | 31.9%                  |
| 8-Dec                       | 36    | 116               | 31.0%                  |
| 9-Dec                       | 27    | 116               | 23.3%                  |
| 10-Dec                      | 38    | 116               | 32.8%                  |
| 11-Dec                      | 8     | 90                | 8.9%                   |
| 13-Dec                      | 42    | 116               | 36.2%                  |
| 14-Dec                      | 37    | 116               | 31.9%                  |
| 15-Dec                      | 37    | 116               | 31.9%                  |
| 16-Dec                      | 40    | 116               | 34.5%                  |
| 17-Dec                      | 37    | 116               | 31.9%                  |
| 18-Dec                      | 22    | 90                | 24.4%                  |
| 20-Dec                      | 43    | 116               | 37.1%                  |
| 21-Dec                      | 43    | 116               | 37.1%                  |
| 22-Dec                      | 35    | 116               | 30.2%                  |
| 23-Dec                      | 19    | 116               | 16.4%                  |
|                             |       |                   |                        |
|                             |       |                   |                        |
|                             |       |                   |                        |
| Total trucks this month     | 632   |                   |                        |
| Approved maximum for month* |       | 2886              | 21.9%                  |

<sup>\*</sup> Maximum approved haulage as per Condition 23 of Consent SSD\_6125:

- 6 trucks per hour from 6am to 7am Monday to Friday.
- 10 trucks per hour from 7am to 6pm Monday to Friday.
- 10 trucks per hour from 7am to 4pm on Saturday.
- No haulage on Public Holidays.